
On the Design and Scalability of Distributed
Shared-Data Databases

Simon Loesing † Markus Pilman † Thomas Etter † Donald Kossmann †∗

† Department of Computer Science ∗ Microsoft Research
ETH Zurich, Switzerland Redmond, WA, USA

{firstname.lastname}@inf.ethz.ch donaldk@microsoft.com

ABSTRACT
Database scale-out is commonly implemented by partition-
ing data across several database instances. This approach,
however, has several restrictions. In particular, partitioned
databases are inflexible in large-scale deployments and as-
sume a partition-friendly workload in order to scale. In
this paper, we analyze an alternative architecture design for
distributed relational databases that overcomes the limita-
tions of partitioned databases. The architecture is based
on two fundamental principles: We decouple query process-
ing and transaction management from data storage, and we
share data across query processing nodes. The combination
of these design choices provides scalability, elasticity, and
operational flexibility without making any assumptions on
the workload. As a drawback, sharing data among multiple
database nodes causes synchronization overhead. To address
this limitation, we introduce techniques for scalable trans-
action processing in shared-data environments. Specifically,
we describe mechanisms for efficient data access, concur-
rency control, and data buffering. In combination with new
hardware trends, the techniques enable performance charac-
teristics that top state-of-the-art partitioned databases.

1. INTRODUCTION
Modern large-scale web applications have requirements

that go beyond what traditional relational databases man-
agement systems (RDBMS) provide. For instance, tradi-
tional RDBMS are inflexible with regard to evolving data
and are too rigid for dynamic cloud environments. In re-
sponse to these limitations, new design considerations have
triggered the emergence of NoSQL (Not Only SQL) stor-
age systems. NoSQL systems have been hyped for their
scalability and availability. However, the fundamental de-
sign premise behind the NoSQL phenomenon is operational
flexibility [39]. Operational flexibility describes all features
that either facilitate user interaction or that enable the sys-
tem to dynamically react to changing conditions. This in-
cludes elasticity, the ability to grow or shrink the system
on-demand; ease-of-use, the ability to efficiently write and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.

Copyright c© 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.

http://dx.doi.org/10.1145/2723372.2751519.

execute any kind of query; and deployment flexibility, the
ability to run out-of-the-box on many commodity hardware
servers. These properties have become critical success fac-
tors with the advent of cloud computing and Big Data.

In this paper, we evaluate an architecture for distributed
transaction processing that is designed towards operational
flexibility. Our goal is to keep the strengths of RDBMS,
namely SQL and ACID transactions, and at the same time
provide the benefits that inspired the NoSQL movement.
This architecture is based on two principles: First, data
is shared across all database instances. In contrast to dis-
tributed partitioned databases [41, 60], database instances
do not exclusively own a partition but can access the whole
data and execute any query. As a result, transactions can
be performed locally. This is a key benefit over partitioned
database in which distributed transactions can significantly
affect scalability. The second principle is decoupling query
processing and transaction management from data storage.
While in traditional RDBMS engines the two are tightly cou-
pled, we logically separate them into two architectural lay-
ers. This break-up facilitates elasticity and deployment flex-
ibility as both layers can be scaled out independently [37].
Applying both principles results in a two-tier architecture in
which database instances operate on top of a shared record
store. Hence, the name shared-data architecture.

The shared-data architecture has shown to scale for ana-
lytical workloads (OLAP). For instance, it is the foundation
behind the success of Apache Hadoop [2]. This paper uses
the same elemental principles to allow for scalable online
transaction processing (OLTP). In a shared-data architec-
ture, it is even possible to run an OLTP workload and per-
form analytical queries on separate instances but accessing
the same data. This mixed workload scenario enables scal-
able analytics on live production data. Although the focus
of this paper is on OLTP workloads, we outline the implica-
tions of performing mixed workloads.

Sharing data raises several technical challenges we ad-
dress: First, shared data access requires synchronization [52].
We use lightweight load-link and store-conditional (LL/SC)
primitives [25] as a foundation to implement efficient multi-
version concurrency control (MVCC) [5] and provide latch-
free indexes [35]. Second, data access involves network com-
munication. We provide techniques to minimize network re-
quests and keep latencies low. In particular, we rely on new
technical trends such as fast networking technology (i.e., In-
finiBand [24]) as well as in-memory data storage. It is the
specific combination of techniques that enables scalability
not possible a few years ago.

663

Storage

Applications

Clients

Request Response

Databases

SQL Result

Data 2 Data 3

Query Proc.
Trx Mgmt.

Query Proc.
Trx Mgmt.

Query Proc.
Trx Mgmt.

Data 1

Figure 1: Partitioned databases

This paper makes three contributions: First, we propose
an architecture design for distributed relational databases
that enables scalability, fault-tolerance, and elasticity with-
out making any assumptions on the workload. Second, we
demonstrate that the right combination of established con-
cepts and new hardware trends enables scalable transaction
processing in shared-data systems. Accordingly, we describe
techniques for efficient and consistent data access as part of
a reference implementation of the shared-data architecture,
a database system called Tell. Third, we show the effec-
tiveness of our design and evaluate it against VoltDB [54],
MySQL Cluster [41] and FoundationDB [19].

The paper is organized as follows: Section 2 details the key
design principles and technical challenges of shared-data ar-
chitectures. We review related work in Section 3. Section 4
describes Tell and explains how concurrency control and re-
covery are implemented. Section 5 details data access and
shared storage. Section 6 presents an experimental evalua-
tion of Tell, and Section 7 concludes.

2. SHARED-DATA ARCHITECTURE
This section describes the design principles and technical

challenges behind the shared-data architecture.

2.1 Design Principles
In the following, we detail the key design principles moti-

vated in the previous section. Moreover, we highlight the ne-
cessity for ACID transactions and complex queries, two fea-
tures that have recently been relaxed or simplified in many
storage systems [12, 16, 45].

Shared data: Shared data implies that every database
instance can access and modify all data stored in the database.
There is no exclusive data ownership. A transaction can be
executed and committed by a single instance. In contrast
to partitioned databases, no workload knowledge is required
to correctly partition data and minimize the number of dis-
tributed transactions. Sharing data provides the following
benefits: First, setting up a database cluster is straightfor-
ward. Second, the interaction with the database is simplified
as partitioning is no longer reflected in the application logic.
On the other hand, sharing data requires updates to be syn-
chronized, a constraint we address in Section 2.2.

Decoupling of Query Processing and Storage: The
shared-data architecture is decomposed into two logically
independent layers, transactional query processing and data
storage. The storage layer is autonomous. It is implemented
as a self-contained system that manages data distribution

Storage

Applications

Clients

Request Response

Databases

Get/Put Byte[]

SQL

Data 1 Data 2 Data 3

Query Proc.
Trx Mgmt.

Query Proc.
Trx Mgmt.

Query Proc.
Trx Mgmt.

Processing Layer

Storage Layer

Figure 2: Shared-data databases

and fault-tolerance transparently with regard to the pro-
cessing layer. Hence, replication and data re-distribution
tasks are executed in the background without the process-
ing layer being involved. The storage system is in essence a
distributed record manager that consists of multiple storage
nodes (SN). Data partitioning is not as performance critical
as in partitioned databases as data location does not deter-
mine where queries have to be executed. Instead, to execute
queries, the processing layer accesses records independent of
the SNs they are located at. This fundamental difference in
the communication pattern is highlighted in Figures 1 and 2.

The processing layer consists of multiple autonomous pro-
cessing nodes (PN) that access the shared storage system.
A mechanism is provided to retrieve data location (e.g., a
lookup service) that enables the processing nodes to directly
contact the storage node holding the required data.

Logical decoupling considerably improves elasticity as PNs
or SNs can be added on-demand if processing resources or
storage capacity is required respectively. Accordingly, nodes
can be removed if capacity is not required anymore. More-
over, the architecture enables workload flexibility. That is,
the possibility to execute different workloads. For example,
some PNs can run an OLTP workload, while others perform
analytical queries on the same dataset.

In-Memory Storage: Modern commodity hardware clus-
ters typically have terabytes of main memory at their dis-
posal. These numbers exceed the capacity requirements
of most applications. For instance, in the TPC-C bench-
mark [57], a warehouse requires less than 200 MB. Conse-
quently, it is no longer necessary to rely on slow storage de-
vices (e.g., hard disks), and instead, the whole data can be
kept in-memory. The advantages are obvious: In-memory
storage provides low access latencies and avoids complex
buffering mechanisms [53]. However, DRAM memory is
volatile and data loss must be prevented in case of failures.
A common approach to ensure fault-tolerance is replication.

ACID Transactions: Transactions ensure isolated exe-
cution of concurrent operations and maintain data integrity.
From a developer’s perspective, transactions are a conve-
nient way to perform consistent data changes and simplify
application development. In particular, development is less
error-prone as data corruption and anomalies do not occur.
Transactions are indispensable for the majority of applica-
tions and are therefore a major feature. We aim at providing
full transaction support. That is, ACID transactions can be
performed without limitations on the whole data. Transac-
tion management is part of the processing layer and does not
make any assumption on how data is accessed and stored.

