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Abstract— Energy consumption in high performance 
computing data centers has become a long standing issue. With 
rising costs of operating the data center, various techniques 
need to be employed to reduce the overall energy consumption. 
Currently, among others there are techniques that guarantee 
reduced energy consumption by powering on/off the idle nodes. 
However, most of them do not consider the energy consumed 
by other components in a rack. Our study addresses this aspect 
of the data center. We show that we can gain considerable 
energy savings by reducing the energy consumed by these rack 
components. In this regard, we propose a scheduling technique 
that will help schedule jobs with the above mentioned goal. We 
claim that by our scheduling technique we can reduce the 
energy consumption considerably without affecting other 
performance metrics of a job. We implement this technique as 
an enhancement to the well known Maui scheduler and present 
our results. We compare our technique with various currently 
available Maui scheduler configurations. We simulate a wide 
variety of workloads from real cluster deployments using the 
simulation mode of Maui. Our results consistently show about 
7 to 14% savings over the currently available Maui scheduler 
configurations. We shall also see that our technique can be 
applied in tandem with most of the existing energy aware 
scheduling techniques to achieve enhanced energy savings. 

Keywords- Datacenter, Energy aware scheduling, Rack 
aware scheduling (key words) 

I.  INTRODUCTION  
The energy used by the current data centers is significant. 

The EPA report to the US Congress on “Server and Data 
Center Efficiency” [1] estimated a usage of 61 billion 
kilowatt hours (kWh) in 2006. The same report predicted its 
rise to 100 billion kWh in 2011. The carbon emission 
equivalent for this amount of energy consumption was about 
846 million metric tons in 2006. The report highlights the 
magnitude of the energy use by the current data centers and 
the need for aggressive energy conservation strategies to be 
adopted by the operators of the data centers. Due to the ever 
increasing business and scientific computing needs, this 
problem is exacerbated and has resulted in a significant rise 
in operating costs.  

 
Electricity cost is one of the major operation costs of a 

data center [2]. Reducing the energy consumption in a data 

center can significantly reduce the operating costs. This has 
sparked serious research interests in both the academic and 
commercial research groups. As a result, there have been 
considerable improvements at the software, hardware and 
infrastructure levels of the data center ever since. 

 
This view of reducing energy consumption to cut down 

the operating costs in a data center was deemed contradictory 
in High Performance Computing (HPC) data centers, as 
achieving improvements in performance has always been the 
key focus. However, even HPC data-centers are plagued by 
the increasing costs due to energy consumption. The most 
power consuming super computer runs at 6.95 megawatts 
(MW) and IBM’s roadrunner, the No 2 in the TOP 500 list 
consumes 2.48 MW [3]. This has sparked significant 
research interest to reduce the energy consumption of these 
specialized data centers.  

 
Energy conservation by improvements in job scheduling 

techniques has been one such area of active research. Job 
scheduling is an important aspect of any HPC data center. 
The function of the job scheduler is to allocate the data 
center resources such as CPU's, storage and network, to the 
incoming jobs and increase the overall cluster utilization. 
From a energy conservation point of view it has to do much 
more than that. It needs to allocate the resources that will 
reduce the overall energy consumed by the cluster without 
deviating much from the job turnaround times. A few current 
day job schedulers take this issue of power conservation into 
consideration and are being widely used across academic and 
commercial HPC installations [3]. These HPC installations 
use this feature of job schedulers to turn on/off the idle nodes 
or even perform dynamic scaling of power supply to the 
cluster components, thereby conserving considerable energy. 
Most of these job schedulers are based at node level 
granularity, which means the scheduler views the data center 
as a set of nodes (and sometimes also as the node’s sub-
components). Though scheduling at the node level is 
consistent with the resource demands for jobs, we consider it 
unsatisfactory from an energy conservation perspective.  

 
In this paper we show that we can achieve additional 

savings in power by considering the job scheduling at the 
rack level granularity. A rack is an enclosure of nodes and 
often has certain additional components associated with it. 
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These components are Interconnect bays, Fans, Power 
distribution unit (PDU), Blowers, etc. We propose a set of 
enhancements to the scheduling algorithm for performing 
resource allocations at the rack level granularity. We also 
implement it as an enhancement to the existing Maui 
scheduler and test our proposal on real datacenter workloads. 
The Maui scheduler is one of the widely used schedulers in 
HPC data centers [4]. 

