
Large Data and Computation in a Hazard Map Workflow
Using Hadoop and Neteeza Architectures

Shivaswamy Rohit
Dept. of Mechanical and
Aerospace Engineering

University at Buffalo
New York, USA

shivaswa@buffalo.edu

Abani K. Patra
Dept. of Mechanical and
Aerospace Engineering

University at Buffalo
New York, USA

abani@buffalo.edu

Vipin Chaudhary
Dept of Computer Science

and Engineering
University at Buffalo

New York, USA
vipin@buffalo.edu

ABSTRACT
Uncertainty Quantification(UQ) using simulation ensembles
leads to twin challenges of managing large amount of data
and performing cpu intensive computing. While algorithmic
innovations using surrogates, localization and parallelization
can make the problem feasible one still has very large data
and compute tasks. Such integration of large data analytics
and computationally expensive tasks is increasingly com-
mon. We present here an approach to solving this problem
by using a mix of hardware and a workflow that maps tasks
to appropriate hardware. We experiment with two comput-
ing environments – the first is an integration of a Netezza
data warehouse appliance and a high performance cluster
and the second a hadoop based environment. Our approach
is based on segregating the data intensive and compute in-
tensive tasks and assigning the right architecture to each.
We present here the computing models and the new schemes
in the context of generating probabilistic hazard maps us-
ing ensemble runs of the volcanic debris avalanche simulator
TITAN2D and UQ methodology.

Keywords
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1. INTRODUCTION
Uncertainty Quantification work flows pose significant com-

putational and data handling challenges in most HPC plat-
forms since they are largely not designed for such workflows.
We present here an approach designed to surmount issues
arising from recent work [3, 14] that integrates the outcomes
of large full field flow simulations into a probabilistic hazard
map – often required in near real time. Early versions of re-
lated work involving only the data warehouse appliance will
appear in [12] A hazard map, as stated here, is a predictive
map for a region which provides a probabilistic measure of
a hazard (e.g. geophysical flow reaching certain depths that
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can be considered hazardous/critical). Simple uncertainty
quantification using a Monte Carlo approach for generat-
ing such hazard maps will require O(106) such simulations
– beyond current computational capabilities. Instead for
the generation of hazard map we employ a statistical model
termed emulator which acts as a fast surrogate for the simu-
lator. Our work here is focussed on generating hazard maps
for geophysical flows of volcanic origin using ensemble runs
of the Titan2D simulator [3] (see fig. 1 for a sample sim-
ulation). Since each flow simulation generates upwards of
2GB of data, a full ensemble with 2048 simulations gener-
ates almost 600GB of data which we have to then use to
construct emulators – Bayes Linear Models (BLM) [3] in
our case –which involves the inversion of a covariance ma-
trix of a size corresponding to the ordinality of the data. In
previous work [3, 14], we proposed methodology based on lo-
calization and parallelization to make the problem tractable.
Despite these simplifications, the remaining problem is still
interspersed with both data and compute intensive tasks
presenting a daunting task. The computational difficulties
include managing and accessing select entities from the large
data and of processing it using compute intensive opera-
tions(matrix inversion). Our approach to addressing these
difficulties is to decouple the data mining and compututa-
tionally intensive tasks through carefully crafted workflows.
While one workflow incorporates a massively parallel archi-
tecture, namely the Netezza database, an alternate work-
flow employs a the popular open source version of the Map-
Reduce model, namely Hadoop, both in conjunction with
a high performance cluster. Problems involved in data ex-
traction, movement over the network, and replication are
addressed. The proposed computational methodologies also
allow us to greatly improve the resolution of the developed
hazard maps by using tree based localization (rather than
the simpler tessellation based localization used earlier [3])
allowing access to more data in the inference process and
hence developing a more accurate localization of the covari-
ance used in the hazard map construction.

