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Abstract: Digital pathology has been clinically approved for over a decade to replace traditional methods of diagnosis. Many
challenges appear when digitising the whole slide scan into high resolution images including memory and time management.
Whole slide images require huge memory space if the tissue is not pre-localised for the scanner. The authors propose a set of
clinically motivated features representing colour, intensity, texture and location to segment and localise the tissue from the
whole slide image. This step saves both the scanning time and the required memory space. On average, it reduces scanning
time up to 40% depending on the tissue type. The authors propose, using unsupervised learning, to segment and localise
tissue by clustering. Unlike supervised methods, this method does not require the ground truth which is time consuming for
domain experts. The authors proposed method achieves an average of 96% localisation accuracy on a large dataset. Moreover,

the authors outperform the previously proposed supervised learning results on the same data.

1 Introduction

Anatomic pathology is the study of organs and tissues to
determine the causes and effects of particular diseases. It is
one of two branches of pathology, the other is clinical
pathology; the diagnosis of disease through the laboratory
analysis of bodily fluids. Anatomic pathology is concerned
with diagnosis of disease based on three levels of
examinations:  gross, microscopic and  molecular.
Examinations are performed on organs, tissues and whole
bodies (autopsy) [1].

Digital anatomic pathology utilises high resolution imaging
technology for diagnosis of particular diseases [1]. Many
commercially available high resolution scanners evolved
over the last decade. These scanners involve many steps to
finally produce high resolution pathology images that
resemble the traditional microscopic view of the whole
slides. The quality of these high resolution images
enhanced over time and helped replacing the traditional
anatomic pathology. Hence, digital pathology has become
an acceptable clinical standard for various diagnosis and
prognosis tasks.

Digital pathology eliminated the necessity of physical
slides sharing and thus eliminated all the shipping costs and
related issues. Furthermore, it enabled case communication
and remote diagnosis. Digital pathology has made a major
revolution in diagnosis and prognosis quality and reliability.
However, many issues became the focus including image
storage and retrieval as these images are usually large and
require huge storage infrastructure and special management.

In this paper, we segment the tissue from the whole slide
(as shown in Fig. 1) image and localise it within a
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bounding box. This step helps reducing between 60 and
80% from the final image size. The high resolution scanner
scans only the segmented portion instead of the whole
slide. However, it requires a reliable method for localising
and segmenting the tissue. We propose a reliable and robust
method for localisation and segmentation of the tissue from
the whole slide images based on our previous work [2].

In our previous work [2], we used supervised learning
(neural network) and performed segmentation by
classification of image  blocks. = However, our
supervised-learner requires training data (sample sets along
with the ground truth) which is a tedious and time
consuming step. Clinical labs have huge variability in their
settings that require us to re-train our neural network to
re-learn the setting of each lab. Preparation of training data
is time consuming because it requires the ground truth each
time we prepare the training data for a new lab settings. In
this work, we use unsupervised learning and thus we
eliminate the need for preparing the ground truth. Thus, our
methods become more practical in various lab settings
because we do not ask pathologists to provide ground truth
regardless of the lab settings and the types of images
produced in the lab.

In this segmentation problem, two outcomes are required: a
set of focus points (F) and a bounding box (By) (or boxes).
The set of focus points are required to lie on the actual tissue
(T) to guide the high resolution scanner to determine the
tissue properties for subsequent scanning steps. On the
other hand, the bounding box guides the scanner for the
area of interest for subsequent scanning.

Focus points (.7-" ;) are required to be detected with minimal
false positives (FP) because each FP point wastes about 200
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Fig. 1 Sample set of slide images

Upper portion is reserved for label/bar code (blanked out for anonymity) and
usually takes the top one-third of the image

ms from the scanner time. On the other hand, the second
output, the bounding boxes (B;), should contain every
useful tissue location with minimal false negatives (FN) (2)
so that the high resolution scan does not miss any tissue

Fr= argn;inP(f,J?) (D)
k
B; = argrréinP(Bk|T) )

where (7°) and (7") represent tissue and non-tissue locations,
respectively. Hence, the ultimate goals are to: (i) minimise
the focus points (F) that lic on a non-tissue location (7)
and (ii) minimise the missed tissue from bounding boxes
(minimise the tissue (7)) area that is not included in a
bounding box (Bj).