664

Complex Queries: SQL is the query language in RDBMS.
It enables complex queries and includes operators to order,
aggregate, or filter records based on predicates. Although al-
ternative systems often simplify the query model to improve
performance, complex (SQL) queries are not an obstacle to
system scalability [47]. In the shared-data architecture, data
location is logically separated from query processing. As a
result, PNs retrieve the records required to execute a query.
This notion can be described as data is shipped to the query.
The ability to run the same query on multiple nodes provides
increased parallelism and scalability.

2.2 Technical Challenges
Shared-data architectures run any workload and facilitate

elasticity. However, they introduce new challenges.

Data Access: In a shared-data environment, data is
likely to be located at a remote location and has to be ac-
cessed over the network. Caching data in local buffers is
only possible to a limited extent as updates made by one
PN have to be visible to the others instantly. As a result, to
provide consistent access, most requests retrieve the latest
record version remotely from the storage layer. Data access
latencies can quickly become a dominant factor in query ex-
ecution time and thus, minimizing the interaction with the
storage layer is an optimization goal in shared-data systems.

In light of restricted buffering possibilities, traditional tech-
niques to manage relational data have to be re-evaluated.
A major concern in this context is the correct granularity
of data storage. That is, whether it is beneficial to group
records into pages in order to retrieve or store several records
with a request, or whether choosing a finer storage granu-
larity (e.g., single record) is a more favorable approach. We
suggest to store data at the granularity of a record as this
provides a good trade-off between the number of network re-
quests and the amount of traffic generated. We justify this
design choice and detail the implications in Section 5.

A second challenge of shared data relates to data access
paths and indexing. Analogous to data, indexes are shared
across multiple PNs and are therefore subject to concurrent
modifications from distributed locations. As a result, the
shared-data architecture requires distributed indexes that
support atomic operations and that are at the same time
highly scalable. As a solution, we propose a scalable latch-
free distributed B+Tree index in Section 5.3.

In addition to the right techniques, low-latency network-
ing technologies such as InfiniBand contribute to reduce the
overhead of remote data access. These technologies provide
latency and bandwidth guarantees not available a decade
back and consequently enable to scale to new levels. For
instance, InfiniBand enables Remote Direct Memory Access
(RDMA) within a few microseconds and is three orders of
magnitude faster than a random read on a local hard disk.

Concurrency Control: Shared data records can be up-
dated by any processing node and therefore concurrency
control is required across all PNs. Although common pes-
simistic and optimistic concurrency control approaches [6]
can be used, distribution requires the mechanisms to be ex-
amined from a new angle. For instance, a lock-based ap-
proach requires centralized lock management. Assuming
network latency dominates lock acquisition time, the lock
manager quickly becomes a bottleneck. Similarly, increased
data update latencies might cause more write-conflicts in an
optimistic protocol resulting in higher abort rates. Accord-

ingly, a concurrency control mechanism that minimizes the
overhead of distribution allows for the highest scalability.

In this paper, we present a distributed MVCC protocol.
A key feature is conflict detection using LL/SC primitives, a
particular type of atomic read-modify-write (RMW) opera-
tion [50]. Atomic RMW operations have become popular in
recent years as they enable non-blocking synchronization. In
a shared-data architecture, they allow for performing data
updates only if a record has not been changed since it has
last been read. As a result, conflicts can be identified with
a single call. LL/SC primitives are a lightweight mechanism
that allows for efficient distributed concurrency control. The
details of this technique are presented in Section 4.

2.3 Limitations
The architecture and the techniques presented in this work

perform best in the context of local area networks (LAN).
LANs allow low-latency communication and are a critical
performance factor for several reasons: First, shared data
implies limited buffering and causes heavy data access over
the network. Second, in-memory data requires synchronous
replication in order to prevent data loss in case of failures.
Wide area networks (e.g., between data-centers) have higher
communication cost than LANs and are therefore unsuited
for these requirements. Network bandwidth is another con-
straint that can potentially become a bottleneck. The pro-
cessing and the storage layer constantly exchange data, and
factors such as heavy load or large records can cause network
saturation. Some of the techniques we present introduce ad-
ditional constraints that are detailed at a later point.

3. RELATED WORK
Distributed databases that share data have been subject

to various research over the years. Oracle RAC [11], IBM
DB2 Data Sharing [28], and Oracle Rdb [36] are based on a
shared-data architecture. These systems use a global lock-
manager to synchronize data access and ensure concurrency
control. Data is stored on disk and the granularity of shar-
ing data is a page. In contrast, our approach is based on
in-memory storage and reduces data access granularity to
single records. More fundamentally, these systems rely on
traditional tightly-coupled RDBMS engines.

An initial design of a shared-data architecture based on
the principles presented in Section 2.1 has been introduced
by Brantner et al. [8]. Moreover, the benefits of decou-
pling data storage from query processing and transaction
management with regard to flexibility and elasticity have
been highlighted in several publications [34, 37]. A com-
mercial database system that implements our design prin-
ciples and that has been developed in parallel to Tell is
FoundationDB [19]. FoundationDB provides a “SQL Layer”
that enables complex SQL queries on top of a transactional
key-value store. FoundationDB has many similarities with
Tell such as support for in-memory storage and optimistic
MVCC protocol. However, critical implementation details
(e.g., indexing, commit validation) have not been published
yet. The purpose of this paper is to specifically provide
these details. The experimental evaluation highlights that
it is the right combination of techniques that is fundamental
to achieve high performance. In the TPC-C benchmark Tell
outperforms FoundationDB by a factor of 30 (Section 6.5).

Several additional shared-data databases have been pub-
lished recently. ElasTras [15] is a shared-data database de-

665

Shared Data Decoupling In-Memory
Storage

ACID
Transactions

Complex
Queries

Tell (Shared-Data Architecture) � � � � �
Oracle RAC � - - � �
FoundationDB � � � � �
Google F1 � � - � �
OMID � � - � �
Hyder � � - � (�)
VoltDB - - � � �
Azure SQL Database - - - � �
Google BigTable - - - - -

Table 1: Comparison of selected databases and storage systems

signed for multi-tenancy. Data storage is decoupled from
transaction management but data partitions (or tenants) are
exclusively assigned to PNs. Transactions can only be per-
formed on single partitions. In our architecture, PNs can
access all data and the scope of a transaction is not lim-
ited. Another shared-data database is Google F1 [49]. F1
is built on top of Spanner [13] that has evolved from Mega-
store [3]. F1 enables scalable transactions but is designed
with regard to cross-datacenter replication. The reported
latencies to perform a commit are 50-150 ms. We assume
low-latency data access in LANs. A system that implements
many of our design principles is OMID [20]. OMID imple-
ments MVCC on top of a large data store to provide transac-
tion support. However, unlike our approach, OMID requires
a centralized component for conflict detection and commit
validation. Hyder [7] is a transactional shared-data record
manager. Records are stored in a log structure. Updates are
appended to the log in total order, and processing servers
rollforward the log to reach a common state. Hence, trans-
action management is decoupled from storage.

Distributed partitioned databases are nowadays widespread.
A thorough review of the architectural benefits is provided
by Dewitt and Gray [17]. Partitioned databases provide scal-
ability for partition-friendly workloads but suffer from dis-
tributed transactions. H-Store [29] and its commercial suc-
cessor VoltDB [60] horizontally partition tables inside and
across nodes. VoltDB sequentially processes transactions
on single partitions without the overhead of concurrency
control. Calvin [56] speeds up distributed transactions by
reaching agreement before a transaction is executed. Jones
et al. [26] propose to speculatively execute local transac-
tions while waiting for distributed transactions to complete.
Azure SQL Database [10] is a cloud service that enables to
partition data across instances but does not support cross-
partition joins. In a shared-data system, the problem of
distributed transactions does not arise as PNs can access all
data. Partitioning is transparent with regard to the PNs
and transactions are local. Accordion [48] and E-Store [55]
are two recent systems that propose data placement systems
to enable online repartitioning [51] and provide elasticity
for partitioned databases. Although these approaches con-
siderably improve agility, adding or removing node implies
re-partitioning and moving data. In Tell, elasticity is more
fine-grained and PNs can be added without any cost.

Main memory databases [32, 58] take advantage of mem-
ory performance and cache affinity to optimize processing in
the scope of a single machine. A main memory database de-
signed for processing mixed workloads is HyPer [30]. HyPer
creates copy-on-write snapshots of the data in virtual mem-
ory to process OLAP workload independently of on-going
OLTP processing. A recent extension [40] allows to offload

analytical processing onto secondary machines to improve
OLAP performance. The main difference to Tell is that
OLTP queries are only processed on a single master server.