 
This paper also highlights certain statistics of the energy 

costs associated at the rack level. This data is gathered from 
an operational commercial HPC data center. The data is 
utilized to perform simulations using the simulation mode of 
the Maui scheduler. The statistics gathered from these 
simulations show considerable energy conservations. 

 
The remainder of this paper is organized as follows: 

Section II briefly describes the related work with regard to 
enhancements in job scheduling from energy conservation 
point of view. In Section III we provide the current rack level 
power statistics. In Section IV we introduce the Maui 
scheduler and its high level algorithm. In Section V we 
briefly explain the benefit of node allocation by considering 
the rack level granularity. In Section VI we propose our 
algorithm and give details of its implementation with 
reference to the Maui Scheduler. In Section VII we describe 
the experimental setup and Section VIII describes the results 
obtained. We then conclude our work in Section IX and also 
discuss the future enhancements.  

II. RELATED WORK 
Various techniques have been proposed for improved 

power management in HPC clusters. SLURM [5] is a widely 
used resource management and scheduling system for 
supercomputers. It has a power management facility to put 
the idle nodes in a lower power state. It has facilities to 
contain the surge in the workload and alters the node states 
gradually. However, not much research has been done to 
provide a better power management policy [2]. 

 
In [6], Pinheiro et al. proposed a load concentration 

policy. This turns on or off cluster nodes dynamically 
according to the workload imposed on the system. Chase et 
al. [7] take this further and propose Muse which uses Service 
Level Agreement (i.e., SLA) to adjust active resources by 
making a trade-off between service quality and power 
consumption. These works can be classified as dynamic 
cluster reconfigurations. Chen et al. [8] applied dynamic 
voltage frequency scaling techniques along with dynamic 
cluster reconfiguration to achieve much more improvements. 

 
Scheduling solutions based on the use of virtualization 

have also been proposed. The general idea is to utilize VM 
consolidation or intelligent node allocation and achieve 
overall energy conservation [2]. Verma et al. [9] investigated 
aspects of power management in HPC applications by 
determining the VM placements based on CPU, cache and 
Memory footprints. Dhiman et al. [10] proposed a multi-
tiered software system called as vGreen, a solution which 

takes migration overhead into consideration. Nathuji et al. 
[11] suggested Virtual Power, which defines virtual power 
states for the servers based on their scheduling policies as 
well as the CPU frequency. They used power management 
hints provided by the guest OS to implement global or local 
power policies across the physical machines. In [24] 
Hermenier et al propose a consolidation manager, Entropy, 
which uses constraint programming (CP) to solve the VM 
placement problem. The idea is to define the consolidation 
problem as a set of constraints and use a standard library 
such as Choco to solve the problem. Berral et al [25] use a 
machine learning based approach for power modeling where 
they predict the power requirements for a VM and make VM 
placement and migration decisions based on this prediction. 
Most of these server consolidation techniques focus on 
utilizing as few nodes as possible, but they do not 
concentrate on the packing of nodes based on actual node 
locations. 

 
Topology aware scheduling considers the scheduling of 

jobs, based not only on the properties of the requested 
machines but also on the data center properties. However, 
largely this has been to do with machine interconnections. 
Gabrielyan et al. [12] discuss one such strategy, but 
concentrate on inter-node collective communication aspects. 
There has also been significant work in thermal management 
such as thermal management system by Heath et al. [13] and 
a study of temperature aware workload placement by Moore 
et.al [14]. 

 
In [23], Ranganathan et al. propose an ensemble 

(enclosure) level power management scheme. However they 
mainly focus on power capping at the enclosure level. A 
controller exists at the enclosure level which is responsible to 
ensure that the total power consumption of the enclosure 
does not cross a predefined limit. This scheme does not 
consider a cluster wide view and is in-effective from a 
parallel job scheduling perspective. 

 
Most of these cluster wide techniques consider the 

physical node level granularity. None of them view the data 
center from rack perspective. We show that we can consider 
the rack level granularity and achieve additional energy 
savings. Our technique can be applied in tandem with most 
of these other techniques. Thereby we can incorporate our 
technique into existing data center installations and realize 
the additional power conservation benefits.  