This localisation and segmentation step is necessary to save
both time and memory during the high-resolution scanning
step. One whole slide takes about 1h to fully scan it
without our localisation step. However, an average slide
requires about 15 min after using our localisation step. On
the other hand, the whole region (44.449 mm x 25.4 mm =~
1129 mm?) at a sampling rate of 0.46 um/pixel (20 x)
produces more than 6150 high-resolution images of
dimensions 1024 x 768 pixels. Considering overlaps
between these high-resolution images, which are used for
the stitching stage, the final image dimension for one slide
would be about 110 000 x 44 000 pixels which needs 110
000 x 44 000 x 3 bytes/pixel ~13.52 Gbytes. The resulting
images, after using our localisation step, reduces the
required space to an average of 3 Gbytes.

Image segmentation is a known problem in the medical
imaging field. Various methods are proposed for various
segmentation tasks for various medical imaging modalities
[3-5]. Early trends in image segmentation were based on
heuristics, edge detection, region growing and thresholding
operators. The second trend utilises machine intelligence
methods  including  supervised, unsupervised and
semi-supervised learning techniques. The third trend in
segmentation is based on prior knowledge incorporation in
the forms of atlases [6], prior probabilities or models [7].

Many supervised learning methods have been applied in
the literature such as [3, 8, 9] and including our previous
work [2]. On the other hand, unsupervised learning has
been also applied to many segmentation problems such as
Hall et al. [10] who performed a comparison between a
neural network and fuzzy clustering (unsupervised)
techniques in segmenting MR images of the brain.
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They trained both methods on normal and abnormal cases
and found that each method has advantages in some aspects.

Zhang and Ji [11] proposed multi-layer Bayesian network
model for fully automatic and interactive image
segmentation. They studied the statistical dependencies and
measurements of the image entities like: regions, vertices
and edge segments for image segmentation and they
provided the user with a new active input selection to do
interactive image segmentation. For testing, they used
Weizmann dataset and VOC2006 cow images and they
improved the overall segmentation accuracy compared with
similar methods. Fuzzy C-means algorithm has been used
for image segmentation: Nadernejad and Sharifzadeh [12]
employed bilateral filtering algorithm to obtain a pixonal
image without unnecessary details of the image and avoid
the over segmentation then they applied the fuzzy C-means
algorithm to the obtained pixonal image, their approach was
comparable to similar other techniques with better accuracy.

Chen et al. [13] introduced a framework for image
segmentation using multiple-kernel fuzzy C-means algorithm
and proved its significant flexibility in kernel selections.
They tested their work on medical images and showed better
performance than other kernel fuzzy C-means algorithms.
Similarly, Sulaiman and Ashidi [14] used adaptive fuzzy
K-means clustering algorithm that is applied on many types
of images for image segmentation. Their results were
visually tested and showed better quality compared to the
other clustering techniques. Alpert et al. [15] proposed a
probabilistic bottom-up aggregation technique and cue
integration to provide hierarchical image segmentation. They
performed their aggregation via the integration of intensity
and texture distributions for image regions.

Song et al. [16] focused on segmenting medical images
trying to solve some of the segmentation problems such as:
restrain noise, keeping the edge property well and model
mismatch. They used non-parametric mixture models with
spatial information. They depended on the cosine
orthogonal sequence with spatial information functions to
design the non-parametric mixture model. They showed
better performance on both MR brain images and CT scans
for abdomen.