Recently, relational databases have been challenged by
the emergence of NoSQL systems. NoSQL stores violate
our design principles and typically relax consistency guaran-
tees in favor of more scalability and availability. Amazon’s
Dynamo [16] was one of the first scalable key-value stores
that provides eventual consistency to achieve high availabil-
ity. Other systems such as BigTable [12] or Spinnacker [45]
provide strong consistency and atomic single-key operations
but no ACID transactions. G-Store [14] does support ACID
transactions for user-defined groups of data objects. The
major restriction is that these groups must not overlap. A
system that does not have this limitation is Sinfonia [1]. Sin-
fonia is a partitioned store that uses Two-Phase Commit to
reach agreement on transaction commit. None of the pre-
vious NoSQL stores supports a query language as powerful
as SQL. However, many strongly consistent NoSQL systems
are equivalent to atomic record stores and support basic op-
erations as required by the storage layer in Tell.

Table 1 provides an overview of the discussed systems with
regard to our design principles.

4. TRANSACTION PROCESSING AND
CONCURRENCY CONTROL

Figure 3 presents an overview of the components of Tell.
The processing node is the central component that processes
incoming queries and executes transactions. PNs interact
with the commit manager, a lightweight service that man-
ages global transaction state (Section 4). Furthermore, a
management node monitors the system and initiates a recov-
ery process the moment a failure is detected. Finally, data is
stored in a distributed storage system consisting of multiple
SNs. The storage layer manages data records, indexes, as
well as an undo log for recovery (Section 4.4). To enable
transactional processing, the storage system must support
consistent get/put operations on single records. Moreover,
Tell depends on the availability of the storage system in or-
der to process queries.

Concurrency control ensures that transactions can run in
parallel on multiple PNs without violating data integrity. In
this section, we describe a MVCC protocol [5]. More specif-
ically, we detail a distributed variant of snapshot isolation
(SI) [4] that uses LL/SC primitives for conflict detection.
The SI protocol is part of the transaction management com-
ponent on each PN in Tell and guarantees ACID properties.
SI is an optimistic protocol [31] in which transactions are
never prevented from making progress. Evaluating our de-
sign with lock-based protocols is subject to future work.

666

4.1 Distributed Snapshot Isolation
SI is a MVCC protocol that has been implemented in sev-

eral database systems (e.g., Oracle RDBMS, PostgreSQL,
Microsoft SQL Server). MVCC stores multiple versions of
every data item. Each time a transaction updates an item,
a new version of that item is created. When a transac-
tion starts, it retrieves a list with all data item versions it
is allowed to access. In SI, a transaction is only allowed
to access the versions that were written by already finished
transactions. This is the so-called consistent snapshot the
transaction operates with. Transactions check for conflicts
at commit time. Updates (insert, update, and delete oper-
ations) are buffered and applied to the shared store during
commit. In the remainder of the paper, we use the term
“apply” to indicate that updates are installed in the store.

The commit of transaction T1 is only successful if none
of the items in the write set have been changed externally
(applied) by another transaction T2 that is committing or
has committed since T1 has started. If T1 and T2 run in par-
allel and modify the same item, two scenarios can happen:
First, T2 writes the changed item to the shared store before
it is read by T1. In that case, T1 will notice the conflict (as
the item has a newer version). Second, T1 reads the item
before it has been written by T2. If this happens, T1 must
be able to detect the conflict before it writes the item back.
For this purpose, Tell executes an LL/SC operation in the
storage layer. LL/SC is a pair of instructions that reads a
value (load-link) and allows for performing an update only
if it has not changed in the meantime (store-conditional).
LL/SC is stronger than compare-and-swap as it solves the
ABA-Problem [38]. That is, a write operation on a mod-
ified item fails even when the value matches the initially
read value. LL/SC is the key to conflict detection. If all
updates of transaction T1 can be applied successfully, there
are no conflicts and the transaction can commit. If one of
the LL/SC operations fails, there is a write-write conflict
and T1 will abort (i.e., revert all changes made to the store).

SI avoids many of the common concurrency control anoma-
lies. However, some anomalies (e.g., write skew) prevent SI
to guarantee serializability in all cases [18]. Proposed solu-
tions for serializable SI [9, 27, 61] are not designed for dis-
tributed systems or require centralized commit validation.
Still, we mean to provide serializable SI in the near future.

To provide SI semantics across PNs, each node interacts
with a dedicated authority, the commit manager.

4.2 Commit Manager
The commit manager service manages global snapshot in-

formation and enables new transactions to retrieve three el-
ements: A system-wide unique transaction id (tid), a snap-
shot descriptor and the lowest active version number (lav).

Transaction ids are monotonically incremented numeric
values that uniquely identify a transaction. Every running
transaction requires a tid before it can execute data opera-
tions. Given its system-wide uniqueness, the tid is not only
used to identify transactions but also defines the version
number for updated data items. In other words, a transac-
tion creates new versions for updated data items with the
tid as version number. Due to the fact that tids are incre-
mented, version numbers will increase accordingly. Hence,
as tids and version numbers are synonyms, the set of tids
of completed transactions also defines the snapshot (i.e., the
set of accessible version numbers) for starting transactions.

Get/Put Byte[]

Commit
Manager

Processing Node

Storage Interface

Query Processing Trx.
Mgmt.

Application Logic

Bu er

Schema Data Indexes Trx. Log

P
ro

ce
ss

in
g

St
or

ag
e

Management
Node

Node
Mgmt.

Distributed Storage System

Figure 3: Tell architecture and components

The snapshot descriptor is a data structure computed
for each transaction that specifies which versions can be ac-
cessed. It consists of two elements: First, a base version
number b indicating that b and all earlier transactions have
completed. Second, a set of newly committed tids N . N
contains all committed transactions with tid > b but not
b+1. When b+1 commits, the base version is incremented
until the next non-committed tid is reached.

The implementation of the snapshot descriptor involves
low computational cost. b is an integer and N is a bitset.
Starting with b at offset 0, each consecutive bit in N rep-
resents the next higher tid and if set indicates a committed
transaction. Hence, the snapshot descriptor is small even in
the presence of many parallel transactions (e.g., N ≤ 13 KB
with 100,000 newly committed transactions).

When accessing a data item with a set of version numbers
(or version number set) V , the transaction reads the version
with the highest version number v matching the snapshot
descriptor. More formally, we define the valid version num-
ber set the transaction can access V ′ as:

V ′ := { x | x ≤ b ∨ x ∈ N }
The version with number v is accessed:

v := max(V ∩ V ′)

The lowest active version number is equal to the low-
est base version number among all active transactions. That
is, the highest version number globally visible to all transac-
tions. Version numbers smaller than the lav are candidates
for garbage collection (Section 5.4).

In order to communicate with the processing nodes, the
commit manager provides a simple interface. The following
three functions are supported:

• start() → (tid, snapshot descriptor, lav): Signal the
start of a new transaction. Returns a new tid, a snap-
shot of the current state, and the lav.

• setCommitted(tid) → void: Signals that tid has suc-
cessfully committed. Updates the list of committed
transactions used to generate snapshot descriptors.

• setAborted(tid) → void: Same as above but for aborts.

To scale and ensure fault-tolerance, several commit man-
agers can run in parallel. Commit manager nodes use the
shared store to synchronize on tids and on the snapshot. The
uniqueness of every tid is ensured by using an atomically
incremented numeric counter in the storage system. PNs
update the counter using LL/SC operations to ensure that

667

tids are never assigned twice. To prevent counter synchro-
nization from becoming a bottleneck, PNs can increment the
counter by a high value (e.g, 256) to acquire a range of tids
that can be assigned to transactions on-demand. We opted
for continuous ranges of tids because it is simple to imple-
ment. However, the approach has limitations (e.g., higher
abort rate). Using ranges of interleaved tids [58] is subject
to be implemented in the near future. To synchronize the
current snapshot (i.e., the list of committed transactions),
we use the storage system as well. In short intervals, every
commit manager writes its snapshot to the store and there-
after reads the latest snapshots of the other commit man-
agers. As a result, every commit manager gets a globally
consistent view that is at most delayed by the synchroniza-
tion interval. Operating on delayed snapshots is legitimate
and does not affect correctness. Nevertheless, the older the
snapshot, the higher the probability of conflicts. In practice,
a synchronization interval of 1 ms did not noticeably affect
the overall abort rate (Section 6.3.3).

4.3 Life-cycle of a Transaction
This section describes the life-cycle of a transaction and

enumerates the different transaction states:

1. Begin: In an initial step a transaction contacts the
commit manager to retrieve its snapshot.

2. Running: While running on a PN, a transaction can
access or update any data item. Read operations re-
trieve the item from the store, extract the valid version
and cache it in case the item is re-accessed. Updates
are buffered on the PN in the scope of the transaction.
Data storage and buffering are detailed in Section 5.

3. Try-Commit: Before starting the commit procedure,
a log entry with the ids of updated items is written to
the transaction log. This is a requirement for recovery
and fail-over (Section 4.4). We proceed with applying
updates to the store using LL/SC operations. On suc-
cess, the transaction commits. Otherwise, we abort.

