
CSE462/562: Database Systems (Spring 23)

Lecture 21: Concurrency Control

5/2/2023 & 5/4/2023

Transactions
• Concurrent execution of user programs is essential.

• Because disk accesses are frequent, and relatively slow, it is important to keep the CPU busy by
working on several user programs concurrently.

• A user’s program may carry out many operations on the data retrieved from the
database, but the DBMS is only concerned about what data is read/written from/to the
database.

• A transaction is the DBMS’s abstract view of a user program: a sequence of reads and
writes.

CSE462/562 (Spring 2023): Lecture 21

Concurrency in a DBMS
• Users submit transactions, and can think of each transaction as executing by itself.

• Concurrency is achieved by the DBMS, which interleaves actions (reads/writes of DB objects) of
various transactions, regardless of whether the DB is single-threaded or multi-threaded.

• Each transaction must leave the database in a consistent state if the DB is consistent when the
transaction begins.

• DBMS will enforce some ICs, depending on the ICs declared in CREATE TABLE statements.

• Beyond this, the DBMS does not really understand the semantics of the data. (e.g., it does not
understand how the interest on a bank account is computed).

• Issues: Effect of interleaving transactions, and crashes.

CSE462/562 (Spring 2023): Lecture 21

Atomicity of transactions
• A transaction might commit after completing all its actions, or it could abort by user or

system after executing some actions.

• An important property: atomicity.
• That is, a user can think of a Xact as always executing all its actions in one step, or not executing any

actions at all.

• DBMS logs all actions so that it can undo the actions of aborted transactions.

CSE462/562 (Spring 2023): Lecture 21

ACID properties of Xact
• Atomicity

• Consistency
• Run by itself must leave the DB in a consistent state (no IC violations)

• Isolation
• “protected” from the effects of concurrently scheduled other transactions

• Durability
• If a transaction has successfully completed, its effects should persist even if the system crashes before

all its changes are reflected on disk.

CSE462/562 (Spring 2023): Lecture 21

Example, a banking database
• Consider two transactions (Xacts):

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

There is no guarantee that T1 will execute before T2 or vice-versa, if both are submitted
together. However, the net effect must be equivalent to these two transactions running
serially in some order.

CSE462/562 (Spring 2023): Lecture 21

Example (cont’d)
• Consider the possible interleaving schedules

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

The DBMS’s view of the second schedule:

T1: R(A) W(A) R(B) W(B)
T2: R(A) W(A) R(B) W(B)

But what about:

CSE462/562 (Spring 2023): Lecture 21

Scheduling Transactions
• Serial schedule: Schedule that does not interleave the actions of different transactions.

• Equivalent schedules: For any database state, the effect of executing the first schedule is
identical to the effect of executing the second schedule.

• Serializable schedule: A schedule that is equivalent to some serial execution of the
transactions.

(Note: If each transaction preserves consistency, every serializable schedule preserves
consistency.)

• When we discuss schedules, we only consider reads/writes/commit/abort
• Ignores computation

• Two forms of (restricted) serializability
• conflict serializable
• view serializability

CSE462/562 (Spring 2023): Lecture 21

Anomalies with interleaved execution
• Dirty reads (WR conflict)

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

• Unrepeatable reads (RW conflict)

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

CSE462/562 (Spring 2023): Lecture 21

Anomalies with interleaved execution
• Phantom read (RW conflict w/ predicate)

T1: R(t: P(t)) R(t: P(t)) C
T2: W(A’ , s.t. A′ ∈ 𝑷) C

• Dirty write (WW conflict)

T1: W(A) W(B) C
T2: W(A) W(B) C

CSE462/562 (Spring 2023): Lecture 21

Conflict serializability
• Two operations of two different transactions conflict if

• Performed on the same object

• At least one of them is a write

T1: R1 (A), 𝑊1(A), 𝑅1(B), 𝑊1(B)
T2: 𝑅2(A), 𝑊2(A)

Conflicts:
𝑅1 𝐴 ,𝑊2 𝐴
𝑊1 𝐴 , 𝑅2 𝐴
𝑊1 𝐴 ,𝑊2 𝐴

• We can swap two adjacent nonconflicting operations without changing the final state

T1: R1 (A), 𝑊1(A), 𝑅1(B), 𝑊1(B)
T2: 𝑅2(A), 𝑊2(A)

• Two schedules are conflict equivalent if one can be transformed into the other through swaps
• Involve the same actions of the same transactions in the same order

• Every pair of conflicting operations are ordered the same way

• Schedule S is said to be conflict serializable if it is conflict equivalent to some serial schedule S’

CSE462/562 (Spring 2023): Lecture 21

Determining conflict serializability
• Dependency graph

• One node per Xact
• edge from Ti to Tj if

• an operation of Ti conflicts with an operation of Tj and
• Ti’s operation appears earlier in the schedule than the conflicting operation of Tj.