Tosun and Gunduz-Demir [17] developed a segmentation
method of digital pathology tissue images. They applied
grey-level run-length matrices to extract texture features.
Their results showed a high accuracy on colon tissue
images compared with other segmentation algorithms. Kong
et al. [18] worked on cell segmentation and cell splitting
for digital pathology images. For segmentation, they first
classified the pixels into cell or extra-cellular group. Then
they extracted the colour and texture using local ‘Fourier
Transform’. For splitting, they classified the component of
the segmentation map into touching-cell clump or a single
non-touching cell depending on the distance between the
radial-symmetry centre and the geometrical centre of these
components. For testing, they used follicular lymphoma
pathology images. Splitting error rate was 5.25% per image.

Liu et al. [19] improved the spatial spectral clustering
technique to a non-local one and used it for image
segmentation. They used the kernel K-means algorithm
incorporated with the non-local spatial constraints. Then
they applied spectral clustering to their non-local spatial
matrix for image segmentation. They used synthetic and
real images for testing and showed a high performance and
reduced noise in their results.

Zhao et al. [20] was trying to solve sensitivity to noise
resulting from ignoring the spatial information for the
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image pixels. They presented a new fuzzy clustering
algorithm with non-local adaptive spatial constraints. They
utilised the non-local spatial information of the pixels to
control the noise in the segmentation process. Their
experimental results showed satisfying segmentation
performance on noisy images.

In pathology images, many research efforts have been
performed on many segmentation, diagnosis and prognosis
tasks. Latson ef al [21] used basic fuzzy C-means
clustering for nuclei segmentation from high resolution
images whereas Petushi et al. [22] used adaptive
thresholding. However, these methods do not extend for
high variabilities in data [23]. Bamford and Lovell [24]
used active contours for segmentation of the nuclei which
succeeds when there is no overlapping nuclei.

Our previous works target many tasks in histology such as
removal of stromal cells from histology images for breast
cancer diagnosis where we utilise local binary patterns and
a Gibbs model [25]. We also worked on nuclei counting for
proliferation rate estimation from histology images which is
based on segmentation of the nuclei via K-means clustering
[26]. Recent efforts in utilising clustering have also been
reported such as [27, 28].

2 Materials and methods
2.1 Data

We collect three hundred (300) images for building our
dataset from our collaborating pathology labs. The image
acquisition protocol is as follows: initially, the clinical
technician prepares the biopsy and fixes it on a whole slide
as shown in Fig. 2 [29]. It is inserted along with a set of
other whole slides on a rack. The digital pathology scanner
that scans these images in our data set contains one rack
that has 64 slots. This rack is then inserted inside the
machine in a completely constraint environment in terms of
lightening conditions and other image acquisition
parameters. The camera inside the digital pathology
scanners captures the whole slide images (that we work on)
for each whole slide.

These images are then displayed for the technician on a
special workstation. The technician then, manually, draws
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Fig. 2 Biopsy on a whole slide preparation [29]
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the bounding box (or boxes in case of more than one tissue
segments) surrounding the tissues. Then the technician runs
a batching job to allow the high resolution scanners to scan
each whole slide image. These high resolution scanners
only scan the area within the bounding boxes. A stitching
algorithm is then automatically used to provide one full
high resolution image for each slide that has up to 20 x
zoom levels. These high resolution images are the images
the pathologist uses for diagnosis.

The whole slide images greatly vary in tissue type, size,
colour and spread over the whole slide. The purpose of our
work is to be able to present a generic robust localisation
and segmentation for the tissue for the various types of
tissues without the need to sort the slides. To show the
variability in our dataset, we select a set of these as shown
in Fig. 3. Despite the highly constraint image acquisition,
the great variability in tissues remain a great challenge.

We perform the segmentation using unsupervised learning.
We use K-means to cluster the data exist in whole slide
images: tissue, detritus and background. Then we cluster
new whole slide images in block-by-block fashion using the
K-means learned cluster centers. This unsupervised learner,
by definition, does not require annotated training data and
thus eliminates the time and efforts required for generation
of ground truth. This is more suitable in solving this
problem when we are looking for more generic
segmentation solution because of high variability between
clinical labs settings. Fig. 4 shows the work flow of our
proposed work. In this section, we illustrate our feature
extraction, training and testing stages.

