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ABSTRACT

This paper describes our experience implementing PostgreSQL’s

new serializable isolation level. It is based on the recently-developed

Serializable Snapshot Isolation (SSI) technique. This is the first im-

plementation of SSI in a production database release as well as the

first in a database that did not previously have a lock-based serializ-

able isolation level. We reflect on our experience and describe how

we overcame some of the resulting challenges, including the imple-

mentation of a new lock manager, a technique for ensuring memory

usage is bounded, and integration with other PostgreSQL features.

We also introduce an extension to SSI that improves performance

for read-only transactions. We evaluate PostgreSQL’s serializable

isolation level using several benchmarks and show that it achieves

performance only slightly below that of snapshot isolation, and sig-

nificantly outperforms the traditional two-phase locking approach

on read-intensive workloads.

1. OVERVIEW

Serializable isolation for transactions is an important property:

it allows application developers to write transactions as though

they will execute sequentially, without regard for interactions with

concurrently-executing transactions. Until recently, PostgreSQL, a

popular open-source database, did not provide a serializable isola-

tion level because the standard two-phase locking mechanism was

seen as too expensive. Its highest isolation level was snapshot isola-

tion, which offers greater performance but allows certain anomalies.

In the latest PostgreSQL 9.1 release,1 we introduced a serializable

isolation level that retains many of the performance benefits of

snapshot isolation while still guaranteeing true serializability. It uses

an extension of the Serializable Snapshot Isolation (SSI) technique

from current research [7]. SSI runs transactions using snapshot

isolation, but checks at runtime for conflicts between concurrent

transactions, and aborts transactions when anomalies are possible.

We extended SSI to improve performance for read-only transactions,

an important part of many workloads.

1PostgreSQL 9.1 is available for download from
http://www.postgresql.org/.

This paper describes our experiences implementing SSI in Post-

greSQL. Our experience is noteworthy for several reasons:

It is the first implementation of SSI in a production database re-

lease. Accordingly, it must address interactions with other database

features that previous research prototypes have ignored. For exam-

ple, we had to integrate SSI with PostgreSQL’s support for repli-

cation systems, two-phase commit, and subtransactions. We also

address memory usage limitations, an important practical concern;

we describe a transaction summarization technique that ensures that

the SSI implementation uses a bounded amount of RAM without

limiting the number of concurrent transactions.

Ours is also the first implementation of SSI for a purely snapshot-

based DBMS. Although SSI seems especially suited for such data-

bases, earlier SSI implementations were based on databases that

already supported serializable isolation via two-phase locking, such

as MySQL. As a result, they were able to take advantage of existing

predicate locking mechanisms to detect conflicting transactions for

SSI. Lacking this infrastructure, we were required to build a new

lock manager. Our lock manager is specifically optimized for track-

ing SSI read dependencies, making it simpler in some respects than

a classic lock manager but also introducing some unusual challenges.

PostgreSQL 9.1 uses this lock manager, along with multiversion

concurrency control data, to detect conflicts between concurrent

transactions. We also introduce a safe retry rule, which resolves

conflicts by aborting transactions in such a way that an immediately

retried transaction does not fail in the same way.

Read-only transactions are common, so PostgreSQL 9.1 opti-

mizes for them. We extend SSI by deriving a result in multiversion

serializability theory and applying it to reduce the rate of false pos-

itive serialization failures. We also introduce safe snapshots and

deferrable transactions, which allow certain read-only transactions

to execute without the overhead of SSI by identifying cases where

snapshot isolation anomalies cannot occur.

PostgreSQL 9.1’s serializable isolation level is effective: it pro-

vides true serializability but allows more concurrency than two-

phase locking. Our experiments with a transaction processing and a

web application benchmark show that our serializable mode has a

performance cost of less than 7% relative to snapshot isolation, and

outperforms two-phase locking significantly on some workloads.

This paper begins with an explanation of how snapshot isolation

differs from serializability and why we view serializability as an

important DBMS feature in Section 2. Section 3 describes the SSI

technique and reviews the previous work. Section 4 extends SSI

with new optimizations for read-only transactions. We then turn

to the implementation of SSI in PostgreSQL 9.1, with Section 5

giving an overview of the implementation and Section 6 discussing

techniques for reducing its memory usage. Section 7 examines how

SSI interacts with other PostgreSQL features. Finally, in Section 8
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we compare the performance of our implementation to PostgreSQL’s

existing snapshot isolation level and to a lock-based implementation

of serializability.

2. SNAPSHOT ISOLATION VERSUS

SERIALIZABILITY

Users group operations into transactions to ensure they are atomic

with respect to other concurrently-executing transactions, as well as

with respect to crashes. ANSI SQL allows the user to request one

of several isolation levels; the strongest is serializability [4]. In a

serializable execution, the effects of transactions must be equivalent

to executing the transactions in some serial order. This property is

appealing for users because it means that transactions can be treated

in isolation: if each transaction can be shown to do the right thing

when run alone (such as maintaining a data integrity invariant), then

it also does so in any mix of concurrent transactions.

At weaker isolation levels, race conditions between concurrent

transactions can produce a result that does not correspond to any seri-

alizable execution. In spite of this, such isolation levels can provide

better performance and are commonly used. For example, Post-

greSQL, like many other databases, uses its weakest isolation level,

READ COMMITTED, by default. This level guarantees only that trans-

actions do not see uncommitted data, but offers high performance

because it can be implemented without read locks in PostgreSQL’s

multiversion storage system; a lock-based DBMS could implement

it using only short-duration read locks [12].

Snapshot isolation (SI) is one particular weak isolation level that

can be implemented efficiently using multiversion concurrency con-

trol, without read locking. It was previously the strongest isolation

level available in PostgreSQL: users requesting SERIALIZABLE

mode actually received snapshot isolation (as they still do in the

Oracle DBMS). However, snapshot isolation does not guarantee seri-

alizable behavior; it allows certain anomalies [2,5]. This unexpected

transaction behavior can pose a problem for users that demand data

integrity, such as the Wisconsin Court System, one of the motivating

cases for this work. In particular, snapshot isolation anomalies are

difficult to deal with because they typically manifest themselves as

silent data corruption (e.g. lost updates). In many cases, the invalid

data is not discovered until much later, and the error cannot easily

be reproduced, making the cause difficult to track down.

2.1 Snapshot Isolation

In snapshot isolation, all reads within a transaction see a consistent

view of the database, as though the transaction operates on a pri-

vate snapshot of the database taken before its first read. Section 5.1

describes how PostgreSQL implements these snapshots using ver-

sioned tuples. In addition, SI prohibits concurrent transactions from

modifying the same data. Like most SI databases, PostgreSQL uses

tuple-level write locks to implement this restriction.

Snapshot isolation does not allow the three anomalies defined

in the ANSI SQL standard: dirty reads, non-repeatable reads, and

phantom reads. However, it allows several other anomalies. These

anomalies were not initially well understood, and they remain poorly

understood in practice. For example, there is a common misconcep-

tion that avoiding the aforementioned three anomalies is a sufficient

condition for serializability, and for years the PostgreSQL documen-

tation did not acknowledge the difference between its SERIALIZ-

ABLE mode and true serializability.

2.1.1 Example 1: Simple Write Skew

The simplest anomaly occurs between two concurrent transactions

that read the same data, but modify disjoint sets of data. Consider the

T1 T2

time

x← SELECT

COUNT(∗)

FROM doctors

WHERE on−call = true

IF x≥ 2 THEN

UPDATE doctors

SET on−call = false

WHERE name = Alice

COMMIT

.

x← SELECT

COUNT(∗)

FROM doctors

WHERE on−call = true

IF x≥ 2 THEN

UPDATE doctors

SET on−call = false

WHERE name = Bob

COMMIT

Figure 1: A simple write-skew anomaly

two transactions in Figure 1 (based on an example given by Cahill

et al [7]). Each checks whether there are at least two doctors on call,

and if so takes one doctor off call. Given an initial state where Alice

and Bob are the only doctors on call, it can easily be verified that

executing T1 and T2 sequentially in either order will leave at least

one doctor on call – making these transactions an effective way of

enforcing that invariant.