4. (a) Commit: All data updates have been applied.
Next, the indexes are altered to reflect the up-
dates, and a commit flag is set in the transaction
log. Finally, the commit manager is notified.

(b) Abort: On conflict, applied data updates are
rolled back. A transaction can also be aborted
manually. In this case, no updates have been
applied (as we skipped the Try-Commit state).
Last, the commit manager is notified.

4.4 Recovery and Fail-Over
This section illustrates how node failures are addressed.

Failures are detected by the management node using an
eventually perfect failure detector based on timeouts. Al-
though we describe fail-over for single node failures, han-
dling multiple failures concurrently is supported.

4.4.1 Failure of a processing node
PNs act according to the crash-stop model. That is, in

case of transient or permanent failures, all active transac-
tions on a failed node are aborted. In particular, committing
transactions with partially applied updates must be reverted
to ensure correctness. As soon as a failure is detected, a re-
covery process is started to roll back the active transactions

of the failed node. Correct recovery is enabled by a trans-
action log that contains the status of running transactions.

The transaction log is an ordered map of log entries lo-
cated in the storage system. Before applying updates, a
transaction must append a new entry to the log. Every
entry is identified by the tid and consists of the PN id, a
timestamp, the write set, and a flag to mark the transaction
committed. The write set is a list of updated record ids.

When the recovery process is started, it first discovers the
active transactions of the failed node. This involves retriev-
ing the highest tid from the commit manager and iterating
backwards over the transaction log until the lowest active
version number is reached. The lav implicitly acts as a
rolling checkpoint. Once we encounter a relevant transac-
tion, we use the write set and revert the changes made by
the transaction. That is, the version with number tid is
removed from the records. On completion of the recovery
process, all transactions of the failed node have been rolled
back. The management node ensures that only one recov-
ery process is running at a time. However, a single recovery
process can handle multiple node failures.

4.4.2 Failure of a storage node
The storage system must handle node failures transpar-

ently with regard to the processing nodes. In order to remain
operational, PNs require data access and assume a highly
available storage system. Obviously, a failure must not lead
to data loss. Moreover, downtime must be minimized as it
will cause transaction processing to be delayed. Availability
is guaranteed by replicating data. As data is kept in volatile
storage (main memory) a SN ensures that data is replicated
before acknowledging a request. This implies synchronous
replication regardless of the replication protocol used (Read-
One-Write-All, majority quorum, etc.). If a node fails, the
storage system fails-over to the replicas and enables on-going
processing of requests. Eventually, the system re-organizes
itself and restores the replication level. Ensuring high avail-
ability in simple record stores is a well studied field [12, 16].

The storage layer in Tell uses a management node to de-
tect failures. The same node manages partitioning, restores
the replication factor, and enables PNs to look-up the loca-
tion of replicas. To prevent a single point of failure, several
management nodes with a synchronized state are required.

4.4.3 Failure of a commit manager
In a single commit manager configuration, a failure has

system-wide impact. PNs are no longer able to start new
transactions, and the system is blocked until a new commit
manager is available. Once all active transactions at the
moment of failure have committed (the commit manager is
not required for completion), a new commit manager can
be started. To restore its state, the commit manager re-
trieves the last used tid and the most recently committed
transactions from the transaction log.

To prevent a single point of failure and increase availabil-
ity, multiple commit managers can operate in a cluster. As
pointed out previously, commit managers synchronize their
state. If a commit manager becomes unavailable, PNs au-
tomatically switch to the next one. New commit managers
can determine the current state from the data of the other
managers. Recall that the commit managers regularly write
their state to the storage system. Hence, state information
is accessible independently of commit manager availability.

668

5. DATA ACCESS AND STORAGE
Tell provides a SQL interface and enables complex queries

on relational data. The query processor parses incoming
queries and uses the iterator model to access records. Records
are retrieved and modified using basic data operations, such
as read and write, and are stored in a key-value format. In
this section, we explain how relational data is mapped to
the key-value model and detail data access methods.

5.1 Data Mapping
The mapping of relational data to the key-value model is

straightforward: Every relational record (or row) is stored
as one key-value pair. The key is a unique record identifier
(rid). Rids are monotonically incremented numerical values.
The value field contains a serialized set of all the versions of
the record. This row-level storage scheme is a significant de-
sign decision as it minimizes the number of storage accesses.
For instance, with a single read operation, a transaction re-
trieves all versions of a record and can select the one that is
valid according to the snapshot. On update, a transaction
adds a new version to the record and writes back the entire
record during commit. Again, a single atomic write request
applies the update or identifies a conflict.

Grouping records into pages, as disk-oriented databases do
in order to reduce the number of I/O operations [22], is of
limited use in a shared-data architecture. A record needs to
be re-fetched on every access because it can be changed any-
time by remote PNs. Consequently, a coarse-grained storage
scheme would not reduce the number of requests to the stor-
age system but only increase network traffic. In contrast, a
more fine-grained storage scheme (e.g., store every version as
a key-value pair) would require additional requests to iden-
tify added versions. Committing transactions would have
to check for new versions before applying updates and con-
sequently conflict detection would become more expensive.
Although storing single versions reduces network traffic, we
opt for an approach that minimizes network requests.

To read a record, PNs rely on index structures. Indexes
contain references to the rid and enable a PN to retrieve
records with all versions (Figure 4). To update a record,
it is first read. Next, a new version of the tuple reflecting
the changes of the update is added to the set of versions.
The entire record is kept in the transaction buffer, and fur-
ther updates to the record directly modify the newly added
version. Finally, the record is applied at commit time.

To further minimize the number of network requests and
improve performance, Tell aggressively batches operations
(i.e., several operations are combined into a single request).
Batching enables transactions to access multiple records with
a single request but it is also used to combine concurrent
read operations from different transactions on the same PN.
Batching is part of the interface to the store and therefore
enables to combine requests across multiple transactions.

5.2 Mixed Workloads
OLTP workloads typically consist of short-running trans-

actions that access few records. Every transaction requires
a limited amount of remote accesses and utilizes low band-
width. Thus, OLTP execution can be parallelized and scales
with the number of PNs (Section 6). OLAP workloads, on
the other hand, perform long running queries that access
large amounts of data. For instance, an OLAP query might
execute an aggregation that involves a full table scan (i.e.,

Sec. Key
Index

Data

Key Value
rid1 Record1
rid2 Record2
rid3 Record3
rid4 Record4
... ...

Version Value
v1 Record1_1
v3 Record1_2
v5 Record1_3
... ...

Serialized Record

Data Access Data Access

Pri. Key
Index

pk1 pk2 pk3 ...
rid1 rid2 rid3 ...

sk1 sk2 sk3 ...
rid1 rid4 rid4 ...

Figure 4: Storage and access of data records

access all the records of a table). To process this query, a PN
must read (and transfer over the network) all the records of
the table. Obviously, processing this query has limitations
with regard to latency and bandwidth utilization.

To enable the efficient execution of mixed workloads, we
propose to push down selected relational operators into the
storage layer. For instance, executing simple operations such
as selection or projection in the SN would enable to reduce
the size of the result set and lower the amount of data sent
over the network. A more advanced solution is to execute a
shared scan over the entire data in the storage layer as sug-
gested in [46, 59]. A dedicated thread could scan all stored
records and pre-filter data for complex OLAP queries [44].
The challenge is to perform the scan efficiently without af-
fecting on-going get/put operations. Mixed workloads are
beyond the scope of this paper. Nevertheless, the concept
of performing basic processing tasks in the storage layer is
a promising direction for future work.

5.3 Latch-free Index Structures
Indexes provide an efficient lookup mechanism to iden-

tify matching records for a given attribute (or a set of at-
tributes). Indexes can be accessed by multiple transactions
in parallel and therefore require concurrency control. In
a shared-data architecture, integrity must be maintained
across nodes as an index can be modified by multiple PNs.
Traditionally, index integrity is enforced using latches. How-
ever, latch-free algorithms have become popular recently [23].
In a distributed setting, the absence of latches is even more
desirable as network communication increases latch acquisi-
tion cost. Moreover, the absence of latches ensures system-
wide progress. Accordingly, Tell provides a latch-free B+tree.

5.3.1 B+Tree Index
The B+tree is one of the most used index structures in

relational databases. Over the last decades, many variations
have been optimized for concurrent access [21, 33]. Particu-
larly noteworthy is the Bw-tree [35], a latch-free variant for
modern hardware. Taking the techniques of the Bw-tree as
a reference, we have implemented a latch-free B+tree con-
currently accessible by multiple PNs.

The B+Tree index is entirely stored and maintained in the
storage layer (every node is stored as a key-value pair) and
can be accessed by all PNs. To synchronize index updates,
every node in the tree is atomically modified in the storage
system (using LL/SC operations). On lookup, a transaction
accesses the root node and traverses the tree until the leaf-
level is reached. B+tree nodes are cached in the processing

669

layer to improve traversal speed and minimize storage sys-
tem requests. Caching works as follows: All index nodes
with exception of the leaf level are cached. The leaf-level
nodes are always retrieved from the storage system. If the
range of the leaf node (lowest and largest value) does not
match the data in its parent (i.e., the leaf node has been
split or merged), then the parent nodes are recursively up-
dated (i.e., the latest version is retrieved from the storage
system) to keep the cache consistent. The caching mecha-
nism is independent of the synchronization of index changes.