 

III. RACK LEVEL POWER STATISTICS 
We gathered statistics from a commercially running HP 

Bladesystem p-class enclosure [15]. A typical rack consists 
of 2 to 3 enclosures. We use the term rack invariably to mean 
enclosure in this paper as it does not affect our discussion 
and our technique can be evenly applied with very few 
changes. We gather the runtime power statistics of such 
racks using the proprietary monitoring tools provided by HP 
[16]. This information is typical of any rack installation and 
scales evenly across different racks. We utilize this statistics 
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to estimate the energy savings achieved by the 
implementation of our technique.  

 
The HP rack that we considered can support up to 16 

blades and has 10 enclosure fans. The fans consume about 
500 W of power on an average. The interconnect bays 
connects the nodes within a rack. They consume about 133 
W of power. These power consumptions are immaterial of 
the node states. The same amount of power is consumed 
even when the nodes are turned off completely.  

 
In addition typically there are blowers associated with 

each rack which help to bring down the rack temperature. 
We can turn off these blowers by the use of our technique 
and conserve much more energy. For simplicity, we do not 
include the savings from the blowers in our results, which we 
consider to be also significant. We also exclude the energy 
consumed/savings associated with nodes for our discussion. 

 
We argue that turning off the racks through the use of 

remotely controlled power distribution units (PDU's such as 
APC's Switched Rack PDU) [17] can significantly enhance 
the power conservation. 

IV. MAUI SCHEDULER 
The Maui scheduler is one of the widely used schedulers 

in HPC clusters [4, 18]. Like many other batch schedulers, 
Maui determines which job needs to be run when and where 
and informs the resource manager. Torque is one of the 
most commonly used resource managers [19]. Its function is 
to issue commands in interest of Maui’s scheduling 
decisions and also provide up to date information about the 
cluster. Torque also acts as an interface for the users to 
interact with their jobs. Thus Maui learns the job and user 
information from Torque. 

 
Maui is well known for its highly configurable 

components. Changing job priorities based on adjustable 
parameter weights and node allocation policies are some of 
the things among many that are relevant for our discussion. 
Apart from being run along with a resource manager such as 
torque, Maui can also be run in simulation mode, where it 
can simulate years of workload in just a few hours. Thereby, 
Maui is a very powerful tool to study scheduling of different 
workloads in HPC clusters. 

 
At every periodic time interval Maui performs one cycle 

of the following steps, which is called as a scheduling 
iteration [4]. (Only the steps relevant to our discussion are 
described here) 

 
a) Change the priorities of the jobs in the job input 

queue. (Job Priority polices like weights to 
queue time, quality of service, usage, etc. are 
applied here) 

b) Choose a batch of jobs from the input job queue 
based on the new priorities. 

c) Allocate nodes for this batch of jobs one at a 
time based on the node allocation policy and 
inform the resource manager. 

d) Backfill – a scheduling optimization. 
 

We are interested in step (c) of the scheduling iteration 
described above. We implement our algorithm as a node 
allocation policy plug-in. We also discuss a possible 
enhancement to step (a) which affects the job priorities.  

V. CONCEPT 
Our goal is to bring rack awareness into the scheduler. 

Mainly we would want to allocate nodes more intelligently 
to a particular job which will reduce the total number of 
racks being utilized during the job's execution. 

  
Consider for example a cluster depicted by Table (1). The 

cluster has 3 racks with 3 nodes each. Each rack has a set of 
free nodes and occupied nodes. The occupied nodes are 
being utilized by currently running jobs.  

  
Suppose at this time a new job Jt has to be allocated 

nodes on the cluster. Assume Jt requires 3 nodes to start 
running. If we allocate one node from each rack, we will be 
using all the three racks which will increase the power 
consumption by an additional amount due to the rack 
components that we described in Section III. Had we 
allocated all the 3 nodes from the rack with Rack Id 1, we 
would still end up utilizing all the three racks. This would 
be how a possible rack unaware job scheduler would 
perform the node allocation for the job JT.  

 
However, a rack aware scheduler like ours would choose 

one node from the rack with Rack Id 2 and 2 nodes from the 
rack with Rack Id 3, resulting in keeping the rack with Rack 
Id 1 shut off. Thereby, we can have more energy savings. 
Our algorithm takes advantage of this form of node 
allocation as shown in the following section. 