But the interleaving of Figure 1, when executed under snapshot

isolation, violates that invariant. Both transactions read from a snap-

shot taken when they start, showing both doctors on call. Seeing

that, they both proceed to remove Alice and Bob, respectively, from

call status. The write locks taken on update don’t solve this problem,

because the two transactions modify different rows and thus do not

conflict. By contrast, in two-phase locking DBMS, each transaction

would take read locks that would conflict with the other’s write. Sim-

ilarly, in an optimistic-concurrency system, the second transaction

would fail to commit because its read set is no longer up to date.

2.1.2 Example 2: Batch Processing

The previous example is simple in the sense that it consists of only

two transactions that directly conflict with each other. But more

complex interactions between transactions are possible. Here, we

give an example of a snapshot isolation anomaly resulting from

three transactions, one of which is read-only.

Consider a transaction-processing system that maintains two ta-

bles. A receipts table tracks the day’s receipts, with each row tagged

with the associated batch number. A separate control table simply

holds the current batch number. There are three transaction types:

• NEW-RECEIPT: reads the current batch number from the con-

trol table, then inserts a new entry in the receipts table tagged

with that batch number

• CLOSE-BATCH: increments the current batch number in the

control table

• REPORT: reads the current batch number from the control

table, then reads all entries from the receipts table with the

previous batch number (i.e. to display a total of the previous

day’s receipts)

The following useful invariant holds under serializable executions:

after a REPORT transaction has shown the total for a particular batch,

subsequent transactions cannot change that total. This is because the

REPORT shows the previous batch’s transactions, so it must follow a

CLOSE-BATCH transaction. Every NEW-RECEIPT transaction must

either precede both transactions, making it visible to the REPORT,
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T1 T2 T3

(REPORT) (NEW-RECEIPT) (CLOSE-BATCH)

x← SELECT

current batch

SELECT SUM(amount)

FROM receipts

WHERE batch = x−1

COMMIT

.

x← SELECT

current batch

INSERT INTO

receipts

VALUES

(x, somedata)

COMMIT

INCREMENT

current batch

COMMIT

.

Figure 2: An anomaly involving three transactions

or follow the CLOSE-BATCH transaction, in which case it will be

assigned the next batch number.

However, the interleaving shown in Figure 2 is allowed under SI,

and violates this invariant. The receipt inserted by transaction T2 has

the previous batch number because T2 starts before T3 commits, but

is not visible in the corresponding report produced by T1.

Interestingly, this anomaly requires all three transactions, includ-

ing T1 – even though it is read-only. Without it, the execution is

serializable, with the serial ordering being 〈T2, T3〉. The fact that

read-only transactions can be involved in SI anomalies was a sur-

prising result discovered by Fekete et al. [11].

2.2 Why Serializability?

Snapshot isolation anomalies like those described above are unde-

sirable because they can cause unexpected transaction behavior that

leads to inconsistencies in the database. Nevertheless, SI is widely

used, and many techniques have been developed to avoid anomalies:

• some workloads simply don’t experience any anomalies; their

behavior is serializable under snapshot isolation. The TPC-C

benchmark is one such example [10].

• if a potential conflict between two transactions is identified,

explicit locking can be used to avoid it. PostgreSQL provides

explicit locking at the table level via the LOCK TABLE com-

mand, and at the tuple level via SELECT FOR UPDATE.

• alternatively, the conflict can be materialized by creating

a dummy row to represent the conflict, and forcing every

transaction involved to update that row [10].

• if the desired goal is to enforce an integrity constraint, and

that constraint can be expressed to the DBMS (e.g. using a

foreign key, uniqueness, or exclusion constraint), then the

DBMS can enforce it regardless of isolation level.

Given the existence of these techniques, one might question the

need to provide serializable isolation in the database: shouldn’t users

just program their applications to handle the lower isolation level?

(We have often been asked this question.) Our view is that providing

serializability in the database is an important simplification for

application developers, because concurrency issues are notoriously

difficult to deal with. Indeed, SI anomalies have been discovered

in real-world applications [14]. The analysis required to identify

potential anomalies (or prove that none exist) is complex and is

likely beyond the reach of many users. In contrast, serializable

transactions offer simple semantics: users can treat their transactions

as though they were running in isolation.

In particular, the analysis is difficult because it inherently con-

cerns interactions between transactions. Thus, each transaction must

be analyzed in the context of all other transactions that it might

run concurrently with. It is difficult to do this n2 analysis in a dy-

namic environment with many complex transactions. Such was the

case at the Wisconsin Court System. Data integrity is a critical con-

cern, given the nature of the data (e.g. warrant status information)

and regulatory requirements. Snapshot isolation anomalies posed

a dangerous threat to data integrity, especially because they can

cause silent corruption. At the same time, with a complex schema

(hundreds of relations), over 20 full-time programmers writing new

queries, and queries being auto-generated by object-relational frame-

works, analyzing query interactions to find possible anomalies – and

keeping the analysis up to date – was simply not feasible.

A further problem is that using static analysis to identify anoma-

lies may not be possible when the workload includes ad hoc queries.

Even applications that execute pre-defined stored procedures are

likely to also have occasional ad hoc queries for administrative tasks.

For example, an administrator might manually execute queries (e.g.

using the psql command line utility or a front-end like pgAdmin)

to inspect the database or repair corrupted data. Static analysis,

lacking knowledge of these transactions, cannot prevent anomalies

involving them. Even read-only ad hoc transactions, such as mak-

ing a copy of the database with the pg dump utility, can expose

anomalous states of the database.

3. SERIALIZABLE SNAPSHOT ISOLATION

Our implementation of serializability in PostgreSQL is unique

among production databases in that it uses the recently-developed

Serializable Snapshot Isolation (SSI) technique [7]. Nearly all other

databases that provide serializability do so using strict two-phase

locking (S2PL). In S2PL, transactions acquire locks on all objects

they read or write, and hold those locks until the transaction com-

mits. To prevent phantoms, these locks must be predicate locks,

usually implemented using index-range locks.

One could certainly implement a serializable isolation level for

PostgreSQL using S2PL, but we did not want to do so for perfor-

mance reasons. Indeed, the original POSTGRES storage manager

inherited from the Berkeley research project had precisely that, using

a conventional lock manager to provide concurrency control [19];

its replacement with a multiversion concurrency control (MVCC)

system in 1999 was one of the first major accomplishments of the

PostgreSQL open-source community. Subsequently, the benefits of

MVCC have become firmly ingrained in the PostgreSQL ethos, mak-

ing a lock-based SERIALIZABLE mode that behaved so differently a

non-starter. Users accustomed to the “readers don’t block writers,

and writers don’t block readers” mantra would be surprised by the

additional blocking, and a S2PL approach was unpalatable to most

of the developer community.

SSI takes a different approach to ensuring serializability: it runs

transactions using snapshot isolation, but adds additional checks to

determine whether anomalies are possible. This is based on a theory

of snapshot isolation anomalies, discussed below. SSI was appealing

to us because it built on snapshot isolation, and offered higher

performance than a S2PL implementation. Another important factor

was that SSI does not require any additional blocking. Transactions

that might violate serializability are simply aborted. Because basic

snapshot isolation can already roll back transactions due to update
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Figure 3: Serialization graphs for Examples 1 and 2

conflicts, users must already be prepared to handle transactions

aborted by serialization failures, e.g. using a middleware layer that

automatically retries transactions.

The remainder of this section reviews the previous work on SSI.

Sections 3.1 and 3.2 review the theory of snapshot isolation anoma-

lies and when they arise. Section 3.3 describes the SSI algorithm

and some proposed variants on it.

3.1 Snapshot Isolation Anomalies

SSI builds on a line of research studying the nature of snapshot

isolation anomalies. Not long after snapshot isolation was imple-

mented, it was observed that SI allowed non-serializable executions

but did not exhibit any of the well-understood anomalies proscribed

by the SQL standard [5], This suggested that existing isolation level

definitions were inadequate, and prompted an effort to define the

anomalies caused by SI and when they arise.

Adya et al. [2] proposed representing an execution with a multi-

version serialization history graph. This graph contains a node per

transaction, and an edge from transaction T1 to transaction T2 if

T1 must have preceded T2 in the apparent serial order of execution.