• Theorem: Schedule is conflict serializable if and only if its dependency graph is acyclic

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

T1 T2
A

B

Dependency graph

CSE462/562 (Spring 2023): Lecture 21

View serializability
• View serializability is based on view equivalence

• Schedules S1 and S2 are view equivalent if:

• If Ti reads initial value of A in S1, then Ti also reads initial value of A in S2

• If Ti reads value of A written by Tj in S1, then Ti also reads value of A written by Tj in S2

• If Ti writes final value of A in S1, then Ti also writes final value of A in S2

T1: R(A) W(A)
T2: W(A)
T3: W(A)

T1: R(A),W(A)
T2: W(A)
T3: W(A)

View equivalent but not conflict equivalent

• View serializability is “weaker” than conflict serializability!
• Every conflict serializable schedule is view serializable, but not vice versa!
• I.e. admits more serializable schedules

CSE462/562 (Spring 2023): Lecture 21

Transaction aborts
• So far, we have not considered transaction aborts in conflict serializability

• If a transaction Ti is aborted, all its actions must be undone
• Not only that, if Tj reads an object last written by Ti, Tj must be aborted as well!

• Many systems avoid such cascading aborts by disallowing reading an object until it is
committed
• If Ti writes an object, Tj can read this only after Ti commits.

• Avoids non-recoverable schedules

• where Tj reads an object previously written by Ti and Tj commits before Ti does

• If there’s a crash, the system is in a non-recoverable state

• Recoverable does not mean no cascading abort

• In order to undo the actions of an aborted transaction, the DBMS maintains a log in
which every write is recorded (to be discussed in more details later)

• This mechanism is also used to recover from system crashes
• all active Xacts at the time of the crash are aborted when the system comes back up.

CSE462/562 (Spring 2023): Lecture 21

Pessimistic Concurrency Control
• Strict Two-phase Locking (Strict 2PL) Protocol:

• Each Xact must obtain a S (shared) lock on object before reading, and an X (exclusive) lock on object
before writing.

• All locks held by a transaction are released when the transaction completes

• (Non-strict) 2PL Variant: Release locks anytime, but cannot acquire locks after releasing any lock.

• If an Xact holds an X lock on an object, no other Xact can get a lock (S or X) on that object.

• Strict 2PL allows only conflict serializable schedules.
• Additionally, it simplifies transaction aborts

• (Non-strict) 2PL also allows only serializable schedules, but involves more complex abort processing

S X

S  –

X – –

Lock
Compatibility
Matrix

CSE462/562 (Spring 2023): Lecture 21

Example: strict 2-PL

A

B

T1 T2

T1: A = A + 100, B = B - 100
T2: A = A - 100, B = B + 100

S(A)

R(A)

X(A)

W(A)

request S(A) -- blocked

S(B)

R(B)

X(B)

W(B)

S(A)

R(A)

X(A)

W(A)

Commit
Release A & B

……

Lock
upgrade

CSE462/562 (Spring 2023): Lecture 21

Example: non-strict 2-PL

A

B

T1 T2

T1: A = A + 100, B = B - 100
T2: A = A - 100, B = B + 100

X(A)

X(B)

R(A)

W(A)
request S(A) -- blocked

R(B)

W(B)

S(A)

R(A)

X(A)

W(A)

Commit

Release A

……

Release B

No new locks/lock
upgrades at this point.

CSE462/562 (Spring 2023): Lecture 21

Example: non-strict 2-PL

A

B

T1 T2

T1: A = A + 100, B = B - 100
T2: A = A - 100, B = B + 100

X(A)

X(B)

R(A)

W(A)
request S(A) -- blocked

R(B)
W(B)

S(A)

R(A)

X(A)

W(A)

abort

Release A

abort

Release B

susceptible to cascading aborts!

Usually avoided in DBMS to avoid
wasted work.

CSE462/562 (Spring 2023): Lecture 21

Strict 2-PL vs non-strict 2-PL

CSE462/562 (Spring 2023): Lecture 21

Deadlocks

A

B

T1 T2

T1: A = A + 100, B = B - 100
T2: B = B + 100, A = A - 100

S(A)

R(A)

X(A)

W(A)

S(B)

R(B)

X(B)

W(B)

S(B) -- blocked

S(A) -- blocked

Deadlock!