VI. ALGORITHM AND IMPLEMENTATION DETAILS 
We formulate and implement the following algorithm as 

a node allocation policy in the Maui scheduler. The reason 
we choose the rack with the maximum remaining time is 
that, we expect that particular rack to remain occupied for 
longer period of time when compared to any of the other 

TABLE I.  THE STATE OF THE CLUSTER WHEN A NEW JOB JT ARRIVES 

RACK ID NUMBER OF 
BUSY NODES 

NUMBER OF 
FREE NODES 

1 0 3 

2 2 1 

3 1 2 
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ALGORITHM: Allocate Nodes to a job Jt.  
 
INPUT:  Node Requirements for job Jt, Rack 

occupancy. 
OUTPUT: Node Allocation for job Jt. 
 

1. Categorize the racks as utilized and not-
utilized. 
 

2. Sort the racks in the utilized category based on 
the maximum remaining time of the jobs on the 
nodes in that particular rack. 
 

3. Allocate nodes from the rack with the 
maximum remaining time first and then with 
lesser maximum remaining time. 
 

4. If the request is still not satisfied we allocate 
from the not-utilized racks. 

racks. Thus by choosing the rack with the job that has 
longer maximum remaining time, we will keep certain 
number of racks always utilized. To avoid this situation we 
make certain additions to the proposed algorithm. 

 
The additions to the algorithm keep track of the rack 

utilization over time and categorize the racks as utilized, 
over-utilized and relaxed. These additions are incorporated 
to reduce the repeated usage of the same hardware. These 
additions do not cause note worthy deviation from our 
results. Therefore for simplicity of the discussion we 
exclude this aspect. 

 
This algorithm affects the STEP (c) of the Maui 

scheduling iteration. Maui provides a “LOCAL” Node 
Allocation Policy, which calls a well defined function 
MlocalJobAllocateResources() with input parameters being 
a list of eligible nodes and job details (including the job’s 
node requirements). This function is called when we need to 
allocate nodes for a job that is selected to run based on its 
priority. We extend this particular function to implement the 
above described algorithm.  

 
We also model the racks into the frame data structure of 

Maui. The frame data structure till date mainly served the 
purpose of node organization, for displaying the node 
information properly. By using this data structure of Maui 
most of the scheduler code remains untouched. We have 
also added code to gather and generate runtime statistics 
related to the energy consumption of the cluster. We take 
care that the statistics generation code is not included in the 
scheduling time calculation, which is discussed in detail 
below. 

 

VII. EXPERIMENTAL SETUP 
The simulation mode of Maui is a useful feature which 

helps to simulate different workloads for various cluster and 
scheduler configurations. It generates lot of useful statistics 
which can be used to further tune the scheduler to suit your 
cluster environment. We use the Maui scheduler in this 
mode to test our implementation. 
 

In the simulation mode Maui accepts a resource trace file 
and workload trace file, which depict cluster configuration 
and workload logs respectively. We utilize a reduced 
version of the workload log of HPC2N [20], which is about 
1.5 years of cluster log. The HPC2N is a 120 node cluster 
with 2 processors per node. We generate the resource trace 
file for different cluster utilizations for our experiment. 
 

VIII. RESULTS 
 

Figure (1) shows the utilizations of different real world 
clusters. The log information is sourced from various 
academic and commercial HPC installations [21, 22]. We 
see that most of these clusters are around 40% to 50% 
utilization and rarely do we find high utilization clusters. 
Hence we can safely assume that there are many clusters in 
the real world which have 40% to 50% utilization. On an 
average they have about 45% utilization. We shall see that 
our algorithm is very well suited for clusters which fall in 
this range of utilization. We have also used this assumption 
for few of our experiments. To mention we compare our 
algorithm with existing node allocation policies at 45% 
cluster utilization. 
 

Figure (2) shows how much energy is saved for different 
percentages of cluster utilizations by the use of our 
technique. We use the same HPC2N workload trace file, but 
change the cluster configuration (number of nodes) via the 
resource trace file to obtain the savings for different 
utilizations. We see that our algorithm gives considerable 
savings at lower and middle levels of cluster utilization and 
the savings decay as the utilization rises. Most of the real 
world clusters fall in the lower and middle levels of cluster 
utilization as discussed below. 
 

We define rack utilization as a metric to measure the 
number of racks utilized over the entire period of the 
workload. Higher the rack utilization, more energy will be 
consumed. Figure (3) shows the rack utilization comparison 
of our algorithm with other node allocation policies 
currently existing in Maui. The First Available node 
allocation policy simply selects the nodes it finds first and 
matches the requirements. The Max Balance allocates the 
nodes with a balanced set of node speeds. In a homogeneous 
cluster it simply falls through First Available. The fastest 
selects the fastest node first. The CPU load selects nodes 
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based on the current CPU node. In min resource those nodes 
with the fewest configured resources which still meet the 
job's resource constraints are selected. We see that our 
algorithm consistently performs better than any other node 
allocation policy. 
 