Three types of dependencies can create these edges:

• wr-dependencies: if T1 writes a version of an object, and T2

reads that version, then T1 appears to have executed before T2

• ww-dependencies: if T1 writes a version of some object, and

T2 replaces that version with the next version, then T1 appears

to have executed before T2

• rw-antidependencies: if T1 writes a version of some object,

and T2 reads the previous version of that object, then T1 ap-

pears to have executed after T2, because T2 did not see its

update. As we will see, these dependencies are central to SSI;

we sometimes also refer to them as rw-conflicts.

If a cycle is present in the graph, then the execution does not cor-

respond to any serial order, i.e. a snapshot isolation anomaly has

caused a serializability violation. Otherwise, the serial order can be

determined using a topological sort.

Note that the definitions above referred to objects. We use this

more abstract term rather than “tuple” or “row” because dependen-

cies can also be caused by predicate reads. For example, if T1 scans a

table for all rows where x= 1, and T2 subsequently inserts a new row

matching that predicate, then there is a T1
rw
−→ T2 rw-antidependency.

Figure 3 shows the serialization graphs corresponding to Exam-

ples 1 and 2 from Section 2.1. For Example 1, T1 updates the row

containing Alice’s call status, but this update is not visible to T2’s

SELECT, creating a rw-antidependency: T2 appears to have executed

before T1. Similarly, T2’s UPDATE is not visible to T1, creating a

rw-antidependency in the opposite direction. The resulting cycle

indicates that the execution is not serializable. Example 2, the batch-

processing example, contains three transactions and two types of

dependencies. T3, which increments the batch number, appears to

execute after T2, which reads the old version. The receipt inserted by

T2 does not appear in T1’s report, so T2 appears to execute after T1.

Finally, T3 appears to execute before T1, completing the cycle. This

last edge is a wr-dependency: T3’s increment of the batch number

was visible to T1’s read, because T3 committed before T1 began.

3.2 Serializability Theory

Note that a wr-dependency from A to B means that A must have

committed before B began, as this is required for A’s changes to

be visible to B’s snapshot. The same is true of ww-dependencies

because of write locking. However, rw-antidependencies occur be-

tween concurrent transactions: one must start while the other was

active. Therefore, they play an important role in SI anomalies.

Adya [1] observed that every cycle in the serialization graph

(i.e. every anomaly) contains at least two rw-antidependency edges.

Fekete et al. [10] subsequently showed that two such edges must be

adjacent:

Theorem 1 (Fekete et al. [10]). Every cycle in the serialization

history graph contains a sequence of edges T1
rw
−→ T2

rw
−→ T3 where

each edge is a rw-antidependency. Furthermore, T3 must be the first

transaction in the cycle to commit.

Note that this is actually a stronger statement than that given by

Fekete et al., who state only that T3 must commit before T1 and T2.

Though not explicitly stated, it is a consequence of their proof that

T3 must be the first transaction in the entire cycle to commit.

Corollary 2. Transaction T1 is concurrent with T2, and T2 is con-

current with T3, because rw-antidependencies occur only between

concurrent transactions.

Note that T1 and T3 may refer to the same transaction, for cycles

of length 2 such as the one in the write-skew example (Figure 3a).

3.3 SSI

Cahill et al. introduced SSI, a technique for providing serializabil-

ity using snapshot isolation, by detecting potential anomalies at

runtime, and aborting transactions as necessary [7]. It is similar

to concurrency control protocols based on serialization graph test-

ing [8], in that it tracks edges in the serialization graph and prevents

cycles from forming. However, rather than testing the graph for

cycles, it checks for a “dangerous structure” of two adjacent rw-

antidependency edges. If any transaction has both an incoming

rw-antidependency and an outgoing one, SSI aborts one of the trans-

actions involved. Theorem 1 shows that doing so ensures serializable

execution, but it may have false positives because not every danger-

ous structure is part of a cycle. The benefit is that it is more efficient.

Besides being a less expensive runtime check than cycle testing,

dangerous structures are composed entirely of rw-antidependencies,

so SSI does not need to track wr- and ww-dependency edges.

This approach can offer greater concurrency than a typical S2PL

or optimistic concurrency control (OCC) [15] system. Essentially,

both S2PL and classic OCC prevent concurrent transactions from

having rw-conflicts. SSI allows some rw-conflicts as long as they

do not form a dangerous structure, a less restrictive requirement.

For instance, consider Example 2 with the read-only transaction

T1 removed. We saw in Section 2.1.2 that this execution is serializ-

able even though there is a rw-antidependency T2
rw
−→ T3. However,

neither S2PL nor OCC would permit this execution, whereas SSI

would allow it, because it contains only a single rw-antidependency.
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SSI requires detecting rw-antidependencies at runtime. The SSI

paper describes a method for identifying these dependencies by

having transactions acquire locks in a special “SIREAD” mode on

the data they read. These locks do not block conflicting writes (thus,

“lock” is somewhat of a misnomer). Rather, a conflict between a

SIREAD lock and a write lock flags an rw-antidependency, which

might cause a transaction to be aborted. Furthermore, SIREAD

locks must persist after a transaction commits, because conflicts

can occur even after the reader has committed (e.g. the T1
rw
−→ T2

conflict in Example 2). Corollary 2 implies that the locks must be

retained until all concurrent transactions commit. Our PostgreSQL

implementation uses SIREAD locks, but their implementation dif-

fers significantly because PostgreSQL was purely snapshot-based,

as we describe in Section 5.2.

3.3.1 Variants on SSI

Subsequent work has suggested refinements to the basic SSI ap-

proach. Cahill’s thesis [6] suggests a commit ordering optimization

that can reduce false positives. Theorem 1 actually shows that ev-

ery cycle contains a dangerous structure T1
rw
−→ T2

rw
−→ T3, where

T3 is the first to commit. Thus, even if a dangerous structure is

found, no aborts are necessary if either T1 or T2 commits before

T3. Verifying this condition requires tracking some additional state,

but avoids some false positive aborts. We use an extension of this

optimization in PostgreSQL. It does not, however, eliminate all

false positives: there may not be a path T3  T1 that closes the

cycle. For example, in Example 2, if T1’s REPORT accessed only

the receipts table (not the current batch number), there would be no

wr-dependency from T3 to T1, and the execution would be serializ-

able with order 〈T1, T2, T3〉. However, the dangerous structure of

rw-antidependencies T1
rw
−→ T2

rw
−→ T3 would force some transaction

to be spuriously aborted.

PSSI (Precisely Serializable Snapshot Isolation) is an extension of

SSI that does eliminate all false positives [18]. It does so by building

the full serialization history graph and testing it for cycles, rather

than simply checking for dangerous structures. On a microbench-

mark that stresses false aborts, PSSI can reduce the abort rate by

up to 40% [18]. We considered this approach for PostgreSQL, but

rejected it because we felt the costs outweighed the benefits of the

reduced false positive abort rate. PSSI requires tracking wr- and

ww-dependencies in addition to rw-antidependencies, consuming

additional memory. Keeping the memory footprint small was an

important requirement, and some of the optimizations we applied

toward that end (Section 6) would not be compatible with PSSI. At

the same time, the workloads we evaluate in Section 8 have a serial-

ization failure rate well under 1%, suggesting additional precision

has a limited benefit.

4. READONLY OPTIMIZATIONS

Our version of SSI in PostgreSQL 9.1 includes new optimizations for

read-only transactions. It’s worthwhile to optimize specifically for

read-only transactions: many workloads contain a significant frac-

tion of read-only queries. Furthermore, long-running read-only trans-

actions are also common. As we will discuss, these long-running

transactions can substantially increase the overhead of SSI.

We improve performance for read-only transactions in two ways.

Both derive from a new serializability theory result that character-

izes when read-only transactions can be involved in SI anomalies.

First, the theory enables a read-only snapshot ordering optimization

to reduce the false-positive abort rate, an improved version of the

commit ordering optimization described in Section 3.3.1. Second,

we also identify certain safe snapshots on which read-only transac-

tions can execute safely without any SSI overhead or abort risk, and

introduce deferrable transactions, which delay their execution to

ensure they run on safe snapshots.