• Create a waits-for graph:
• Nodes are transactions
• There is an edge from Ti to Tj if Ti is waiting for

Tj to release a lock
• Deadline  cycle in the wait-for graph
• Two ways to handle deadlocks

• Deadlock prevention
• Deadlock detection

T1 T2

CSE462/562 (Spring 2023): Lecture 21

Deadlock prevention
• Assign priorities based on timestamps.

Assume Ti wants a lock that Tj holds. Two policies are possible:
• Wait-Die: If Ti has lower timestamp (i.e., newer) than Tj, Ti waits; otherwise Ti aborts

• Wound-wait: If Ti has lower timestamp, Tj aborts (preempted); otherwise Ti waits

• If a transaction re-starts, make sure it gets its original timestamp
• Why? (to avoid starvation)

CSE462/562 (Spring 2023): Lecture 21

Deadlock detection
• Explicitly create a waits-for graph:

• Nodes are transactions

• There is an edge from Ti to Tj if Ti is waiting for Tj to release a lock

• Periodically check for cycles in the waits-for graph
• If there’s a cycle, abort at least one transaction in the cycle

T1: S(A), S(D), S(B)
T2: X(B) X(C)
T3: S(D), S(C), X(A)
T4: X(B)

T1 T2

T4 T3

T1 T2

T4 T3

CSE462/562 (Spring 2023): Lecture 21

Deadlock detection (cont’d)
• In practice, most systems do detection

• Experiments show that most waits-for cycles are length 2 or 3

• Hence, only a few transactions actually need to be aborted

• Implementations can vary

• Can construct the graph and periodically look for cycles
• When is the graph created ?

• Which process checks for cycles ?

• Can also use a “time-out” scheme

• if T has been waiting on a lock for a long time, assume it’s in a deadlock and abort

CSE462/562 (Spring 2023): Lecture 21

What we have glossed over
• What should we lock?

• We assume tuples here, but that can be expensive!

• If we do table locks, that’s too conservative

• Multi-granularity locking

• How to deal with phantoms?

• Locking in indexes

• don’t want to lock a B-tree root for a whole transaction!

• more fine-grained concurrency control in indexes

• CC w/out locking (we’ll omit it in this course)

• “optimistic” concurrency control

• “timestamp” and multi-version concurrency control

• locking usually better, though

CSE462/562 (Spring 2023): Lecture 21

Multi-granularity locks
• Hard to decide what granularity to lock (tuples vs. pages vs. tables).

• Shouldn’t have to make same decision for all transactions!

• Data “containers” are nested:

Tuples

Tables

Pages

Database

contains

CSE462/562 (Spring 2023): Lecture 21

Solution: new lock modes and protocols
• Allow Xacts to lock at each level, but with a special protocol using new “intention” locks:

• Still need S and X locks, but before locking an item, Xact must have proper intension
locks on all its ancestors in the granularity hierarchy.

IS – Intent to get S lock(s) at finer granularity.

IX – Intent to get X lock(s) at finer granularity.

SIX mode: Like S & IX at the same time. Why
useful?

IS IX SIX

IS

IX

SIX







 



S X

S

X





CSE462/562 (Spring 2023): Lecture 21

Example: 2-level hierarchy
• T1 scans R, and updates a few tuples:

• T1 gets an SIX lock on R, then get X lock on tuples that are updated.

• T2 uses an index to read only part of R:

• T2 gets an IS lock on R, and repeatedly gets an S lock on tuples of R.

• T3 reads all of R:

• T3 gets an S lock on R.

• OR, T3 could behave like T2; can use lock escalation to decide which.

• Lock escalation

• Dynamically asks for coarser-grained locks when too many

low level locks acquired

IS IX SIX

IS

IX

SIX







 



S X

S

X





Tuples

Tables

CSE462/562 (Spring 2023): Lecture 21

Dynamic Databases – The “Phantom” Problem
• If the DB is not a fixed collection of objects, even Strict 2PL (on individual items) will not assure serializability:

• Consider T1 – “Find the highest GPA among students of each age”

• T1 locks all pages containing sailor records with age = 20

• and finds the highest GPA (say, GPA = 3.7).

• Next, T2 inserts a new student; GPA = 4.0, age = 20.

• T2 also deletes student with the highest GPA (say 3.8) among those of age = 21, and commits.

• T1 now locks all pages containing student records with age = 21, and finds highest GPA (say, GPA = 3.6).

• No serial execution could lead to T1’s result!

CSE462/562 (Spring 2023): Lecture 21

The problem
• T1 implicitly assumes that it has locked the set of all student records with age = 20.

• Assumption only holds if no student records are added while T1 is executing!

• Need some mechanism to enforce this assumption. (Index locking and predicate locking.)