5.3.2 Design Considerations
In order to prevent unnecessary network requests and in-

crease scalability, versioning information is excluded from
all indexes. Instead of maintaining a key-reference entry for
every existing version, only a single index entry per record
is maintained. As a result, it is not necessary to insert new
index entries on every record update (i.e., whenever a new
version is added) but only when the indexed key is modified.
Less index insertions improve index concurrency.

Version unaware indexes have limitations. In particular, it
is not possible to identify for which versions an index entry is
valid. In the absence of that information, a transaction may
retrieve a record that is not valid according to its snapshot
descriptor. Although these reads are unnecessary, they are
performed independently of the index and do not affect index
concurrency. In addition, index-only scans are not possible
as the validity of an entry can not be verified.

5.4 Garbage Collection
Updates add new versions and over time records become

larger. To prevent data items from growing infinitely, garbage
collection (GC) is necessary. Garbage collection deletes the
versions and index entries that are never going to be ac-
cessed again. We use two garbage collection strategies: The
first one is eager and cleans up data records and indexes as
part of an update or read operation respectively. The sec-
ond strategy is lazy and performs GC in a background task
that runs in regular intervals (e.g., every hour). The latter
approach is useful for rarely accessed records.

Record GC is part of the update process. Before applying
a record, a transaction first verifies if older versions can be
removed. To determine evictable versions, a transaction uses
the lowest active version number it has obtained from the
commit manager on transaction start. Given a record with
version numbers V and the lav, we define C as the version
number set of a record visible to all transactions:

C := { x | x ∈ V ∧ x ≤ lav }
The set of garbage collectable version numbers G is:

G := { x | x ∈ C ∧ x 	= max(C) }
The version max(C) is not garbage collected to guarantee
that at least one version of the item always remains. All
versions whose number is in G can be safely deleted before
the record is written back to the storage system.

Index entries are also subject to garbage collection. Index
GC is performed during read operations. During the read
operation following an index lookup, a transaction verifies if
some of the index entries are obsolete. Given an index entry
k with key a, we define Va as the version number set of all
versions that contain a with Va ⊆ V . k can be removed from
the index if the following condition holds:

Va\G = ∅

Index nodes are consistently updated. If the LL/SC opera-
tion fails, GC is retried with the next read. In the evaluation
(Section 6) both GC strategies are used.

5.5 Buffering Strategies
In this section, we present three approaches to improve

buffering in a shared-data architecture. The effectiveness of
each strategy is illustrated in Section 6.7.

5.5.1 Transaction Buffer
Transactions operate on a particular snapshot and do not

necessarily require the latest version of a record. Accord-
ingly, data records, once read by a transaction, are buffered
and reused in the scope of the transaction. Every trans-
action maintains a private buffer that caches all accessed
records for the duration of the transaction’s lifetime. This
caching mechanism has obvious limitations: There is no
shared buffer across transactions, and buffering is only ben-
eficial if transactions access the same record several times.

5.5.2 Shared Record Buffer
The second approach is based on a shared record buffer

used by all transactions on a processing node. It acts as a
caching layer between the transaction buffers and the storage
system. Although records can be modified by remote PNs
and new transactions need to access the storage system to
retrieve the most recent record version, transactions running
in parallel can benefit from a shared buffer. For instance,
if a transaction retrieves a record, the same record can be
reused by a transaction that has started before the first one
(i.e., a transaction with an older snapshot).

This strategy is implemented using version number sets
(as defined in Section 4.2). In the buffer, we associate to each
record a version number set that specifies for which version
numbers the record is valid. Comparing the version number
set of the transaction’s snapshot descriptor with the version
number set of the buffered record allows for determining
if the buffer entry can be used or if the transaction is too
recent. If a transaction with version number set Vtx wants
to read a record with version number set B, the following
conditions are used to verify the validity of the buffer entry:

1. Vtx ⊆ B: The buffer is recent enough. We can access
the record from the buffer and no interaction with the
storage system is necessary.

2. Vtx 	⊆ B: The cache might be outdated. We first
get Vmax, the version number set of the most recently
started transaction on the processing node. Then, we
retrieve the record from the storage system and re-
place the buffer entry. Finally, B is set to Vmax. As
all transactions in Vmax committed before the record
was read, it is certain to be a valid version number set.

The rational behind Vmax is to keep B as big as possible
to improve the likelihood that condition 1 holds for future
data accesses. Once a record is retrieved from the buffer,
we check if the versions contained in the record are valid
according to Vtx. This step prevents phantom reads.
To insert a record into the buffer, we apply the procedure

of condition 2. If the buffer is full a replacement strategy
(e.g., Least-Recently-Used) is used to evict entries. Record
updates are applied to the buffer in a write-through manner.
Each time a transaction applies an update, the changes are

670

written to the storage system and if successful, to the buffer
as well. B is set to the union of tid and Vmax. Vmax is
a valid version number set for updated records because if
a transaction in Vmax would have changed the record, the
LL/SC operation to the storage system would have failed.
Buffer updates are atomic to ensure consistency.

In the presence of multiple concurrent transactions access-
ing the same items on a processing node, global buffering re-
duces the number of read requests to the storage system and
thus lowers data access latencies. This comes at the price
of additional management overhead and increased memory
consumption on the PNs.

5.5.3 Shared Buffer with Ver. Set Synchronization
This variant is an extension of the previously described

shared buffer. The key idea of this approach is to use the
storage system to synchronize on version number sets of
records. The advantage is that a PN can verify if a buffered
record is valid by retrieving its version number set. If the
buffer is not valid, the record is re-fetched. This strategy
saves network bandwidth as version number sets are small
compared to records.

Record updates are handled the same way as for the shared
record buffer except that a transaction not only writes the
data changes to the storage system but also updates the
version number set entry. The mechanism for data access is
slightly different. A buffered record is accessed according to
the following conditions:

1. Vtx ⊆ B: The buffer entry is valid.

2. Vtx 	⊆ B: The cache might be outdated. We fetch
the record’s version number set B′ from the storage
system.

(a) If B′ = B the buffered record is still valid.

(b) If B′ 	= B the record must be re-fetched. More-
over, B is replaced by B′.

Although this strategy reduces network traffic, it comes at
the expense of additional update overhead. For each record
update, two requests are performed in the storage layer.

An optimization to reduce the number of additional stor-
age system requests is record grouping. Instead of main-
taining one version number set per record, multiple records
are grouped in a cache unit and share a common version
number set. By default, multiple sequential records of a re-
lational table are assigned to a cache unit. The mechanism
for record access and update remains the same except that
once the version number set is updated, all buffered records
of a cache unit are invalidated. The advantage of this strat-
egy is that less version number sets have to be written and
read from the storage system. For instance, multiple up-
dates to the same cache unit only require the version num-
ber set to be updated once. On the other hand, records are
more frequently invalidated and re-fetched.

This strategy benefits from a workload with a high read
ratio as cache units will be invalidated less often. The higher
the update ratio, the more buffered records are invalidated
and eventually the update overhead outweighs saved requests.

6. EXPERIMENTAL EVALUATION
This section presents an evaluation of Tell. We first de-

scribe environment and methodology before presenting ex-
perimental results. Our experiments are based on the TPC-C
benchmark that is popular both in industry and academia.

6.1 Implementation and Environment
The PN in Tell is implemented in 15,608 lines of C++

code. Transaction management and data access are per-
formed with the techniques described in Sections 4 and 5 re-
spectively. PNs have a synchronous processing model. That
is, a thread processes a transaction at a time. While waiting
for a I/O request to complete, another thread takes over.

PNs interact with the RamCloud storage system (RC) [43].
RC is a strongly consistent in-memory key-value store de-
signed to operate in low-latency networks. Data is accessed
using a client library that supports atomic Get and Put op-
erations (i.e., LL/SC). The key space is range-partitioned to
distribute load across SNs. RC supports remote backup with
fast recovery [42]. The backup mechanism synchronously
replicates every put operation to the replicas and thereafter
asynchronously writes it to persistent storage. The replica-
tion factor (RF) specifies the number of data copies. RC
uses replication for fault-tolerance only. All requests to a
particular partition are sent to the master copy.

The benchmarking infrastructure consists of 12 servers.
Each machine is equipped with two quad core Intel Xeon
E5-2609 2.4 GHz processors, 128 GB DDR3-RAM and a
256 GB Samsung 840 Pro SSD. A server has two NUMA
units that consist each of one processor and half the memory.
A process is by default assigned to one NUMA unit. This
assignment allows to run two processes per server (usually
a PN and a SN) and thus doubles the maximum number of
logical nodes (24). The servers are connected to a 40 Gbit
QDR InfiniBand network. All nodes use the same switch.