Figure (4) shows the energy savings in terms of 
Megawatt Hours (MWh) in comparison with other node 
allocation policies described above. We see that our 
algorithm gives about 7 % more energy savings than the 
existing best node allocation policy (in terms of energy 
savings). It gives about 14% more savings when compared 
to Min Resource which is the default node allocation policy 
for Maui. 

 
Figure (5) shows the comparison of the average 

scheduling time for the different node allocation policies. 
Our algorithm does not lead to any significant increase in 
the scheduling time. It remains on par with other policies. 

 
Figure (6) compares the change in number of racks for 

the different node allocation policies. We see that our 
technique does not lead to frequent changes in the number 
of racks utilized in consecutive scheduling iterations as 
compared to other policies. This means that we will have 
sufficient time to perform the rack power on/off and would 
keep the cluster utilization stable enough as compared to the 
other policies. This does not mean that we have to take the 
rack power on/off decisions at every scheduling iteration. 
We suggest doing it at some small multiple of scheduling 
iterations. 

 
Figure (7) shows the savings for different number of 

nodes per rack, cluster configuration. We see that the 
savings due to interconnect bays remain more or less 
consistent, where as the savings due to the fans increases as 
the number of nodes per rack decrease. This is expected as 
the number of fans is in direct proportion to the number of 
nodes in a rack. 

IX. CONCLUSION 
 

This paper demonstrates that at rack level granularity we 
can further enhance existing energy aware scheduling 
techniques and achieve significant energy conservation. We 
have consistently demonstrated savings of 7% to 14% over 
existing node allocation schemes. We have also seen that 
our technique can be applied in tandem with many other 
existing energy conservation schemes. As further 
improvements we can modify the job priorities based on the 
existing node allocation patterns in the racks. We also need 
to provide a quantification of the energy savings due to the 
blowers associated with the racks. We believe these savings 
would also be significant. Another aspect that we need to 
consider is the energy loss due to possible increased traffic 
across the network switches that connect the racks. 

However, these losses are for communication intensive 
parallel jobs. 
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1 NASA iPSC 8 KTH SP2 15 DAS2 fs1 22 SHARCNET 29 NCAR-BlueskyB8 
2 LANL CM5 9 SDSC SP2 16 DAS2 fs2 23 LLNL Atlas 30 NCAR-Dave 
3 SDSC Par95 10 LANL O2K 17 DAS2 fs3 24 NCAR-Babyblue 31 NCAR-Dataproc 
4 SDSC Par96 11 OSC Cluster 18 DAS2 fs4 25 NCAR-BlackForest 32 NCAR-Mouache 
5 Early CTC SP2 12 SDSC Blue 19 SDSC DataStar 26 NCAR-BlackForst(2) 33 NCAR-Chinook 
6 CTC SP2 13 HPC2N 20 LPC EGEE 27 NCAR-Bluedawn 34 NCAR-Chnookfe 
7 LLNL T3D 14 DAS2 fs0 21 LCG 28 NCAR-BlueskyB32   

 
Figure 1: Cluster Utilizations data of academic and commercial clusters 

 
 

Figure 2: Power Savings for different percentages of cluster utilizations 
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Figure 4: Power Savings for different Node Allocation Policies 

Rack Aware (1), First Available (2), Max Balance (3), Fastest (4), CPU Load (5), Min resource (6)  

 
Figure 3: Rack Utilizations for different Node Allocation Policies 

Rack Aware (1), First Available (2), Max Balance (3), Fastest (4), CPU Load (5), Min resource (6)  

 
Figure 5: Average Scheduling Times for different node allocation policies 

Rack Aware (1), First Available (2), Max Balance (3), Fastest (4), CPU Load (5), Min resource (6)  
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Figure 6: Number of changes in rack count effected by the different node allocation policies at every iteration 

 
 

 
Figure 7: Savings for different number of nodes per rack cluster configuration 

8 racks-30 nodes per rack (1), 12 racks-20 nodes per rack (2),  
16 racks–15 nodes per rack (3), 20 racks-12 nodes per rack (4) 
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