For very large data there is no debate that computation
must be moved close to where the data resides which is very
different from traditional scientific computing which involves
moving data to the computing. The standard practice in
scientific computing requires the data to be moved from the
storage area network (SAN) to the compute environment
for analytics. Data extraction, movement over the network,
and replication constitute one of the most time consuming
phases of many large data analysis problems [4]. In-database
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Figure 1: Example flow simulation using the TI-
TAN2D toolkit. Maximum flow depth (pileheight)
using Titan2D simulation. Simulation consumes
hours of computer time and each simulation pro-
duces large volume of flow data.

computing pushes the processing into the database man-
agement system thus eliminating the need for data extrac-
tion/sampling and network data replication greatly improv-
ing scalability and performance of analytic computations. It
provides the ability to efficiently analyze all available struc-
tured and unstructured data in their entirety and perform
complex computations on the entire data as opposed to a
limited/sampled set of data by allowing to execute analytics
within the database management system, where the data
resides, as opposed to a separate compute system. In ad-
dition to providing scalability and improved analytics per-
formance, in-db approach (underlying db platform) ensures
better data sharing/collaboration, security, availability, and
governance [9]. Although in-database processing has been
used widely in industry [5, 13, 8, 11, 6] for customer rela-
tionship management, its use in the scientific and engineer-
ing research has been limited.

The Map-Reduce model has been gaining lot of atten-
tion recently, and is being extensively used in applications
requiring large volumes of data. Hadoop API based on Map-
Reduce model provides a high level of parallelism and offers
a level of abstraction that significantly simplifies program-
ming with it. We present here two versions of integrated
workflow mapping data and compute intensive operations on
different architectures to optimize throughput. The Netezza
server is essentially a large array of disks with FPGA in the
disk architecture for in-slice filtering of data sets. In con-
ntrast Hadoop is far less expensive alterantive which not
just offers an efficient job scheduler but also internally sorts
the data. Significant changes to the underlying technique
for selection of neighbors makes the process of the BLM em-
ulator construction faster and more flexible. This flexibility
makes it possible to adapt the data used for emulator con-
struction without requiring any additional resources or time
which would not have been easily possible with the previous
computing model. In this paper we present details of exe-
cution and the challenges faced in implementing workflows
along with a brief comparison of results.

2. HAZARD MAP GENERATION – DATA
MANAGEMENT AND COMPUTING

To understand the complexity of the problem we present
an outline of steps involved in a usual process of Hazard map
generation.

Step 0: The first step is to run the simulator at well chosen
inputs. The input parameters are sampled using a sim-
ple space filling design like Latin Hypercube to obtain
2048 sets of input. Multiprocessor Titan2D simula-
tions of these inputs and post processing results in 2
gigabytes(GB) of flowdata per sample in the form of
flow height records.

Step 1: The construction of the hazard map requires us to
sample a tensor product of the input parameters and
2 space dimensions which results in as many as 108

data points. Emulator construction on this very large
set is unaffordable so a simple decimation strategy is
used to create a smaller set on which we construct the
emulator. This downsampling is introduced to reduce
their number to the order of 106. Furthermore, re-
samples from the generated emulator surface (for the
final probability calculation) are also required to be
generated and can be as many as 1010 in number.

Step 2: The size of the downsized data set makes it compu-
tationally impossible to fit a single emulator using all
the data at once, which warrants the need for piece-
wise emulator obtained by localizing the covariance.
The neighbor search used in identifying the regions for
localization is thus an important pre-requisite for the
functioning of the emulator and requires both sample
and resamples to be searched from among the sam-
ples for neighbors. Both neighbor search and down-
sampling are highly data intensive tasks which require
little computation but scanning of large datasets.

Step 3: Using neighborhood data, emulator is constructed
about the sample points through an iterative process.
The functioning of emulator can be understood from
the following equations:

E(s(y)|s(x)) = g(y)β + r(y)TR−1ε (1a)

V ar[s(y)|s(x)] = σ2(1− r(y)TR−1r(y)) (1b)

ri(y) = exp

(
−

Ndim∑

n=1

θn(yn − xi,n)2
)

(2)

g(y) being the matrix of basis functions evaluated at
the resample points and β being the vector of least
square co-efficients. R is the matrix of the correlation
functions at x such that Ri,j = ri(xj) = rj(yi) and σ
is the variance.

s(x) = βG(x) + ε̂ is the response function.

ε = s(x) - G(x)β the true error evaluated at the sample
points. θn is the vector of hyper-parameters or rough-
ness parameters and Ndim is the number of dimensions
associated with the data set.

At each iteration β and R−1 are computed using up-
dated values of hyper-parameters (θ). Mean and vari-
ance are then evaluated for the resamples and adjusted
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Figure 2: Illustration of the integrated workflow us-
ing Netezza architecture.

Figure 3: Illustration of the integrated workflow
with Map-Reduce framework

using bayes linear equations. Typically, a hazard map
requires constructing a few million emulators. The em-
ulator construction dominated by O(n3) matrix oper-
ations is a highly compute intensive process but also
embarrassingly parallel.