2.2 Feature extraction

Feature extraction reduces the problem dimension to the
suitable dimensions that matter. These lower dimensions
need great experimental and domain knowledge
coordination to extract the suitable features for the problem
in hand. For our problem, we study a set of features from
various categories that our domain expert examines when
performing the segmentation task manually.

Upon examining the whole dataset, we select features
representing the pixel intensity, colour, texture and spatial
distribution of the tissue on the slides. Combining all these
aspects (dimensions) provides well-established
discriminative power for the unsupervised learner. We point
out that we utilise only the RGB colour model for feature
extraction. Since the imaging environment is very constraint
in terms of all possible parameters, utilising the RGB model
was theoretically and practically justified. = Thus
transforming into other colour models such as L*a*b* or
HSI was unnecessary because of the avoidable additional
and unnecessary computational burden. We present our
features in details in the following subsections.

2.2.1 Pixel intensity features: Intensity is a major
role-player in determination of the tissue. It mainly captures
both the unstained tissue such as Fig. 3e and the white and
grey microscopic holes such as Fig. 35 where the tissue has
no colour. Such tissue has no meaningful texture but
intensity for discrimination. Furthermore, some white and
grey microscopic holes appear inside the tissue that may not
be captured by any other features such as the circular
tissues (Fig. 3f). To capture this intensity, we utilise the

. . 1 w .
mean grey ntensity g, = WZz grey; and variance of

window o?

within  the ey =

the intensity levels
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Fig. 3 Set of whole slide images from our dataset to show the huge variability in tissue size, type, colour, distribution and other aspects

a Stained tissues

b Microscopic holes
¢ Distributed pieces
d Detritus in middle
e Unstained

f Various shapes

> (grey — Mgrey)z where W refers to the window size (W)
and i is the pixel index within the window. These two features
present the mean of the intensity of each cluster type as well
as the variation of intensity levels within that type. To obtain
the intensity from the colour images, we use the standard
NTSC formula for the conversion

grey = 0.2989R + 0.5870G + 0.11403 3)

where R, G and B are the colour channels of the RGB colour
model red, green and blue, respectively.

Method Workflow

Online Labeling Offline Training

4 Newfase v | & T o

Feature Extraction

£ 1

Pre-Processing

1 L

Labeling Step using ¢
KMeans Clustering

1

Post-Processing

Resulting
Binary Masks

Fig. 4 Work flow of our unsupervised learner
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2.2.2 Colour features: Great portion of the tissue is
stained and thus it seems natural to utilise some suitable
colours features. However, some of the detritus artifacts
capture colour information because of light reflection
through filters during image capturing. These are usually of
pure colour frequencies which make them distinguished
from stained tissue colours.

Tissue colour vary but mainly: pink, green, brown and blue
as shown in Fig. 3. Thus, we select a set of colour features that
do not represent specific colours. Instead, these features
represent the variability inside the colour and discriminate
them from the grey level regions. Hence, we utilise the
variance in each colour channel: o%, o‘é, o‘%, the variance
between the peaks (highest value) in each colour channel
Oears» and the mean of the Hue value from the HSI (Hue,
Saturation, Intensity) colour model tiy,e.

The variance within each colour channel gives a sense
about whether this window (block) is stained and has
colour (regardless of its colour) information or not. Stained
tissue has higher variance in one or more of these channels.
The variance is defined upon the mathematical variance
within each window as

w

ox =) (Ri— i)’ )
1l 2

Ué = Z (gi - Mg) (%)
W 2

o= (B~ ) (6)

where pr, ug and g are the mean values for the red, green
and blue channels, respectively. The window size (VW =21 x
21) is constant for work.