4.1 Theory

Our read-only optimizations are based on the following extension

of Theorem 1:

Theorem 3. Every serialization anomaly contains a dangerous

structure T1
rw
−→ T2

rw
−→ T3, where if T1 is read-only, T3 must have

committed before T1 took its snapshot.

Proof. Consider a cycle in the serialization history graph. From

Theorem 1, we know it must have a dangerous structure T1
rw
−→

T2
rw
−→ T3 where T3 is the first transaction in the cycle to commit.

Consider the case where T1 is read-only.

Because there is a cycle, there must be some transaction T0 that

precedes T1 in the cycle. (If the cycle has length 3, T0 is the same

transaction as T3, but this does not affect the proof.) The edge

T0→ T1 can’t be a rw-antidependency or a ww-dependency, because

T1 was read-only, so it must be a wr-dependency. A wr-dependency

means that T0’s changes were visible to T1, so T0 must have commit-

ted before T1 took its snapshot. Because T3 is the first transaction

in the cycle to commit, it must commit before T0 commits – and

therefore before T1 takes its snapshot.

This result can be applied directly to reduce the false positive rate,

using the following read-only snapshot ordering rule: if a dangerous

structure is detected where T1 is read-only, it can be disregarded as

a false positive unless T3 committed before T1’s snapshot. Here, a

transaction is considered read-only if it is explicitly declared as such

(with BEGIN TRANSACTION READ ONLY) or if it has committed

without modifying any data.

This result means that whether a read-only transaction can be

a part of a dangerous structure depends only on when it takes its

snapshot, not its commit time. Intuitively, it matters when read/write

transactions commit, as this is the point when its changes become

visible to other transactions. But it does not matter when read-only

transactions commit, because they do not make any changes; only

their snapshot times have an effect.

4.2 Safe Snapshots

If we can prove that a particular transaction will never be involved

in a serialization anomaly, then that transaction can be run using

standard snapshot isolation, without the need to track readsets for

SSI. The rule above gives us a way to do so. A read-only transaction

T1 cannot have a rw-conflict pointing in, as it did not perform any

writes. The only way it can be part of a dangerous structure, there-

fore, is if it has a conflict out to a concurrent read/write transaction

T2, and T2 has a conflict out to a third transaction T3 that committed

before T1’s snapshot. If no such T2 exists, then T1 will never cause a

serialization failure. This depends only on the concurrent transac-

tions, not on T1’s behavior; therefore, we describe it as a property of

the snapshot:

• Safe snapshots: A read-only transaction T has a safe snap-

shot if no concurrent read/write transaction has committed

with a rw-antidependency out to a transaction that committed

before T ’s snapshot, or has the possibility to do so.

A read-only transaction running on a safe snapshot can read any

data (perform any query) without risk of serialization failure. It can-

not be aborted, and does not need to take SIREAD locks. Conceptu-

ally, the set of transactions visible to a safe snapshot is a prefix of the
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apparent serial order of execution. This prevents precisely the situa-

tion in Figure 2. There, T1 (the REPORT transaction) does not have a

safe snapshot, because a concurrent transaction T2 (NEW-RECEIPT)

has a conflict out to an earlier transaction T3 (CLOSE-BATCH). The

conflict means T2 must precede T3 in the serial ordering. Because

only T3 is visible in T1’s snapshot, its reads may (as in the example)

contradict that serial ordering, requiring an abort.

An unusual property of this definition is that we cannot deter-

mine whether a snapshot is safe at the time it is taken, only once

all concurrent read/write transactions complete, as those transac-

tions might subsequently develop conflicts. Therefore, when a READ

ONLY transaction is started, PostgreSQL makes a list of concurrent

transactions. The read-only transaction executes as normal, main-

taining SIREAD locks and other SSI state, until those transactions

commit. After they have committed, if the snapshot is deemed safe,

the read-only transaction can drop its SIREAD locks, essentially

becoming a REPEATABLE READ (snapshot isolation) transaction.

An important special case is a snapshot taken when no read/write

transactions are active; such a snapshot is immediately safe and a

read-only transaction using it incurs no SSI overhead.

4.3 Deferrable Transactions

Some workloads contain long-running read-only transactions. For

example, one might run occasional analytic queries on a database

that normally handles OLTP transactions. Periodic database mainte-

nance tasks, such as backups using PostgreSQL’s pg dump utility,

may also use long-running transactions. Such transactions are dou-

bly problematic for SSI. Because they access large amounts of data,

they take more SIREAD locks and are more likely to conflict with

concurrent transactions. Worse, they inhibit cleanup of other trans-

actions’ SIREAD locks, because these locks must be kept until all

concurrent transactions complete; this can easily exhaust memory.

These transactions would especially benefit from running on safe

snapshots: they could avoid taking SIREAD locks, they would be

guaranteed not to abort, and they would not prevent concurrent trans-

actions from releasing their locks. Deferrable transactions, a new

feature, provide a way to ensure that complex read-only transactions

will always run on a safe snapshot. Read-only serializable transac-

tions can be marked as deferrable with a new keyword, e.g. BEGIN

TRANSACTION READ ONLY, DEFERRABLE. Deferrable transactions

always run on a safe snapshot, but may block before their first query.

When a deferrable transaction begins, our system acquires a snap-

shot, but blocks the transaction from executing. It must wait for

concurrent read/write transactions to finish. If any commit with a

rw-conflict out to a transaction that committed before the snapshot,

the snapshot is deemed unsafe, and we retry with a new snapshot.

If all read/write transactions commit without such a conflict, the

snapshot is deemed safe, and the deferrable transaction can proceed.

Note that deferrable transactions are not guaranteed to success-

fully obtain a safe snapshot within a fixed time. Indeed, for certain

transaction patterns, it is possible that no safe snapshot ever becomes

available. In theory, we could prevent this starvation by aborting

concurrent transactions that would make the snapshot unsafe, or

by preventing new transactions from starting. However, we have

not found starvation to be a problem in practice. For example, in

Section 8.4 we show that, even running concurrently with a heavy

benchmark workload, deferrable transactions can usually obtain a

safe snapshot within 1–6 seconds (and never more than 20 seconds).

5. IMPLEMENTING SSI IN POSTGRESQL

Our implementation of SSI – the first in a production database re-

lease – has some notable differences from previous implementations

(as described in previous papers [6, 7, 18] and in Section 3.3). Much

of these differences stem from the fact that PostgreSQL did not

previously provide a true serializable isolation level. Previous imple-

mentations of SSI were built atop Berkeley DB [7] or MySQL’s Inn-

oDB [6, 18], both of which already supported strict two-phase lock-

ing. Accordingly, they were able to take advantage of features that

were already present (e.g. predicate locking), whereas we needed to

implement them anew. In particular, we had to build a new SSI lock

manager; because it is designed specifically for tracking SIREAD

locks, it has some unusual properties.

Our experience is especially relevant because SSI seems like a

natural fit for databases like PostgreSQL that provide only snapshot-

based isolation levels and lack a pre-existing serializable mode. One

might expect SSI, being based on snapshot isolation, to be easier to

implement on such databases than a traditional S2PL serializable

level. We are the first to evaluate it in this context. As we discuss

below, our experience suggests that SSI is actually more difficult to

implement on such a database because it requires building much of

the same lock manager infrastructure required to support S2PL.

5.1 PostgreSQL Background

Before delving into our SSI implementation, we begin by reviewing

PostgreSQL’s existing concurrency control mechanisms.

PostgreSQL previously provided two isolation levels – now three

with the addition of SSI. Both were based on multiversion con-

currency. The previous “SERIALIZABLE” mode provided snapshot

isolation: every command in a transaction sees the same snapshot of

the database, and write locks prevent concurrent updates to the same

tuple. The weaker READ COMMITTED level essentially works the

same way, but takes a new snapshot before each query rather than

using the same one for the duration of the transaction, and handles

concurrent updates differently. In PostgreSQL 9.1, the SERIALIZ-

ABLE level now uses SSI, and the snapshot isolation level remains

available as REPEATABLE READ.

All queries in PostgreSQL are performed with respect to a snap-

shot, which is represented as the set of transactions whose effects

are visible in the snapshot. Each tuple is tagged with the transaction

ID of the transaction that created it (xmin), and, if it has been deleted

or replaced with a new version, the transaction that did so (xmax).