6.2 The TPC-C Benchmark
The TPC-C is an OLTP database benchmark that mod-

els the activity of a wholesale supplier. Load is generated
by terminal clients. Every terminal operation results in one
database transaction. Terminals are run separately from the
system under test (SUT). Our TPC-C implementation dif-
fers from the specification (Rev. 5.11) [57]. Specifically, we
have removed wait times so that terminals continuously send
requests to the PNs. The number of terminals threads is se-
lected so that the peak throughput of the SUT is reached.

The size of the database is determined by the number of
warehouses (WH). The default population for every TPC-C
run is 200 WHs. In our implementation, a warehouse occu-
pies approximately 189 MB of RamCloud memory space.

The standard TPC-C transaction mix is write-intensive
with a write ratio of 35.84% The throughput metric is the
new-order transaction rate (TpmC). That is, the number
of successfully executed new-order transactions per minute.
Not included are failed transactions (i.e., aborted or tak-
ing too long). The TpmC represents around 45% of all is-
sued transactions. The TPC-C standard mix inserts large
amounts of data (i.e., at high throughput up to 30 GB/min)
and restricted us to limit the measurement interval to 12
minutes for every TPC-C run. The benchmark is executed
5 times for each configuration and the presented results are
averaged over all runs. The measured performance was pre-
dictable and the variations were very low.

To evaluate read-intensive scenarios, we propose an addi-
tional TPC-C mix. This mix consists of three transactions
and provides a read-ratio of 95.11%. As we change the per-
centage of new-order transactions, throughput is measured
in number of transactions per second (Tps). Table 2 gives
an overview of both workload mixes.

671

Workload Mix
Write
Ratio

Throughput
Metric

Transaction Mix
New-Order Payment Delivery Order Status Stock Level

Write-Intensive (Standard) 35.84% TpmC 45% 43% 4% 4% 4%
Read-Intensive 4.89% Tps 9% 0% 0% 84% 7%

Table 2: Write and read-intensive workloads for the TPC-C benchmark

0
100
200
300
400
500
600
700
800
900

1,000

1 2 3 4 5 6 7 8

T
pm

C
 (

in
 1

'0
00

s)

Number of processing nodes

RF1
RF2
RF3

Figure 5: Scale-out processing (write-intensive)

Commit Managers 1 2 3
TpmC 958’187 955’759 955’608
Tx abort rate (%) 14.75 15.59 15.91

Table 3: Commit managers (write-intensive)

6.3 Scale-Out
This section studies scale-out behavior and highlights that

Tell can scale with an increasing number of nodes. We con-
ducted experiments in which the number of PNs, SNs, and
commit managers is varied individually and analyzed the
effect on throughput.

6.3.1 Processing
Figure 5 presents results for the standard TPC-C mix.

For this experiment, we increase the number of PNs. All
other components have enough resources and do not limit
performance (7 SNs, 1 commit manager).

With no replication (RF1), throughput increases with the
number of processing resources from 143,114 TpmC with
1 PN to 958,187 TpmC with 8 PNs. The TPC-C suffers
from data contention on the warehouse table and there-
fore throughput does not increase linearly. Contention is
reflected in the overall transaction abort rate (for all TPC-C
transactions) that grows from 2.91% (1 PN) to 14.72% (8 PNs).

Increasing the replication factor adds overhead as updates
are synchronously replicated. With RF3, we reach a peak
throughput of 350,257 TpmC with 8 PNs, thus 63.2% less
than with RF1. Synchronous replication increases latency
and consequently affects the number of transactions a worker
thread can process. In the 8 PN configuration, the average
transaction response time increases from 10.69 ms with RF1
to 29.67 ms with RF3. Increasing the number of processing
threads to compensate for higher access latencies has no
effect because of excessive context switching on the PNs.
The transaction abort rate with RF3 is similar to the one
with RF1 as the probability of conflict is alike (higher pro-
cessing time compensates for lower throughput). Increas-
ing data contention causes more aborts and throughput de-
creases. For example, with 10 WHs throughput reaches
341,917 TpmC (8 PNs, RF3).

Figure 6 shows the results of the same experiment but
running the read-intensive TPC-C mix. As read operations
only retrieve records from the master copy (and do not re-
quire interaction with the replicas), their latency is not af-

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

T
ra

ns
ac

ti
on

s/
se

c
(i

n
1'

00
0s

)

Number of processing nodes

RF1
RF2
RF3

Figure 6: Scale-out processing (read-intensive)

0

100

200

300

400

1 2 3 4 5 6 7 8

T
pm

C
 (

in
 1

'0
00

s)

Number of processing nodes

SN7
SN5
SN3

Figure 7: Scale-out storage (write-intensive)

fected by an increase in the replication level. Consequently,
the higher the read-ratio of a workload, the less the perfor-
mance impact of replication. Figure 6 illustrates this ob-
servation. With RF3 and 8 PNs, the throughput is 25.7%
lower than with RF1, a considerable improvement compared
to the write-heavy scenario.

Figures 5 and 6 emphasize that Tell enables scalable OLTP
processing with an increasing number of processing resources.
The performance loss due to synchronous replication under
write-intensive workloads is a common effect related to repli-
cation as a technique that is not specific to the shared-data
architecture or the RamCloud implementation.

6.3.2 Storage
Figure 7 shows the scale-out of the storage layer. We ex-

ecute the TPC-C standard mix with RF3 on three storage
configurations (3, 5, and 7 SNs) and measure the system
throughput with increasing load. In all configurations the
storage layer is not a bottleneck, and therefore, the through-
put difference is minimal. The configuration with 3 SNs can
not run with more than 5 PNs. With 6 PNs, the benchmark
generates too much data to fit into the combined memory
capacity of 3 SNs. Consequently, the storage resources in
a cluster should be determined by the required memory ca-
pacity and not by the available CPU power.

6.3.3 Commit Manager
Table 3 shows the performance impact of running several

commit managers (with 8 PNs, 7 SNs, and RF1). Com-
mit managers use a simple protocol to assign unique tids
and keep track of completed transactions (Section 4). In

672

0

50

100

150

200

250

300

350

400

22 26 30 34 38 42 46 50 54 58 62 66 70 74 78

T
pm

C
 (

in
 1

'0
00

)

Total number of CPU cores

MySQL Cluster RF3
FoundationDB RF3
VoltDB RF3
Tell RF3

Figure 8: Throughput (TPC-C standard)

Small 22-24cores

(mean ± σ, ms)

Large 70-72cores

(mean ± σ, ms)

S
ta
n
d
a
rd

Tell 14 ± 17 32 ± 41

MySQL Cluster 34 ± 26 43 ± 40

VoltDB 706 ± 2159 655 ± 1875

FoundationDB 149 ± 183 120 ± 138

S
h
a
rd Tell 14 ± 17 32 ± 41

VoltDB 62 ± 102 22 ± 59

Table 4: TPC-C transaction response time

particular, they are not required for complex tasks such as
commit validation. The state among commit managers is
synchronized using the approach described in Section 4.2.
Table 3 shows that running the TPC-C benchmark with a
synchronization delay of 1ms caused no significant impact
on throughput and on the transaction abort rate. Conse-
quently, the commit manager component is not a bottleneck.

6.4 Comparison to Partitioned Databases
This section evaluates Tell against two state-of-the-art

partitioned databases, VoltDB and MySQL Cluster:

VoltDB [54] is an in-memory relational database that
partitions data and serially executes transactions on each
partition. The more transactions can be processed by sin-
gle partitions, the better VoltDB scales. Consequently, we
use single-partition transactions whenever possible. Trans-
actions are implemented as stored procedures that are pre-
compiled to optimize execution. VoltDb supports replica-
tion (called K-factor) and enables to asynchronously write a
transaction log to the SSDs (VoltDB command log). As a re-
sult, it provides similar durability guarantees as RamCloud.
VoltDB Enterprise 4.8 is run in configurations of 1, 3, 5, 7,
9, and 11 nodes (8 cores each) with 6 partitions per node (as
advised in the official documentation). The nodes commu-
nicate with TCP/IP over InfiniBand. Our implementation
follows the performance related recommendations described
in [60]. In particular, the terminals invocate transactions
asynchronously and use multiple node connections.

MySQL Cluster [41] is another partitioned database
with an in-memory storage engine (i.e., NDB). A cluster
configuration consists of three components: Management
nodes (MN) that monitor the cluster, Data nodes (DN)
that store data in-memory and process queries, and SQL
nodes that provide an interface to applications and act as
federators towards the DNs. MySQL Cluster synchronously
replicates data. Our benchmark environment runs MySQL

0

200

400

600

800

1,000

1,200

1,400

22 26 30 34 38 42 46 50 54 58 62 66 70 74 78

T
pm

C
 (

in
 1

'0
00

)

Total number of CPU cores

MySQL RF1 MySQL RF3
VoltDB RF1 VoltDB RF3
Tell RF1 Tell RF3

Figure 9: Throughput (TPC-C shardable)

Cluster 7.3.2 and uses the InfiniBand network as well. The
benchmark is executed with 3, 6, and 9 DNs. We vary the
number of SQL nodes and use two MNs. Terminals use pre-
pared statements to execute transactions against the SUT.