On the other hand, the variance between the peaks of the
RGB channels is high for stained regions and low for
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greyish regions, thus we utilise it for discriminating colour
information

3

Ulzjeaks = Z (sz -

i=1

o) ? (7

where up, is the mean value of the three peaks: R, G and B.
We also found a good feature that successfully
discriminates stained tissue from background and detritus
by utilising the hue component of the HSI colour model.
We utilise the mean value of the hue H, in each window

1 W
Mhye = W Z Hi (8)

2.2.3 Texture features: We also utilise texture feature
because many tissue types contain well-defined texture. On
the other hand, both background and detritus do not seem
to define any notable texture within its regions. We utilise
the co-occurrence matrix C

Size(C)

C—Zg[

where u, = £(X;) is the expectation of the ith entry in the
vector X[30]. To obtain texture statistics including both
correlation and energy

— ) (% - )] ©)

S%” m)(z w)(za J)

]

Correlation =

(10)

Size(C)

Energy = Y C(i, )’ (11)

i

2.2.4 Spatial features: This feature is novel for our
application. It helps discriminating between the coloured
detritus that extends from the edges of the slides to the
inside and the stained tissues. The colour that appears on
the detritus comes from the reflections of the filters and is
different from the stain colour on the tissue. However, we
find that spatial and location information is of great
discrimination power between the stained tissue and the
coloured detritus.

To that end, we suggest a heuristic-based preliminary
segmentation to obtain this feature. Inltlally, we normalise a
set of the colour features (0%, 0%, ozg, 0%, Ugrey and

arey) and accumulate them to create a probability map for
the whole slide image. Then we apply the Otsu [31]
threshold method to get a binary image as a preliminary
segmentation. Then, we apply connected component
analysis. Then, we produce a probability map where the
pixels of the components that are connected to the border
(within 50 pixels) are assigned lower probability value
(0.001) whereas the rest are assigned a higher value (0.5).
This border map is then used as a post-processing step after
K-means is performed. This novel feature provides great
help in elimination of the coloured detritus that extends to
the inside of the whole slide images because these artefacts
will obtain a lower probability value (0.001).
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2.2.5 Training stage: Since we utilise unsupervised
learning, we do not require a training stage. However,
K-means clustering requires a seed point for each cluster
and it is a common practice to feed the K-means with
reasonable seed points for each cluster based on the given
data. This will make sure that each time the K-means
converges, clusters converge around the same labels, that is
each of the three clusters (tissue, detritus and background)
will have the same label each time K-means is run.

To learn the parameters of the K-means (initial seeds for
clusters), we obtain a set of data points from the images for
each cluster (tissue, background and detritus). Window size
for each point is (20 x 20) which makes a (21 x 21) window
for each data point. During this step, we check that each
window consists of pixels within the same cluster type.
This point selection step is necessary to provide K-means
with fixed clusters seed points to start with before the
convergence of the clusters. We manually select: 2140 data
point for the tissue, 2140 data points for the detritus region,
and 2140 data points for the background. Tissue region is
the region where the actual tissue lie, detritus is particulate
organic material that happens to be on the slides because of
the lab conditions. Usually, it looks like a grey matter along
the edges of the slides, and background is the white regions
all around the slide.

This training step is only performed once and it can be
eliminated if training data is not available unlike supervised
learners [2]. As we discussed before, utilising unsupervised
learning eliminates the need to re-train the system for each
lab settings.

2.2.6 Testing stage: By testing stage, we mean the actual
segmentation step where we apply the K-means on the whole
slide image and see the outcome. We represent the outcome as
a binary image overlayed on the original image. This binary
image only passes the tissue pixels and suppresses all other
pixels. To apply K-means on a new image, we initially
divide the input image into equal size blocks (windows) and
then extract the same feature vector (F'=(v;)) from each
window. This feature vector is passed to the K-means for
clustering. All pixels inside the window takes the same
cluster outcome which is one of the three clusters. During
the testing, we use the window size (5 X 5) which shows a
fairly smooth outcome. The choice of (5x5) is
completely empirical choice for the trade-off between the
blocky-segmentation and segmentation accuracy. Post-
processing steps include a median filter of (20 x 20) mask to
smooth the resulting image followed by image filling [32]
operation. Then we apply the spatial features (probability
map) discussed earlier.