Checking which of these transactions are included in a snapshot

determines whether the tuple should be visible. Updating a tuple

is, in most respects, identical to deleting the existing version and

creating a new tuple. The new tuple has a separate location in the

heap, and may have separate index entries.2 Here, PostgreSQL dif-

fers from other MVCC implementations (e.g. Oracle’s) that update

tuples in-place and keep a separate rollback log.

Internally, PostgreSQL uses three distinct lock mechanisms:

• lightweight locks are standard reader-writer locks for syn-

chronizing access to shared memory structures and buffer

cache pages; these are typically referred to as latches else-

where in the literature

• heavyweight locks are used for long-duration (e.g. transaction-

scope) locks, and support deadlock detection. A variety of

lock modes are available, but normal-case operations such as

SELECT and UPDATE acquire locks in non-conflicting modes.

Their main purpose is to prevent schema-changing operations,

such as DROP TABLE or REINDEX, from being run concur-

rently with other operations on the same table. These locks

can also be explicitly acquired using LOCK TABLE.

2As an optimization, if an update does not modify any indexed
fields, and certain other conditions hold, PostgreSQL may use a
single index entry that points to a chain of tuple versions.
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• tuple locks prevent concurrent modifications to the same

tuple. Because a transaction might acquire many such locks,

they are not stored in the heavyweight lock table; instead, they

are stored in the tuple header itself, reusing the xmax field to

identify the lock holder. SELECT FOR UPDATE also acquires

these locks. Conflicts are resolved by calling the heavyweight

lock manager, to take advantage of its deadlock detection.

5.2 Detecting Conflicts

One of the main requirements of SSI is to be able to detect rw-

conflicts as they happen. Earlier work suggested modifying the lock

manager to acquire read locks in a new SIREAD mode, and flagging

a rw-antidependency when a conflicting lock is acquired. Unfor-

tunately, this technique cannot be directly applied to PostgreSQL

because the lock managers described above do not have the nec-

essary information. To begin with, PostgreSQL did not previously

acquire read locks on data accessed in any isolation level, unlike the

databases used in prior SSI implementations, so SIREAD locks can-

not simply be acquired by repurposing existing hooks for read locks.

Worse, even with these locks, there is no easy way to match them to

conflicting write locks because PostgreSQL’s tuple-level write locks

are stored in tuple headers on disk, rather than an in-memory table.

Instead, PostgreSQL’s SSI implementation uses existing MVCC

data as well as a new lock manager to detect conflicts. Which one

is needed depends on whether the write happens chronologically

before the read, or vice versa. If the write happens first, then the

conflict can be inferred from the MVCC data, without using locks.

Whenever a transaction reads a tuple, it performs a visibility check,

inspecting the tuple’s xmin and xmax to determine whether the tuple

is visible in the transaction’s snapshot. If the tuple is not visible

because the transaction that created it had not committed when the

reader took its snapshot, that indicates a rw-conflict: the reader must

appear before the writer in the serial order. Similarly, if the tuple has

been deleted – i.e. it has an xmax – but is still visible to the reader

because the deleting transaction had not committed when the reader

took its snapshot, that is also a rw-conflict that places the reader

before the deleting transaction in the serial order.

We also need to handle the case where the read happens before

the write. This cannot be done using MVCC data alone; it requires

tracking read dependencies using SIREAD locks. Moreover, the

SIREAD locks must support predicate reads. As discussed earlier,

none of PostgreSQL’s existing lock mechanisms were suitable for

this task, so we developed a new SSI lock manager. The SSI lock

manager stores only SIREAD locks. It does not support any other

lock modes, and hence cannot block. The two main operations it

supports are to obtain a SIREAD lock on a relation, page, or tuple,

and to check for conflicting SIREAD locks when writing a tuple.

5.2.1 Implementation of the SSI Lock Manager

The PostgreSQL SSI lock manager, like most lock managers used

for S2PL-based serializability, handles predicate reads using index-

range locks (in contrast to actual predicate locks [9]). Reads acquire

SIREAD locks on all tuples they access, and index access methods

acquire SIREAD locks on the “gaps” to detect phantoms. Currently,

locks on B+-tree indexes are acquired at page granularity; we intend

to refine this to next-key locking [16] in a future release. Both heap

and index locks can be promoted to coarser granularities to save

space in the lock table, e.g. replacing multiple tuple locks with a

single page lock.

One simplification we were able to make is that intention locks

were not necessary, despite the use of multigranularity locking (and

contrary to a suggestion that intention-SIREAD locks would be re-

quired [7]). It suffices to check for locks at each granularity (relation,

page, and tuple) when writing a tuple. To prevent problems with

concurrent granularity promotion, these checks must be done in the

proper order: coarsest to finest.

Some other simplifications arise because SIREAD locks cannot

cause blocking. Deadlock detection becomes unnecessary, though

this was not a significant benefit because PostgreSQL already had a

deadlock detector. It also simplifies placement of the calls to acquire

locks and check for conflicts. In a traditional lock implementation,

these calls must be carefully placed where no lightweight locks are

held (e.g. no buffer pool pages are locked), because blocking while

these are held might cause a lock-latch deadlock.

However, the SSI lock manager must also handle some situations

that a typical S2PL lock manager does not. In particular, SIREAD

locks must be kept up to date when concurrent transactions modify

the schema with data-definition language (DDL) statements. State-

ments that rewrite a table, such as RECLUSTER or ALTER TABLE,

cause the physical location of tuples to change. As a result, page-

or tuple-granularity SIREAD locks, which are identified by phys-

ical location, are no longer valid; PostgreSQL therefore promotes

them to relation-granularity. Similarly, if an index is removed, any

index-gap locks on it can no longer be used to detect conflicts with

a predicate read, so they are replaced with a relation-level lock on

the associated heap relation. These issues don’t arise in a S2PL lock

manager, as holding a read lock on a tuple would block the DDL

operations described here until the reading transaction completes.

SIREAD locks, however, are retained after a transaction commits,

so it would be overly restrictive if they blocked DDL operations.

5.3 Tracking Conflicts

The previous section described how to detect rw-antidependencies,

but one antidependency alone is not a problem; it is only a dan-

gerous structure of two rw-antidependencies that may cause an

anomaly. Detecting when this is the case requires keeping some

state to represent serializable transactions and their dependencies.

One question we were faced with was how much information to

track about a transaction’s dependencies. Each previous SSI imple-

mentation has answered this question differently. The original SSI

paper suggested two single-bit flags per transaction: whether the

transaction had a rw-antidependency pointing in, and whether it had

one pointing out [7]. Later, this was extended to two pointers, with

a pointer-to-self being used to represent a transaction with multi-

ple rw-antidependencies in or out [6]. PSSI opted instead to store

the entire graph, including wr- and ww-dependencies, to support

cycle-testing [18].

We chose to keep a list of all rw-antidependencies in or out for

each transaction, but not wr- and ww-dependencies. Keeping point-

ers to the other transaction involved in the rw-antidependency, rather

than a simple flag, is necessary to implement the commit ordering

optimization described in Section 3.3 and the read-only optimization

of Section 4.1. It also allows us to remove conflicts if one of the

transactions involved has been aborted. Keeping only one pointer

would require us to abandon these optimization for transactions

with multiple rw-antidependencies in or out. We also implemented

a number of techniques to aggressively discard information about

committed transactions to conserve memory (Section 6), and these

require accurate information about the rw-antidependency graph.

We considered the PSSI approach, which uses cycle testing to

eliminate false positives, but did not use it because it requires track-

ing ww- and wr-dependencies. As mentioned above, we were con-

cerned about memory usage, so we did not want to track additional

dependencies. More fundamentally, we were concerned about wr-

dependencies that take place partially outside the database, which

we cannot track. For example, an alternate implementation of the
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batch processing example might implement the REPORT operation

described in Section 2 as two separate transactions: one that queries

the batch number and another that obtains all receipts for a partic-

ular batch. A user might run one transaction that reads the batch

number and observes that batch x is current, and then – in a separate

transaction – list the receipts for batch x−1. Having observed the

effects of the CLOSE-BATCH transaction that incremented the batch

number, the user could reasonably expect that no further receipts

would be added for the closed batch. PSSI, however, would not

detect this dependency (as it was a separate transaction that read the

batch number) and allow an anomaly similar to the one in Figure 2.