Step 4: In the last stage of hazard map construction, em-
ulator output is aggregated using barycentric weights.
This involves scanning the dataset, computing the eu-
clidean distance of the samples that influence a resam-
ple point, evaluating their weights and assembling the
results.

3. INTEGRATED WORKFLOW FOR DATA
AND COMPUTE INTENSIVE TASKS

There are three dominant phases of Hazard Map gener-
ation namely: 1) Downsampling and neighbor searching,
2) Emulator construction, and, 3)Aggregation of resulting
data. Our computational model based on a divide and
conquer strategy, segregates these phases and performs them
on either Netezza server or the high performance cluster de-
pending on the computational requirements.

3.1 Downsampling and neighbor search
Both downsampling and neighbor search are ideally suited

for distributed systems. For multidimensional dataset, such
as ours, operations like neighbor search are afflicted with the
curse of dimensionality. Several tree and clustering based
methods have been proposed but most converge to sequen-
tial search for higher dimensions and/or are difficult to im-
plement. Neighbor search operation on a distributed envi-
ronment like Netezza server or on a cluster through Map-
Reduce implementation like Hadoop allows for a much sim-
pler algorithm and adapts to large datasets. Downsampling
and Neighbor search on the Netezza system were easily ac-
complished because of its massively parallel architecture.
Netezza’s high performance stems from filtering data close
to disk and from its MPP architecture. Since a significant
amount of data movement is curtailed through the use of
FPGA filtering, we abstained from using complex algorithms
in favor of brute force techniques. All Netezza based imple-
mentations were in plain SQL which ensured parallelism and
high performance.

We also tested same operations on the high performance
cluster using python scripts, relying on Hadoop Streaming
API for task distribution and scheduling. In a distributed
environment the underlying algorithm for neighbor search
remains essentially the same as the one used on Netezza
server. The mapper computes the distances between two
sets of data (X and Y) and prints out the result as key-
value pair, key being the indices of dataset X and value
being the indices of dataset Y and the euclidean distance.
In the absence of a customized partitioner same keys are
guaranteed to be dispatched to the same reduce task. The
reduce operation merely involves printing out the indices of
set Y against the keys obtained from set X. Hadoop based
implementation as in the case with Netezza was simple and
concise.

In both our implementations euclidean distance was the
metric for neighbor search. The parametric neighbor search
was performed independent of spatial neighbor search by
separately treating the two sets of dimensions. Though the
brute force method of neighbor search has a complexity of
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Figure 4: Schematic representation of integration of
Netezza with high performance cluster

O(n2), it is well suited for distributed environment owing to
good scalability.

3.2 Emulator Construction
Unlike the data mining operations up to this point, the

emulator construction is a computationally expensive pro-
cess dominated by matrix operations. Though emulator
conctruction is an embarrassingly parallel process and Netezza
server boasts of massively parallel architecture, it was, for
variety of reasons as we describe below, appropriate to siphon
data off the database to an architecture that could meet the
emulator’s computational demands. First, complex algo-
rithms can not be easily translated into a declarative lan-
guage like SQL. Second, the number of blades available in
our systems put a limit on the available processors. Also
the explicit use of high performance libraries like blas and
lapack was not possible. Another subtle aspect about emula-
tor which advocates against its construction on the database
is that it requires small chunks of data, more precisely the
neighborhood data. Netezza is more appropriate for scan-
ning large datasets. We present here the steps taken and
the challenges faced in integrating server to the cluster.

The high performance cluster and the Netezza system
were connected using Netezza’s ODBC driver. Data trans-
fer across the two frameworks was possible largely through
the use of named pipes. On linux systems a named pipe is
a type of file - FIFO file (FIFO being the acronym for First
In First Out). A named pipe does not store or buffer data
and hence does not occupy storage space on the filesystem.
Loading data from cluster to Netezza was achieved through
the nzload feature. The nzload command is a SQL CLI
client application which in conjunction with named pipes
that makes it possible to load data to Netezza server from
any remote client[1].