We performed many experiments to decide on the choice of
this window size for training and testing. The trade-off
between larger and smaller window sizes is between
information availability (that led, in our case, to higher
accuracy) and blocky segmentation outcome. Larger
window size presents the classifier with more information
whereas the smaller size window allows less information.
On the other hand, larger window presents blocky outcome
whereas smaller size presents smoother outcome. For
example, when we chose (3 x 3) window size, classification
accuracy was low despite the high smoothness that we
observed whereas going to (15%15) gave us higher
accuracy but the outcome was highly blocky despite the
post-median filter. However, we point out that it is not the
case if we go higher on window size, for example, (51 x
51), that we have better classification accuracy because if

IET Image Process., 2013, Vol. 7, Iss. 5, pp. 464-471
doi: 10.1049/iet-ipr.2013.0008



so, we can just apply K-means on the whole image as one unit
which did not gave good results compared to what we
obtained in our proposed method.

3 Results

Our dataset consists of 300 images collected in two datasets
of 150 images each. We use 85 images from one dataset of
the two for extraction of the 2140 training data points for
each type (tissue, background and detritus) as discussed in
Section 2.2.5. Then we perform the segmentation via
clustering on three sets: the 85 images, the 150 images
from which training data was extracted and the rest 150
images as shown in Table 1.

To produce results for our collaborating pathologist to
check for segmentation accuracy, we overlay the resulting
binary mask on the tissue pixels. This produces images as
shown in Fig. 5. Then, our collaborating pathologist
examines each image along with the original image and
decides on our segmentation as one of the following:
correct segmentation, has some FN regions, or wrong
segmentation (localisation error) as shown in Table 1.

A FP result contains some areas that are falsely labelled as
tissue [positive automated result when the ground truth is
non-tissue (negative)]. Similarly, a FN result contains some
areas that are falsely labelled as non-tissue [negative
automated result when the ground truth is tissue (positive)].
When the pathologist examines the result, if the mislabelled
areas (FP or FN) are small (insignificant), the image is
counted as FP or FN depending on the dominating type of
the mislabelled areas. On the other hand, if the area (FP or

www.ietdl.org

FN) is large (significant), the image is counted as an error
(localisation error) as shown in Table 1.
We also compute the percentage of error segmentation by

defining the localisation error (EError) as

Accuracy = (1 — E%) 100% (12)

where (Lgy,) is the number of images defined as error
segmentation by the pathologist and A is the total number
of images in the dataset. Table 1 shows the resulting error
percentage for each dataset. We discuss these results in
Section 4.

In medical image analysis, one major concern is the
inter-operator reliability. The human factor, the experience,
the environment, the data, the problem under investigation
and other factors contribute in the variability in medical
expert decisions. For the completeness of our results
reporting, we study the inter-operator reliability for our
specific problem from our dataset. We asked three
pathologists to perform the segmentation manually. Each
pathologist performs the segmentation using an interface
that we provide. Images are displayed one-by-one and a
graphical hand tool on a tablet is provided for the
pathologist. Each pathologist independently performs the
segmentation without any knowledge of each other and
without having any external impact. The pathologist is
asked to draw a contour surrounding the tissue only.

There are many statistical measures to study the
inter-operator reliability (or variability). However, in this
paper, we study the similarity between the three manual

Table 1 Results for the whole 300 images divided into two sets, 150 images each

Dataset Size False negatives False positives Localisation error Localisation accuracy, %
training 85 7 3 2 96.9

testing (including the training) 150 13 9 7 95.3

testing (separate set) 150 10 7 6 96.0

b

Fig. 5 Segmentation of various images from our dataset

a Correct localisation of tissues

b Contains false negative

¢ Localisation of various light stained cases
d Error

Segmentation smoothness and quality is indistinguishable from the supervised learning results
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Table 2 Average dice
pathologists

percentage similarity between

Image Main pathologist Main pathologist
subset against pathologist 2, % against pathologist 3, %
1-50 99.3 98.7

51-100 97.1 98.8

101-150 98.9 99.0

151-200 98.7 97.9

201-250 98.2 97.8

251-300 97.2 99.1

average 98.2 98.6

segmentations of the three pathologists by performing the
‘Dice’ measure to show the spatial similarity between the
three segmentations.