This problem could be resolved by tracking causal dependencies

between transactions: a transaction should not appear to execute

before a previous transaction from the same user. However, prop-

erly tracking causal dependencies between multiple communicating

clients requires substantial support from the application.

5.4 Resolving Conflicts: Safe Retry

When a dangerous structure is found, and the commit ordering

conditions are satisfied, some transaction must be aborted to prevent

a possible serializability violation. It suffices to abort any one of the

transactions involved (unless it has already committed). We want to

choose the transaction to abort in a way that ensures the following

property:

• Safe retry: if a transaction is aborted, immediately retrying

the same transaction will not cause it to fail again with the

same serialization failure.

The safe retry property is desirable because it prevents wasted work

from repeatedly retrying the same transaction, particularly in a

configuration we expect to be common: using a middleware layer to

automatically retry transactions aborted for serialization failures.

Once we have identified a dangerous structure T1
rw
−→ T2

rw
−→ T3,

the key principle for ensuring safe retry is to abort a transaction that

conflicts with a committed transaction. When the aborted transaction

is retried, it will not be concurrent with the committed transaction,

and cannot conflict with it. Specifically, the following rules are used

to ensure safe retry:

1. Do not abort anything until T3 commits. This rule is needed to

support the commit ordering optimization, but it also serves

the safe retry goal.

2. Always choose to abort T2 if possible, i.e. if it has not already

committed. T2 must have been concurrent with both T1 and

T3. Because T3 is already committed, the retried T2 will not be

concurrent with it and so will not be able to have a rw-conflict

out to it, preventing the same error from recurring. (If we had

chosen to abort T1 instead, it would still be concurrent with

T2, so the same dangerous structure could form again.)

3. If both T2 and T3 have committed when the dangerous struc-

ture is detected, then the only option is to abort T1. But this is

safe; T2 and T3 have already committed, so the retried trans-

action will not be concurrent with them, and cannot conflict

with either.

Note that rule (1) means that dangerous structures may not be

resolved immediately when they are detected. As a result, we also

perform a check when a transaction commits. If T3 attempts to com-

mit while part of a dangerous structure of uncommitted transactions,

it is the first to commit and an abort is necessary. This should be

resolved by aborting T2, for the same reasoning as in (2).

One might worry that this delayed resolution could cause wasted

work or additional conflicts, because a transaction continues to exe-

cute even after a conflict that could force it to abort. However, abort-

ing a transaction immediately would cause an equivalent amount of

wasted work, if the transaction is immediately retried only to abort

again. In fact, the delayed resolution is less wasteful because it may

ultimately not be necessary to abort transactions at all, depending

on the order in which they commit.

These rules become slightly more complex when two-phase com-

mit is involved, and safe retry may be impossible, an issue we

discuss in Section 7.1.

6. MEMORY USAGE MITIGATION

After implementing the basic SSI functionality, one of the problems

we were immediately confronted with was its potentially unbounded

memory usage. The problem is not merely that one transaction can

hold a large number of locks – a standard lock manager problem –

but one unique to SSI: a transaction’s locks cannot be released until

that transaction and all concurrent transactions commit. Moreover,

other transaction state (the rw-antidependency graph) may need to

be retained even longer to check for dangerous structures. Thus,

a single long-running transaction can easily prevent thousands of

transactions from being cleaned up.

We were faced with two requirements related to memory usage.

The SSI implementation’s memory usage must be bounded: the lock

table and dependency graph must have a fixed size (specified by

the configuration file). The system must also be able to gracefully

degrade. Even in the presence of long-running transactions, the

system should not fail to process new transactions because it runs

out of memory. Instead, it should be able to accept new transactions,

albeit possibly with a higher false positive abort rate.

These requirements were driven in part by PostgreSQL’s restric-

tive limitations on shared memory. PostgreSQL stores all its shared

memory in a single System V shared memory segment. The default

configuration of many operating systems restricts the size of this

segment (e.g. to 32 MB on Linux), so SSI must be able to function

even in a low-memory scenario. PostgreSQL also lacks effective

support for dynamic allocation of shared memory, forcing us to allo-

cate a fixed amount of memory for the lock table at startup. However,

the problem is not PostgreSQL-specific; although other databases

might be less likely to exhaust shared memory, any memory used

for storing SSI state is memory that cannot put to more productive

uses, such as the buffer cache.

Our PostgreSQL implementation uses four techniques to limit the

memory usage of the SSI lock manager. We have already seen the

first two; the others are discussed below:

1. Safe snapshots and deferrable transactions (Section 4.2) can

reduce the impact of long-running read-only transactions

2. Granularity promotion (Section 5.2): multiple fine-grained

locks can be combined into a single coarse-grained lock to

reduce space.

3. Aggressive cleanup of committed transactions: the parts of a

transaction’s state that are no longer needed after commit are

removed immediately

4. Summarization of committed transactions: if necessary, the

state of multiple committed transactions can be consolidated

into a more compact representation, at the cost of an increased

false positive rate

6.1 Aggressive Cleanup

How long does information about a committed transaction need to

be retained? As mentioned previously, a committed transaction’s

SIREAD locks are no longer necessary once all concurrent trans-
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actions have committed, as only concurrent transactions can be

involved in a rw-antidependency. Therefore, we clean up unneces-

sary locks when the oldest active transaction commits. However,

some information about the conflict graph must be retained longer.

Specifically, if an active transaction T1 develops a conflict out to a

committed transaction T2, we need to know whether T2 has a con-

flict out to a third transaction T3, and T3’s commit sequence number.

But T3 may have committed before any active transaction began,

meaning that it was already cleaned up. To prevent this problem, we

record an additional piece of information in each transaction’s node:

the commit sequence number of the earliest committed transaction

to which it has a conflict out.

We use another optimization when the only remaining active

transactions are read-only. In this case, the SIREAD locks of all

committed transactions can be safely discarded. Recall that SIREAD

locks are only needed to detect conflicts when a concurrent trans-

action’s write happens after another transaction’s read – and there

are no active transactions that can write. Furthermore, the commit-

ted transactions’ lists of rw-antidependencies in can be discarded,

because these dependencies could only be a part of a dangerous

structure if an active read-write transaction modified some object

read by the committed transaction.

6.2 Summarizing Committed Transactions

Our SSI implementation reserves storage for a fixed number of

committed transactions. If more committed transactions need to

be tracked, we summarize the state of previously committed trans-

actions. It is usually sufficient to discover that a transaction has a

conflict with some previously committed transaction, but not which

one. Summarization allows the database to continue accepting new

transactions, although the false positive abort rate may increase

because some information is lost in the process.

Our summarization procedure is based on the observation that

information about committed transactions is needed in two cases:

First, an active transaction modifying a tuple needs to know if

some committed transaction read that tuple. This could create a

dangerous structure Tcommitted
rw
−→ Tactive

rw
−→ T3. We need to keep

a SIREAD lock to detect that such a transaction existed – but it

does not matter what specific transaction it was, whether it had other

rw-antidependencies in or out, etc. This motivates the first part of

summarizing a committed transaction: the summarized transaction’s

SIREAD locks are consolidated with those of other summarized

transactions, by reassigning them to a single dummy transaction.

Each lock assigned to this dummy transaction also records the com-

mit sequence number of the most recent transaction that held the

lock, to determine when the lock can be cleaned up. The benefit of

consolidation is that each lock only needs to be recorded once, even

if it was held by multiple committed transactions. Combined with

the ability to promote locks to a coarser granularity, this can make it

unlikely that the SIREAD lock table will be exhausted.

Second, an active transaction reading a tuple needs to know

whether that tuple was written by a concurrent serializable transac-

tion. This could create one of two possible dangerous structures:

T1
rw
−→ Tactive

rw
−→ Tcommitted or Tactive

rw
−→ Tcommitted

rw
−→ T3

Recall that we detect this situation using the transaction ID of the

writer that is stored in the tuple header (Section 5.2). However, we

still need to check whether that the writer was a serializable trans-

action, as opposed to one running with a weaker isolation level.