With regard to partitioned databases, the data model and
the workload require careful consideration. The TPC-C
data model is ideal for sharding. Most tables reference
the warehouse id that is the obvious partitioning key. The
read-only item table can be fully replicated across all parti-
tions. The TPC-C workload is more problematic. According
to the TPC-C specification [57], remote new-order (clause
2.4.1.8) and remote payment (clause 2.5.1.6) transactions
access data from several warehouses and therefore require
cross-partition transactions. In the TPC-C standard mix,
the ratio of cross-partition transactions is about 11.25%.

Figure 8 compares VoltDB and MySQL Cluster to Tell.
The figure presents the peak TpmC values for the TPC-C
standard mix with RF3 on a varying number of CPU cores
(i.e., the sum of all cores available to the database cluster).
Each data point corresponds to the configuration with the
highest throughput for the given number of cores. For in-
stance, a minimal VoltDB cluster consists of 3 nodes (24 cores).
The minimal Tell configuration with 22 cores consists of
1 PN (4 cores), 3 SNs (12 cores), 2 commit managers (4 cores),
and 1 MN (2 cores). In comparison to Tell, VoltDB and
MySQL Cluster do not scale with the number of cores. While
Tell reaches a throughput of 374,894 TpmC with 78 cores,
MySQL Cluster and VoltDB achieve 83,524 and 23,183 TpmC
respectively. The scalability of the partitioned databases is
presumably limited by distributed transactions that require
coordination across nodes. In particular, VoltDB suffers
from cross-partition transactions as throughput decreases
the more nodes are added. This observation is emphasized
by VoltDB’s high latency (Table 4). MySQL Cluster is
slightly faster than VoltDB because single-partition trans-
actions are not blocked by distributed transactions. The
experiment highlights that the techniques presented in this
work efficiently interact. Moreover, the shared-data archi-
tecture enables much higher performance than partitioned
databases for OLTP workloads that are not fully shardable.

In a second experiment, we evaluate Tell given a work-
load that is optimized for partitioned databases. To that
end, we modify the TPC-C benchmark and remove all cross-
partition transactions. This alternative workload, called
TPC-C shardable, replaces remote new-order and payment
transactions with equivalent ones that only access one WH.

Figure 9 compares Tell to VoltDB and MySQL Cluster
using the TPC-C shardable with RF1 and RF3. Again, we

673

0

200

400

600

800

1,000

1 2 3 4 5 6 7 8

T
pm

C
 (

in
 1

'0
00

s)

Number of processing nodes

Tell InfiniBand
Tell 10Gbit Ethernet

Figure 10: Network (write-intensive)

TpmC
Latency

(mean ± σ, ms)

TP99
(ms)

TP999
(ms)

InfiniBand 958,187 10.69 ± 13.02 76.48 100.62
10Gb Ethernet 151,632 69.41 ± 87.99 542.03 644.15

Table 5: Network latency (write-intensive)

vary the number of cores. With this workload VoltDB ful-
fills the scalability promises and achieves more throughput
than Tell. The peak performance of VoltDB with RF1 is
1.387 Mio TpmC. Tell achieves 1.225 Mio TpmC, thus 11.7%
less than VoltDB. In addition, a shardable workload results
in much better latency for VoltDB (Table 4). MySQL Clus-
ter is only 1-2% faster than with the standard workload.
The numbers emphasize that the shared-data architecture
enables competitive OLTP performance. Even with a per-
fectly shardable workload, the achieved throughput is in the
same ballpark as state-of-the-art partitioned databases.

6.5 Comparison to Shared-Data Databases
Section 3 introduced FoundationDB [19], another shared-

data database. FoundationDB is known for its fast key-value
store and has recently released a“SQL Layer” that allows for
SQL transactions on top of the key-value store. Our environ-
ment runs FoundationDB 3.0.6 with in-memory data storage
and RF3 (redundancy mode triple). The benchmark is exe-
cuted on configurations with 3, 6, and 9 node in both layers.
The smallest configuration (24 cores) achieves 2,706 TpmC
and the largest (72 cores) reaches 10,047 TpmC. Although
FoundationDB scales with the number of cores, the through-
put is more than a factor 30 lower than Tell (Figure 8).
FoundationDB has not published many implementation de-
tails. For instance, it is not known how commit validation
occurs and to what extent the native benefits of InfiniBand
are used. Moreover, the SQL Layer is still new and we be-
lieve that FoundationDB will work on improving the perfor-
mance of the SQL Layer in the near future. Nevertheless,
these results indicate that if not done right, shared-data sys-
tems show very poor performance.

6.6 Network
Throughout the paper, we have emphasized that fast data

access is a major scalability requirement. In this experiment,
we highlight the importance of low-latency data access in a
shared-data architecture. Figure 10 compares the through-
put using an InfiniBand network to the performance of 10 Gb
Ethernet. The network is used for communication between
PNs and SNs as well as among SNs. In the experiment,
we vary the number of PNs. The RF is 1 and the num-
ber of SNs is 7. The TpmC results on InfiniBand are more
than six times higher than the results achieved with Ether-

0

200

400

600

800

1,000

1 2 3 4 5 6 7 8

T
pm

C
 (

in
 1

'0
00

s)

Number of processing nodes

TB
SB
SBVS10
SBVS1000

Figure 11: Buffering strategies (write-intensive)

net independent of the number of PNs. This difference is
a direct effect of network latencies. InfiniBand uses RDMA
and by-passes the networking stack of the operating system
to provide much lower latencies. As a result, data can be
accessed faster and processing time decreases. As Tell uses
a synchronous processing model where transactions block
until data arrives, reducing latency has a positive effect on
throughput. Table 5 summarizes the results for the fastest
configuration with 8 PNs. The second column shows the
mean transaction response time and the standard deviation.
Both values reflect the measured difference in throughput.
The last two columns show the 99th and 99.9th percentile
response time. The low number of outliers indicates that
both networks are not congested. In the InfiniBand config-
uration, the total bandwidth usage of one SN is 125.9 MB/s
(in and out). Thus, the network is not saturated.

6.7 Buffering Strategies
Figure 11 shows a comparison of the buffering strategies

presented in Section 5.5. The configuration uses 7 SNs and
RF1. The transaction buffer (TB) used in all previous ex-
periments is the best strategy for the TPC-C and reaches
the highest throughput. The shared record buffer (SB) per-
forms worse because the overhead of buffer management out-
weighs the caching benefits. The cache hit ratio of 1.42% is
very low. The shared buffer with version set synchronization
(SBVS) tested with cache unit sizes of 10 and 1000 had a
considerably higher cache hit ratio (37.37% for SBVS1000).
Nevertheless, this could not compensate for the cost of addi-
tional update requests to the storage system. A key insight
is that with fast RDMA the overhead of buffering data does
not pay off for workloads such as the TPC-C.

7. CONCLUSIONS
In this paper, we described Tell, a database system based

on a shared-data architecture. Tell decouples transactional
query processing and data storage into two layers to enable
elasticity and workload flexibility. Data is stored in a dis-
tributed record manager that is shared among all database
instances. To address the synchronization problem and en-
able scalable performance with present the right combina-
tion of specific techniques coupled with modern hardware.

The experimental evaluation highlighted the ability of the
shared-data architecture to scale out with the number of
cores. Furthermore, we compared Tell to alternative dis-
tributed databases and achieved a higher throughput than
VoltDB, MySQL Cluster, and FoundationDB in the popu-
lar TPC-C benchmark. The shared-data architecture en-
ables competitive performance while at the same time being
elastic and independent of any workload assumptions.

674

8. REFERENCES
[1] M. Aguilera, A. Merchant, M. Shah, A. Veitch, and

C. Karamanolis. Sinfonia: a new paradigm for
building scalable distributed systems. SOSP’07, pages
159–174, 2007.

[2] Apache Hadoop. http://hadoop.apache.org/. Nov. 06,
2014.

[3] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Léon, Y. Li, A. Lloyd, and
V. Yushprakh. Megastore: providing scalable, highly
available storage for interactive services. CIDR’11,
pages 223–234, 2011.

[4] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ANSI SQL
isolation levels. SIGMOD’95, pages 1–10, 1995.

[5] P. Bernstein and N. Goodman. Concurrency control in
distributed database systems. ACM Comput. Surv.,
13(2):185–221, 1981.

[6] P. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency control and recovery in database systems.
Addison-Wesley, 1987.

[7] P. Bernstein, C. Reid, and S. Das. Hyder - a
transactional record manager for shared flash.
CIDR’11, pages 9–20, 2011.

[8] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and
T. Kraska. Building a database on S3. SIGMOD’08,
pages 251–264, 2008.