Emulator construction requires that each processor re-
quest the server for its share of data. Large number of con-
current I/O requests by nodes on the grid can result in I/O
bottlenecks and processors starving for data. Such problems
have been addressed in the past and techniques such as col-
lective I/O[10, 7] and I/O forwarding[2] have been proposed.
I/O forwarding mitigates this problem by passing the I/O
requests of the all the nodes to only a select number of nodes
called as I/O nodes. We adopted this method for our com-
puting model with some modifications.
A few processors on the high performance cluster are iden-
tified as the I/O processors and the rest as compute pro-
cessors. All the processors are assigned a group, with each
group having one I/O processor and several compute proces-

sors. Each group operates independent of the other with I/O
processors responsible for performing all I/O operations on
behalf of the compute processors of their respective groups.
I/O processors alone communicate with the Netezza server
and any transfer of data occurs through named pipes. Mul-
tiple small requests are avoided and data is invariably trans-
ferred in bulk. I/O processors extract data from Netezza,
disseminate it across the compute processors and deliver
the data gathered from the compute processors back to the
Netezza database. I/O processors of every group draw the
neighborhood data of all the downsampled points corre-
sponding to the pileheight simulation number assigned to
them from sever, and store it in their data structures. Each
compute processor based on the data received from the I/O
processor of its group builds an emulator. The mean and
variance data of the resample points, computed at the end
is sent over the network to I/O processor.
The operations on the cluster are parallelized using MPI
(Message Passing Interface). Data is transferred between
the I/O and compute processors over the network using MPI
protocols. An MPI job scheduler allows compute processors
to notify the I/O processors about the status of their com-
pletion. When a compute processor finishes constructing
emulator about a sample point, it prompts the I/O pro-
cessor. The I/O processor responds by sending neighbor-
hood data for the next point. The compute processors do
not communicate among themselves and are self sufficient
with the data received from the I/O processor. The mean
and variance information received from the compute proces-
sors is allowed to accumulate with I/O processors and dis-
patched to the Netezza server at regular intervals. Another
layer of MPI job-scheduler is responsible for co-ordination
between the various groups of processors. A lone processor
which holds the metadata maintains communication with
the groups and assigns each group a simulation number to
work on. Additionally it also prompts Netezza database to
“generate statistics” after each load session.

Though we succeeded in integrating server with the cluster
and in transferring data over the network, this implementa-
tion has apparent shortcomings. Firstly offloading compute
intensive tasks from server to cluster defeats the objective
of minimizing large data movement. Secondly only a small
number of ports can be kept working between the two, to
transfer data. Thus, while Netezza can easily house much
more data, extracting it to more nodes on cluster is not
feasible. It is thus clear that compute intensive tasks like
emulator construction expose the vulnerabilities of even a
specialized hardware like Netezza database. For the above
mentioned reasons and also because of the complexity of
implementation, we attempted to test the above model with
Hadoop in place of Netezza. Hadoop provides a convenient
alternative because it does not require data to be moved
into or out of the cluster. The downsampled points stored
on files on the Hadoop distributed file system were used as
input to the mapper. The mapper itself was simply a python
wrapper around the existing code to compute the emulator
with output in terms of key value pairs. Hadoop is designed
to take in large amount of input and distribute the tasks by
spawning mappers on each of the slave nodes. In our appli-
cation at less than 2GB the input data was very insignificant
in size but the generated output was expected to be large.
Also the emulator construction is highly cpu intensive. We
observed that no more than 2 map tasks could be spawned
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Figure 5: Figure shows the probabilistic hazard maps for the island of Montserrat in the Caribbean for flow
exceeding 0.2m of depth. One on left was generated using Netezza database based model and the one on
right using Hadoop API

on each node regardless of the number of cores on them. On
certain nodes, with say 12 cores, having only 2 map tasks
running was a severe under utilization of the resources. Also,
previous experience dictates that at least 500 processors be
used for emulator construction to finish the hazard map in
reasonable time. Under these circumstances we found it to
be more appropriate to perform emulator construction inde-
pendent of Hadoop environment. The resulting output was
stored as key-value pairs on ASCII files.