Furthermore, we need to know whether that transaction had a con-

flict out to a third transaction T3 (and whether T3 committed first), to

detect the second case above. For non-summarized transactions, this

information is available from the dependency graph. Summarized

transactions, however, are removed from the graph. Instead, we keep

a simple table mapping a summarized transaction’s ID to the commit

sequence number of the oldest transaction to which it has a conflict

out. This can be represented using a single 64 bit integer per transac-

tion, and the table can be swapped out to disk using an existing LRU

mechanism in PostgreSQL, giving it effectively unlimited capacity.

7. FEATURE INTERACTIONS

PostgreSQL has a wide variety of features, some of which have

interesting or unexpected interactions with SSI. We describe sev-

eral such interactions in this section. To our knowledge, previous

implementations of SSI have not addressed these issues.

7.1 TwoPhase Commit

PostgreSQL supports two-phase commit: the PREPARE TRANSAC-

TION command ensures a transaction is stored on disk, but does

not make its effects visible.3 A subsequent COMMIT PREPARED

is guaranteed to succeed, even if the database server crashes and

recovers in the meantime. This requires writing the list of locks held

by the transaction to disk, so that they will persist after recovery.

We extended this procedure so that a transaction’s SIREAD locks

will also be written to disk; they, too, must persist after a crash/recov-

ery, because the transaction remains active after recovery and new

concurrent transactions may conflict with it. PostgreSQL also needs

to know, after recovery, whether the prepared transaction had any

rw-antidependencies in or out. It isn’t feasible, however, to record

that information in a crash-safe way: the dependency graph could be

large, and new conflicts may be detected even after the transaction

prepares. Accordingly, after a crash, we conservatively assume that

any prepared transaction has rw-antidependencies both in and out.

A transaction that has PREPARED cannot be aborted. This means

that we must perform the pre-commit serialization failure check

described in Section 5.4 before preparing. It also means that any se-

rialization failures involving a prepared transaction must be resolved

by aborting one of the other transactions involved. Unfortunately,

this sometimes makes it impossible to guarantee the safe retry prop-

erty of Section 5.4. Consider a dangerous structure involving an

active transaction, a prepared transaction, and a committed one:

Tactive
rw
−→ Tprepared

rw
−→ Tcommitted

According to the safe retry rules in Section 5.4, we should choose

to abort the “pivot” transaction, Tprepared – but we cannot, as it has

prepared. Our only option is to abort Tactive instead. If the user im-

mediately retries that transaction, however, it will still be concurrent

with (and can still conflict with) Tprepared, as Tprepared has not yet

committed. The retried transaction is therefore likely to be aborted

because of the same conflict.

7.2 Streaming Replication

Beginning with last year’s 9.0 release, PostgreSQL has built-in

support for master-slave replication. As in many other database

systems, this is implemented using log shipping: the master streams

write-ahead-log records to the slave, which can process read-only

transactions while it applies the updates from the master.

Unfortunately, log-shipping replication does not provide serial-

izable behavior when used with SSI and read-only transactions on

the slaves. Two-phase locking has the property that the commit

order of transactions matches the apparent serial order; the same is

true of the standard optimistic concurrency control technique [15].

3By design, PostgreSQL does not itself support distributed transac-
tions; its two-phase commit support is intended as a primitive that
can be used to build an external transaction coordinator.
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As a result, running read-only queries on a snapshot of the data-

base guarantees serializability without locking. SSI does not have

this property, however. With SSI, a read-only query can cause se-

rialization failures: recall the batch-processing example’s REPORT

transaction in Section 2. If run on the master, SSI would detect

the rw-antidependencies between that transaction and the others,

and abort one of them. If, however, that REPORT transaction were

run on a slave replica, the dependency would go unnoticed and the

transaction would see anomalous results. A similar problem could

occur with a snapshot-based transactional cache [17].

Currently, PostgreSQL does not allow serializable transactions

to be run on the slaves. We plan to eliminate this restriction in a

future release. We quickly discounted the option of attempting to

track rw-antidependencies caused by queries on slave replicas. This

would require the slaves to communicate information back to the

master about their transactions’ read sets. The cost and complexity

of doing so, along with the required synchronization, would likely

eliminate much of the benefit of running queries on the slave.

Instead, we use our notion of safe snapshots (Section 4.2), on

which we can run any read-only query. Slave replicas will run

serializable transactions only on safe snapshots, eliminating the

need for them to track read dependencies or communicate them to

the master. We plan to achieve this by adding information to the

log stream that identifies safe snapshots. Then, transactions running

on the slaves will have one of three options: they can use the most

recent (but potentially stale) safe snapshot; they can wait for the

next available safe snapshot (as DEFERRABLE transactions do); or

they can simply run at a weaker isolation level (as is possible now).

7.3 Savepoints and Subtransactions

PostgreSQL uses subtransactions to implement savepoints, an issue

not addressed by previous SSI implementations. Creating a save-

point starts a new nested subtransaction. This subtransaction cannot

commit until the top-level transaction commits. However, it can be

aborted using the ROLLBACK TO SAVEPOINT command, discarding

all changes made since the savepoint. For the most part, subtrans-

actions have little impact on SSI. We do not drop SIREAD locks

acquired during a subtransaction if the subtransaction is aborted

(i.e. all SIREAD locks belong to the top-level transaction). This is

because data read during the subtransaction may have been reported

to the user or otherwise externalized.

However, subtransactions interact poorly with an optimization

not previously discussed. As suggested in Cahill’s thesis [6], we

allow a transaction to drop its SIREAD lock on a tuple if it later

modifies that tuple. This optimization is safe because the write

lock is held until the transaction commits, preventing concurrent

transactions from modifying the same tuple and thereby obviating

the need for the SIREAD lock. It is a particularly useful optimization

in PostgreSQL because the write lock is stored directly in the tuple

header, so storing it has effectively no cost beyond that of updating

the tuple, whereas SIREAD locks must be stored in an in-RAM table.

This optimization cannot be used while executing a subtransaction,

because the write lock is associated with the subtransaction. If that

subtransaction is rolled back, the write lock will be released, leaving

the top-level transaction without either a write or SIREAD lock.

7.4 Index Types

Our discussion of predicate locking has focused mainly on B+-trees,

the most common index type. PostgreSQL provides several other

types of built-in indexes, including GiST [13] and GIN indexes,

and supports an extensible index API, allowing users to define

their own index access methods [20]. In general, new index access

methods must indicate whether they support predicate locking; if
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Figure 4: SIBENCH transaction throughput for SSI and S2PL as a

percentage of SI throughput

so, they are required to acquire the appropriate SIREAD locks to

avoid phantoms. Otherwise, PostgreSQL falls back on acquiring a

relation-level lock on the index whenever it is accessed.

Of PostgreSQL’s built-in index access methods, currently only

B+-trees support predicate locking. We plan to add support for GiST

indexes in an upcoming release, following a similar approach; the

major difference is that GiST indexes must lock internal nodes in

the tree, while B+-tree indexes only lock leaf pages. Support for

GIN and hash indexes is also planned.

8. EVALUATION

Running transactions in PostgreSQL’s SERIALIZABLE mode comes

with a performance cost, compared to snapshot isolation. There are

two sources of overhead. First, tracking read dependencies and main-

taining the serialization graph imposes CPU overhead and can cause

contention on the lock manager’s lightweight locks. Second, trans-

actions may need to be retried after being aborted by serialization

failures, some of which may be false positives.

In this section, we evaluate the cost of serializability in Post-

greSQL 9.1. We compare the performance of our SSI implementa-

tion to PostgreSQL’s existing snapshot isolation level (REPEATABLE

READ). To provide additional context, we also compare with a sim-

ple implementation of strict two-phase locking for PostgreSQL. This

implementation reuses our SSI lock manager’s support for index-

range and multigranularity locking; rather than acquiring SIREAD

locks, it instead acquires “classic” read locks in the heavyweight

lock manager, as well as the appropriate intention locks.