[9] M. Cahill, U. Röhm, and A. Fekete. Serializable
isolation for snapshot databases. SIGMOD’08, pages
729–738, 2008.

[10] D. Campbell, G. Kakivaya, and N. Ellis. Extreme
scale with full SQL language support in microsoft SQL
Azure. SIGMOD’10, pages 1021–1024, 2010.

[11] S. Chandrasekaran and R. Bamford. Shared cache -
the future of parallel databases. ICDE’03, 2003.

[12] F. Chang, J. Dean, S. Ghemawat, W. Hsieh,
D. Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. Gruber. Bigtable: a distributed storage system for
structured data. ACM Trans. Comput. Syst.,
26(2):4:1–4:26, 2008.

[13] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,
C. Taylor, R. Wang, and D. Woodford. Spanner:
Google’s globally-distributed database. OSDI’12,
pages 251–264, 2012.

[14] S. Das, D. Agrawal, and A. El Abbadi. G-Store: a
scalable data store for transactional multi key access
in the cloud. SoCC’10, pages 163–174, 2010.

[15] S. Das, D. Agrawal, and A. El Abbadi. ElasTraS: an
elastic, scalable, and self-managing transactional
database for the cloud. ACM Trans. Database Syst.,
38(1):5:1–5:45, 2013.

[16] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
SOSP’07, pages 205–220, 2007.

[17] D. DeWitt and J. Gray. Parallel database systems:
the future of high performance database systems.
Commun. ACM, 35(6):85–98, 1992.

[18] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and
D. Shasha. Making snapshot isolation serializable.
ACM Trans. Database Syst., 30(2):492–528, 2005.

[19] FoundationDB. https://foundationdb.com/. Feb. 07,
2015.

[20] D. Gomez Ferro, F. Junqueira, I. Kelly, B. Reed, and
M. Yabandeh. Omid: lock-free transactional support
for distributed data stores. ICDE’14, pages 676–687,
2014.

[21] G. Graefe. A survey of B-tree locking techniques.
ACM Trans. Database Syst., 35(3):16:1–16:26, 2010.

[22] J. Gray and A. Reuter. Transaction processing:
concepts and techniques. Morgan Kaufmann, 1992.

[23] T. Horikawa. Latch-free data structures for DBMS:
design, implementation, and evaluation. SIGMOD’13,
pages 409–420, 2013.

[24] InfiniBand. http://www.infinibandta.org/. Nov. 06,
2014.

[25] E. Jensen, G. Hagensen, and J. Broughton. A new
approach to exclusive data access in shared memory
multiprocessors. Technical Report UCRL-97663, 1987.

[26] E. P. Jones, D. J. Abadi, and S. Madden. Low
overhead concurrency control for partitioned main
memory databases. SIGMOD’10, pages 603–614, 2010.

[27] S. Jorwekar, A. Fekete, K. Ramamritham, and
S. Sudarshan. Automating the detection of snapshot
isolation anomalies. VLDB’07, pages 1263–1274, 2007.

[28] J. Josten, C. Mohan, I. Narang, and J. Teng. DB2’s
use of the coupling facility for data sharing. IBM
Systems Journal, 36(2):327–351, 1997.

[29] R. Kallman, H. Kimura, J. Natkins, A. Pavlo,
A. Rasin, S. Zdonik, E. Jones, S. Madden,
M. Stonebraker, Y. Zhang, J. Hugg, and D. Abadi.
H-store: a high-performance, distributed main
memory transaction processing system. Proc. VLDB
Endow., 1(2):1496–1499, 2008.

[30] A. Kemper and T. Neumann. HyPer: a hybrid
OLTP&OLAP main memory database system based
on virtual memory snapshots. ICDE’11, pages
195–206, 2011.

[31] H. T. Kung and J. T. Robinson. On optimistic
methods for concurrency control. ACM Trans.
Database Syst., 6(2):213–226, 1981.

[32] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman,
J. M. Patel, and M. Zwilling. High-performance
concurrency control mechanisms for main-memory
databases. Proc. VLDB Endow., 5(4):298–309, 2011.

[33] P. Lehman and S. B. Yao. Efficient locking for
concurrent operations on B-trees. ACM Trans.
Database Syst., 6(4):650–670, 1981.

[34] J. Levandoski, D. Lomet, M. Mokbel, and K. Zhao.
Deuteronomy: transaction support for cloud data.
CIDR’11, pages 123–133, 2011.

[35] J. Levandoski, D. Lomet, and S. Sengupta. The
Bw-tree: a B-tree for new hardware platforms.
ICDE’13, pages 302–313, 2013.

[36] D. Lomet, R. Anderson, T. Rengarajan, and P. Spiro.
How the Rdb/VMS data sharing system became fast.
Technical Report CRL 92/4, 1992.

[37] D. Lomet, A. Fekete, G. Weikum, and M. Zwilling.
Unbundling transaction services in the cloud.
CIDR’09, 2009.

675

[38] M. Mages. ABA prevention using single-word
instructions. Technical Report RC23089 (W0401-136),
2004.

[39] C. Mohan. History repeats itself: sensible and Nonsen
aspects of the NoSQL hoopla. EDBT’13, pages 11–16,
2013.

[40] T. Mühlbauer, W. Rödiger, A. Reiser, A. Kemper, and
T. Neumann. ScyPer: elastic OLAP throughput on
transactional data. DanaC’13, pages 11–15, 2013.

[41] MySQL Cluster.
http://www.mysql.com/products/cluster/. Nov. 06,
2014.

[42] D. Ongaro, S. Rumble, R. Stutsman, J. Ousterhout,
and M. Rosenblum. Fast crash recovery in
RAMCloud. SOSP’11, pages 29–41, 2011.

[43] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
D. Ongaro, G. Parulkar, M. Rosenblum, S. Rumble,
E. Stratmann, and R. Stutsman. The case for
RAMCloud. Commun. ACM, 54(7):121–130, 2011.

[44] V. Raman, G. Swart, L. Qiao, F. Reiss, V. Dialani,
D. Kossmann, I. Narang, and R. Sidle. Constant-time
query processing. ICDE’08, pages 60–69, 2008.

[45] J. Rao, E. Shekita, and S. Tata. Using paxos to build
a scalable, consistent, and highly available datastore.
Proc. VLDB Endow., 4(4):243–254, 2011.

[46] W. Ronald. A technical overview of the Oracle
Exadata database machine and Exadata storage
server. Technical Report Oracle White Paper, 2012.

[47] M. Rys. Scalable SQL. Commun. ACM, 54(6):48–53,
2011.

[48] M. Serafini, E. Mansour, A. Aboulnaga, K. Salem,
T. Rafiq, and U. F. Minhas. Accordion: Elastic
scalability for database systems supporting distributed
transactions. Proc. VLDB Endow., 7(12), 2014.

[49] J. Shute, R. Vingralek, B. Samwel, et al. F1: a
distributed SQL database that scales. Proc. VLDB
Endow., 6(11):1068–1079, 2013.

[50] A. Singhal, R. Van der Wijngaart, and P. Barry.
Atomic read modify write primitives for I/O devices.
Technical Report Intel White Paper, 2008.

[51] G. H. Sockut and B. R. Iyer. Online reorganization of
databases. ACM Comput. Surv., 41(3):14:1–14:136,
2009.

[52] M. Stonebraker and R. Cattell. 10 rules for scalable
performance in ’simple operation’ datastores.
Commun. ACM, 54(6):72–80, 2011.

[53] M. Stonebraker, S. Madden, D. J. Abadi,
S. Harizopoulos, N. Hachem, and P. Helland. The end
of an architectural era: (it’s time for a complete
rewrite). VLDB’07, pages 1150–1160, 2007.

[54] M. Stonebraker and A. Weisberg. The VoltDB main
memory DBMS. IEEE Data Eng. Bull., 36(2):21–27,
2013.

[55] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J.
ElmoreA, A. Aboulnaga, A. Pavlo, and
M. Stonebraker. E-store: Fine-grained elastic
partitioning for distributed transaction processing
systems. Proc. VLDB Endow., 8(3), 2014.

[56] A. Thomson, T. Diamond, S.-C. Weng, K. Ren,
P. Shao, and D. J. Abadi. Calvin: fast distributed
transactions for partitioned database systems.
SIGMOD’12, pages 1–12, 2012.

[57] Transaction Processing Performance Council (TPC).
TPC Benchmark C Specification ver. 5.11, 2010.

[58] S. Tu, W. Zheng, E. Kohler, B. Liskov, and
S. Madden. Speedy transactions in multicore
in-memory databases. SOSP’13, pages 18–32, 2013.

[59] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser,
and D. Kossmann. Predictable performance for
unpredictable workloads. Proc. VLDB Endow.,
2(1):706–717, 2009.

[60] VoltDB. http://www.voltdb.com/. Nov. 06, 2014.
[61] M. Yabandeh and D. Gómez Ferro. A critique of

snapshot isolation. EuroSys’12, pages 155–168, 2012.

676