• Example shows that conflict serializability guarantees serializability only if the set of
objects is fixed!
• e.g. table locks

• Solution: predicate locking

CSE462/562 (Spring 2023): Lecture 21

Predicate locking
• Grant lock on all records that satisfy some logical predicate, e.g. age > 2*salary.

• Index locking is a special case of predicate locking for which an index supports efficient
implementation of the predicate lock.
• What is the predicate in the sailor example?

• General predicate locking has a lot of locking overhead.
• too expensive!

CSE462/562 (Spring 2023): Lecture 21

Instead of predicate locking
• Full table scans lock entire tables

• Range lookups do “next-key” & gap locking
• physical stand-in for a logical range!

2* 3* 14* 16*

135

7*5* 8*

S

scan: x > 4

locks 5* and the gap before it (3, 5)

At this point,

insert 4: blocked
insert 10?

CSE462/562 (Spring 2023): Lecture 21

Lock management
• Lock and unlock requests are handled by the lock manager

• Lock table: a hash table over lock table entries
• for various resources, e.g., records, gaps, pages, tables, …

• Lock table entry:

• Number of transactions currently holding a lock

• Type of lock held (S, X, IS, IX, SIX)

• Pointer to queue of lock requests

• Locking and unlocking have to be atomic operations

• requires latches (e.g. reader-writer locks/semaphores), which ensure that the process is not
interrupted while managing lock table entries

• Lock upgrade: transaction that holds a shared lock can be upgraded to hold an exclusive lock

• Can cause deadlock problems

• Deadlock prevention/detection

CSE462/562 (Spring 2023): Lecture 21

Locks vs Latches
• What’s common ?

• Both used to synchronize concurrent tasks

• What’s different ?
• Locks are used for logical consistency
• Latches are used for physical consistency

• Why treat ‘em differently ?
• Latches are short-duration lower-level locks that protects critical sections in the code

• depends on DBMS developer to prevent deadlocks
• Locks protects data/resources, much longer duration

• need deadlock prevention/detection, aborting transactions using priorities
• more lock modes, hierarchical

• Where are latches used ?
• In a lock manager !
• In a shared memory buffer manager
• In a B+ Tree index
• In a log/transaction/recovery manager

CSE462/562 (Spring 2023): Lecture 21

Locks vs Latches

Latches Locks

Ownership Processes Transactions

Duration Very short Long (Xact duration)

Deadlocks No detection - code carefully ! Checked for deadlocks

Overhead Cheap - 10s of instructions
(latch is directly addressable)

Costly - 100s of instructions
(have to search for lock)

Modes S, X S, X, IS, IX, SIX

Granularity Flat - no hierarchy Hierarchical

CSE462/562 (Spring 2023): Lecture 21

Summary
• These lectures

• Concurrency control basics

• Conflict serializability

• View serializability

• Pessimistic concurrency control

• strict 2-phase locking

• non-strict 2-phase locking

• deadlock prevention and detection

• predicate locking and next-key locking

• lock management

• locks vs latches

• Next lecture
• Crash recovery

CSE462/562 (Spring 2023): Lecture 21

	Slide 1: CSE462/562: Database Systems (Spring 23)
	Slide 2: Transactions
	Slide 3: Concurrency in a DBMS
	Slide 4: Atomicity of transactions
	Slide 5: ACID properties of Xact
	Slide 6: Example, a banking database
	Slide 7: Example (cont’d)
	Slide 8: Scheduling Transactions
	Slide 9: Anomalies with interleaved execution
	Slide 10: Anomalies with interleaved execution
	Slide 11: Conflict serializability
	Slide 12: Determining conflict serializability
	Slide 13: View serializability
	Slide 14: Transaction aborts
	Slide 15: Pessimistic Concurrency Control
	Slide 16: Example: strict 2-PL
	Slide 17: Example: non-strict 2-PL
	Slide 18: Example: non-strict 2-PL
	Slide 19: Strict 2-PL vs non-strict 2-PL
	Slide 20: Deadlocks
	Slide 21: Deadlock prevention
	Slide 22: Deadlock detection
	Slide 23: Deadlock detection (cont’d)
	Slide 24: What we have glossed over
	Slide 25: Multi-granularity locks
	Slide 26: Solution: new lock modes and protocols
	Slide 27: Example: 2-level hierarchy
	Slide 28: Dynamic Databases – The “Phantom” Problem
	Slide 29: The problem
	Slide 30: Predicate locking
	Slide 31: Instead of predicate locking
	Slide 32: Lock management
	Slide 33: Locks vs Latches
	Slide 34: Locks vs Latches
	Slide 35: Summary