We evaluated the performance on PostgreSQL on three workloads:

the SIBENCH microbenchmark (Section 8.1), a modified TPC-C-

like transaction processing benchmark (Section 8.2), and the RUBiS

web application benchmark (Section 8.3). We used several hardware

configurations to test both CPU and disk bottlenecks. In each case,

PostgreSQL’s settings were tuned for the hardware using pgtune.4

8.1 SIBENCH Microbenchmark

SIBENCH is a simple microbenchmark that demonstrates the benefit

of snapshot isolation and SSI over locking approaches when there

are many rw-conflicts [6]. The database consists of a single table

containing N 〈key, value〉 pairs. The SIBENCH workload consists

of equal numbers of update transactions, which update the value

for one randomly-selected key, and query transactions, which scan

the entire table to find the key with the lowest value. We ran this

benchmark on a 2.83 GHz Core 2 Quad Q9550 system with 8 GB

RAM running Ubuntu 11.10. The database was stored on an in-

4http://pgtune.projects.postgresql.org/
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Figure 5: DBT-2++ transaction throughput for SSI and S2PL as a percentage of SI throughput

memory file system (tmpfs), so that the benchmark can measure

CPU overhead and contention caused by concurrency control.

Figure 4 shows the throughput in committed transactions per

second for SSI and S2PL, relative to the performance of snapshot

isolation. Locking imposes a clear performance penalty compared

to SI, as update transactions cannot run concurrently with query

transactions. SSI obtains throughput close to that of SI because it

permits them to execute concurrently. On this simple benchmark,

tracking read dependencies has a CPU overhead of 10–20%. Our

read-only optimizations reduce this cost. A query transaction can

be determined to have a safe snapshot once any update transactions

that were active when it started complete; thereafter, it does not

have to track read dependencies. For larger table sizes, the query

transactions run longer, making this more likely.

8.2 Transaction Processing: DBT2++

To measure the overhead of our implementation of SSI using a more

realistic workload, we used DBT-2,5 an open-source transaction pro-

cessing benchmark inspired by TPC-C [21]. TPC-C is known not to

exhibit anomalies under snapshot isolation [10], so we incorporated

the “credit check” transaction from Cahill’s “TPC-C++” variant,

which can create a cycle of dependencies when run concurrently

with other transactions [6]. We also applied some optimizations to

eliminate frequent points of contention, including caching certain

read-only data and omitting the warehouse year-to-date totals.

We ran DBT-2++ in two configurations to measure the overhead of

SSI. First, we used a 25-warehouse scale factor (a 3 GB dataset) and

used the in-memory tmpfs system described above; this allows us

to measure the CPU overhead of tracking dependencies in a “worst-

case” CPU-bound environment. The second configuration used a

150-warehouse (19 GB) database and was disk-bound, allowing us to

evaluate the rate of serialization failures in a configuration with more

concurrent and longer-running transactions. For this configuration,

we used a 16-core 1.60 GHz Xeon E7310 system with 8 GB of RAM

running Ubuntu 11.04. The database was stored on a 3-disk RAID 5

array of Fujitsu MAX3073RC 73 GB 15,000 RPM drives, with an

identical fourth drive dedicated to PostgreSQL’s write-ahead log.

The RAID controller used a battery-backed write-back cache.

The standard TPC-C workload mix consists of 8% read-only

transactions. To gain further insight, we scaled the workload mix

to contain different fractions of read-only transactions, keeping the

transaction proportions otherwise identical. We used concurrency

levels of 4 and 36 threads on the in-memory and disk-bound work-

loads respectively, as these achieved the highest performance. We

ran the benchmark with no think time, and measured the resulting

5http://osdldbt.sourceforge.net

Throughput (req/s) Serialization failures

SI 435 0.004%

SSI 422 0.03%

S2PL 208 0.76%

Figure 6: RUBiS performance

throughput, shown in Figure 5. Again, the performance of SSI and

S2PL is shown relative to the performance of snapshot isolation.

For the in-memory configuration (Figure 5a), SSI causes a 5%

slowdown relative to snapshot isolation because of increased CPU

usage. Our read-only optimizations reduce the CPU overhead of SSI

for workloads with mostly read-only transactions. SSI outperforms

S2PL for all transaction mixes, and does so by a significant margin

when the fraction of read-only transactions is high. On these work-

loads, there are more rw-conflicts between concurrent transactions,

so locking imposes a larger performance penalty. (The 100%-read-

only workload is a special case; there are no lock conflicts under

S2PL, and SSI has no overhead because all snapshots are safe.)

The 150-warehouse configuration (Figure 5b) behaves similarly, but

the differences are less pronounced: on this disk-bound benchmark,

CPU overhead is not a factor, and improved concurrency has a lim-

ited benefit. Here, the performance of SSI is indistinguishable from

that of SI. Transactions rarely need to be retried; in all cases, the

serialization failure rate was under 0.25%.

8.3 Application Performance: RUBiS

We also measured the impact of SSI on application-level perfor-

mance using the RUBiS web application benchmark [3]. RUBiS

simulates an auction site modeled on eBay. We used the PHP im-

plementation of RUBiS, configured with the standard “bidding”

workload (85% read-only and 15% read/write transactions), and

a dataset containing 225,000 active auctions, 1 million completed

auctions, and 1.35 million users, for a total database size of 6 GB.

In these benchmarks, the database server ran on a 2.83 GHz Core

2 Quad Q9550 system with 8 GB RAM and a Seagate ST3500418AS

500 GB 7200 RPM hard drive running Ubuntu 11.10. Application

server load can be a bottleneck on this workload [3], so we used

multiple application servers (running Apache 2.2.17 and PHP 5.3.5)

so that database performance was always the limiting factor.

The RUBiS workload contains frequent rw-conflicts. For example,

queries that list the current bids on all items in a particular category

conflict with requests to bid on those items. Accordingly, two-phase

locking incurs significant overhead from lock contention, as seen

in Figure 6. Furthermore, deadlocks occasionally occur, requiring

expensive deadlock detection and causing serialization failures. SSI
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achieves performance comparable to snapshot isolation, because

dangerous structures are rare and so transactions are rarely aborted.

8.4 Deferrable Transactions

In Section 4.3, we introduced deferrable transactions. Aimed at

long-running analytic queries, this feature allows transactions to

avoid the overhead of SSI by running them under snapshot isolation

on a safe snapshot. The tradeoff is that these transactions may have

to wait until a safe snapshot is detected.

How long it takes to obtain a safe snapshot depends on what trans-

actions are running concurrently. We tested deferrable transactions

with the DBT-2++ workload described above (using the disk-bound

configuration and the standard 8% read-only transactions). This

produces a heavy load with many concurrent transactions, making it

a particularly challenging case for deferrable transactions. While the

benchmark was executing, we started a deferrable transaction, ran a

trivial query, and measured how long it took to find a safe snapshot.

We repeated this 1200 times with a one-second delay between de-

ferrable transactions. The median latency was 1.98 seconds, with

90% of transactions able to obtain a safe snapshot within 6 seconds,

and all within 20 seconds. Given the intended use (long-running

transactions), we believe this delay is reasonable.

9. CONCLUSION

Serializable transactions can simplify development by allowing data-

base users to ignore concurrency issues – an advantage that becomes

particularly relevant with today’s highly-concurrent systems. De-

spite this, many users are unwilling to pay any performance cost

for serializability. For this reason, PostgreSQL historically did not

even provide serializability, instead offering snapshot isolation as its

highest isolation level. We addressed this in PostgreSQL 9.1 with a

new, SSI-based serializable isolation level. Our experiments show

that this serializable mode provides performance similar to snapshot

isolation and considerably outperforms strict two-phase locking on

read-intensive workloads – hopefully making it a practical option

for developers who would have previously opted to use snapshot

isolation and endure the resulting anomalies.

Our implementation of SSI is the first in production use, as well

as the first in a database that did not previously provide a serializable

isolation level. This presented us with a number of new challenges.

We had to implement a new predicate lock manager that tracks the

read dependencies of transactions, integrate SSI with existing Post-

greSQL features, and develop a transaction summarization technique

to bound memory usage. We also introduced new optimizations for

read-only transactions. Given these challenges, implementing SSI

proved more challenging than a typical S2PL-based serializable

mode. Despite this, the resulting performance benefits made the

effort worthwhile, and played a key role in making this serializable

isolation level acceptable to the PostgreSQL community.
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