Since the ‘Dice’ measure is defined for two segmentations,
we compared the segmentation of the main pathologist (who
performed the accuracy check for each case described in
Table 1) against the segmentation of the other two
pathologists independently. Dice (DSC) is commonly used
for spatial overlap similarity between two sets of
segmentation of the same anatomy [33]. Its value ranges
between 0 (no overlap) and 1 (perfect agreement). We
express ‘Dice’ as percentages [34]

2(ANG)
ANG+AUQG)

DSC = 100% (13)

where A is the segmentation results from our main
pathologist whereas G is the corresponding segmentation
from the other pathologist. We perform this twice; once for
each of the two pathologists as shown in Table 2. The
spatial segmentation between the two segmentations against
the segmentation of the main pathologist is almost perfect.
This indicates that the segmentation of the three
pathologists for (i) this specific segmentation problem and
(ii) using our dataset of whole slide images has almost
perfect agreement between pathologists. On average over
the 300 images, there was 98.2% and 98.6% spatial
segmentation similarity between the main pathologist and
the other two pathologists, respectively. This experiment
validates considering only one pathologist opinion for
performing the previous experiment. Moreover, it was not
practical to have all three pathologists perform the previous
experiment because we did not want them to meet in one
room and know each other’s decision. We setup this
experiment to reserve the independence in segmentation
decision between each of the three pathologists.

4 Discussions

Since the unsupervised learning does not require training, it
provides the convenience for our problem because we deal
with various types of tissue that vary in various aspects.
Supervised learning requires re-training for each lab setting
whereas unsupervised eliminates the need for training.
However, usually, this comes on the burden of losing
portion of the accuracy. In our case, we produced
comparable accuracy to our previous work that utilised
supervised learning, thanks to the many empirically
motivated features we utilise.

In this section, we discuss some issues related to our
results. As shown in Table 1, only two images were marked
as error segmentation out of the 85 training images, seven
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out of the 150 images set (that contain the 85), and seven
out of the other 150 images. We find that the training stage
did not affect the accuracy result as the 95.3 and the 96%
are comparable given the sample size of 150. These are also
very similar to our previous results with supervised learning
where we obtained about 94% accuracy for a set of 150
images. This shows the benefit of utilising unsupervised
learning without loss of the accuracy.

Furthermore, these three experiments show that if we
present our system with new images, and without any form
of training, we will obtain comparable accuracy to the case
when we train. This shows the great robustness of our
selected features which are our main contribution in this
work.

Fig. 5 shows a set of images from our dataset along with
the resulting segmentation out of our proposed system.
These images were also shown in our previous work after
applying the supervised learning. We present them here for
the sake of comparison. Upon the comments from our
domain expert, the results were indistinguishable from the
previous results in terms of segmentation smoothness and
accuracy. However, we gain the huge benefit of the
elimination of the training step and thus elimination of the
need for the ground truth generation which is tedious and
expensive to do.

5 Conclusion

We proposed utilising unsupervised learning for pathology
image segmentation. Our method relies on feature selection
that is motivated by the clinical setting and the way the
pathologist judges the segmentation. We propose using a set
of features for various aspects including colour, texture,
intensity and location. We prepared a dataset of 300 images
from various collaborating labs for the various tissue types.
Our method utilises unsupervised learning which does not
require training and thus, there is no need to fine-tune the
parameters for each lab setting. Moreover, our method
produced highly robust correctness results comparable to
supervised learning. We presented our results in many
settings including training of our method and without
training of the method and we concluded with 95.5%
correctness accuracy.
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