3.3 Aggregation Of Results
The first two moments are to be computed for every re-

sample point, which as mentioned earlier, could be as many
as 1010 in number. Furthermore most of these points oc-
cur in the neighborhood of more than one sample point. In
the previous work [3], the weights were pre-computed ow-
ing to the fixed number of neighbors which made immediate
aggregation of data possible. A distance based method of
neighbor search is computationally more expensive. The

Netezza database offers aggregate functions and can easily
house massive data. The ”group by” feature of any database
is primarily aimed at operations like reduction and aggre-
gation. Besides, computing the weights required repeated
scanning of large parts of the data sets. Netezza is well
suited for such aggregation of data. The mean and vari-
ance computed by the compute processors is directed to
the Netezza server through the I/O processors. The clus-
ter and the Netezza server are connected by 10Gb network
at the Center for Computational Research, Buffalo. Using
Netezza’s nzload command and with multiple named pipes,
data is concurrently moved from I/O processors to the re-
spective tables on Netezza. The mean and variance data
is massive and runs into billions of rows on the server. It
is important that the tables storing such data are already
distributed on columns on which they are aggregated. This
ensures prior partitioning of data about those columns which
significantly reduces the computation time. During the im-
plementation of certain aggregation queries we found, that
by having the table (with approximately 2 billion rows) dis-
tributed on the columns to be aggregated on, the total time
of operation was reduced from approximately 30 minutes to
under 3 minutes.

A Hadoop based aggregation of the emulator output was

performed by chaining of map-reduce operations. As the
term suggests, aggregation, did not require any specific map
operation. As the output was required to be aggregated over
multiple set of keys, aggregation was split into two separate
reduce operations. Both the tasks involved only stdin and
stdout operation in the mapper. The reducer was responsi-
ble for assembling the weighted mean for records with same
keys. The replication factor was fixed at 1 for Hadoop im-
plementations.

4. RESULTS
We put both computing models was put to test with the

task of creating the hazard map for the volcano on Montser-
rat island. 2048 sets of input parameters were generated us-
ing Latin Hypercube sampling and Titan2D simulations of
these inputs were performed. The probabilistic hazard map
shown on the left in figure 5 was generated, in 6 hours time
using Netezza based workflow. Downsampling and neighbor
search operations were performed in under 30 minutes of
time. The computation time on the cluster was reduced to
a little more than 2.5 hours using 512 processors on 43 nodes
of 12 cores each and by keeping 16 connections open between
Netezza and the cluster. The 512 processors were divided
into 16 groups with each group having 1 I/O processor and
at most 32 compute processors. A maximum limit of 120
was enforced on the size of the covariance matrices. Also
the radius of search was reduced from 100 metres for spatial
dimensions and from 0.2 for parametric dimensions(scaled).
The final aggregation was completed in 2.5 hours, and was
performed entirely on Netezza server.

The probabilistic map on the right in figure 5 was gen-
erated with Hadoop based model. The neighbor search op-
erations were completed in 20 minutes of wall time. Emu-
lator construction was performed individually by separately
dispatching tasks on the cluster. This was completed in ap-
proximately 5 hours of time and resulted in 800GB of output
data. Hadoop was extensively used for aggregation of results
through two separate reduce processes. 200 reduce tasks
were spawned over 30 nodes (1 master and 29 slave nodes)
for the first reduce operation and the computations ended
successfully in approximately 8 hours of wall time reducing
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800GB of data to 190GB of output. The second reduce op-
eration was completed with 100 reduce tasks spread over on
20 nodes (1 master and 19 slave) in 1.5 hours of time.

5. CONCLUSION
Through this paper we aim to address the simultaneous

computational and data challenges in a Uncertainty quantifi-
cation process through two different approaches - one hard-
ware based and other using a more popular software tool
on the traditional cluster. We successfully architected and
implemented two functional workflows for the application
of generating hazard maps for geophysical flows. Netezza
based workflow offered a faster implementation for a moder-
ate sized data such as ours in comparison to Hadoop based
workflow. Data mining tasks required minimal work and
its ability to perform fast analytics provided quick insight
about the data. On the other hand, Netezza is an expensive
hardware, with its SPUs (Snippet Processing Units) prone
to wearing out. Integrating Netezza with the cluster pre-
sented numerous hurdles and the resulting implementation
was not fault tolerant. Furthermore, restriction on the num-
ber of ’working’ ports on Netezza makes the workflow less
scalable. Hadoop in contrast is a much cheaper alternative,
offering reliable and robust job scheduler and fault toler-
ance. It made our implementation of the workflow progra-
matically easy and obviated the need to move data from the
cluster. It is also more easily scalable. However, modeling,
a compute intensive task, such as emulator construction, as
a mapper posed a severe problem. Using Hadoop API for
tasks deficient in input data but requiring more cpu cycles
clearly suggested that it can’t be used as an alternative job
scheduler for compute intensive tasks.
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