2011 IEEE International Parallel & Distributed Processing Symposium

Rack Aware Scheduling in HPC data centers

An energy conservation strategy

Vikas Ashok Patil

Department of Computer Science
University at Buffalo, State University of New York,
Buffalo, USA
vikasash@buffalo.edu

Abstract— Energy consumption in high performance
computing data centers has become a long standing issue. With
rising costs of operating the data center, various techniques
need to be employed to reduce the overall energy consumption.
Currently, among others there are techniques that guarantee
reduced energy consumption by powering on/off the idle nodes.
However, most of them do not consider the energy consumed
by other components in a rack. Our study addresses this aspect
of the data center. We show that we can gain considerable
energy savings by reducing the energy consumed by these rack
components. In this regard, we propose a scheduling technique
that will help schedule jobs with the above mentioned goal. We
claim that by our scheduling technique we can reduce the
energy consumption considerably without affecting other
performance metrics of a job. We implement this technique as
an enhancement to the well known Maui scheduler and present
our results. We compare our technique with various currently
available Maui scheduler configurations. We simulate a wide
variety of workloads from real cluster deployments using the
simulation mode of Maui. Our results consistently show about
7 to 14% savings over the currently available Maui scheduler
configurations. We shall also see that our technique can be
applied in tandem with most of the existing energy aware
scheduling techniques to achieve enhanced energy savings.

Keywords- Datacenter, Energy aware scheduling, Rack
aware scheduling (key words)

L. INTRODUCTION

The energy used by the current data centers is significant.
The EPA report to the US Congress on “Server and Data
Center Efficiency” [1] estimated a usage of 61 billion
kilowatt hours (kWh) in 2006. The same report predicted its
rise to 100 billion kWh in 2011. The carbon emission
equivalent for this amount of energy consumption was about
846 million metric tons in 2006. The report highlights the
magnitude of the energy use by the current data centers and
the need for aggressive energy conservation strategies to be
adopted by the operators of the data centers. Due to the ever
increasing business and scientific computing needs, this
problem is exacerbated and has resulted in a significant rise
in operating costs.

Electricity cost is one of the major operation costs of a
data center [2]. Reducing the energy consumption in a data
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center can significantly reduce the operating costs. This has
sparked serious research interests in both the academic and
commercial research groups. As a result, there have been
considerable improvements at the software, hardware and
infrastructure levels of the data center ever since.

This view of reducing energy consumption to cut down
the operating costs in a data center was deemed contradictory
in High Performance Computing (HPC) data centers, as
achieving improvements in performance has always been the
key focus. However, even HPC data-centers are plagued by
the increasing costs due to energy consumption. The most
power consuming super computer runs at 6.95 megawatts
(MW) and IBM’s roadrunner, the No 2 in the TOP 500 list
consumes 2.48 MW [3]. This has sparked significant
research interest to reduce the energy consumption of these
specialized data centers.

Energy conservation by improvements in job scheduling
techniques has been one such area of active research. Job
scheduling is an important aspect of any HPC data center.
The function of the job scheduler is to allocate the data
center resources such as CPU's, storage and network, to the
incoming jobs and increase the overall cluster utilization.
From a energy conservation point of view it has to do much
more than that. It needs to allocate the resources that will
reduce the overall energy consumed by the cluster without
deviating much from the job turnaround times. A few current
day job schedulers take this issue of power conservation into
consideration and are being widely used across academic and
commercial HPC installations [3]. These HPC installations
use this feature of job schedulers to turn on/off the idle nodes
or even perform dynamic scaling of power supply to the
cluster components, thereby conserving considerable energy.
Most of these job schedulers are based at node level
granularity, which means the scheduler views the data center
as a set of nodes (and sometimes also as the node’s sub-
components). Though scheduling at the node level is
consistent with the resource demands for jobs, we consider it
unsatisfactory from an energy conservation perspective.

In this paper we show that we can achieve additional
savings in power by considering the job scheduling at the
rack level granularity. A rack is an enclosure of nodes and
often has certain additional components associated with it.
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These components are Interconnect bays, Fans, Power
distribution unit (PDU), Blowers, etc. We propose a set of
enhancements to the scheduling algorithm for performing
resource allocations at the rack level granularity. We also
implement it as an enhancement to the existing Maui
scheduler and test our proposal on real datacenter workloads.
The Maui scheduler is one of the widely used schedulers in
HPC data centers [4].

This paper also highlights certain statistics of the energy
costs associated at the rack level. This data is gathered from
an operational commercial HPC data center. The data is
utilized to perform simulations using the simulation mode of
the Maui scheduler. The statistics gathered from these
simulations show considerable energy conservations.

The remainder of this paper is organized as follows:
Section II briefly describes the related work with regard to
enhancements in job scheduling from energy conservation
point of view. In Section III we provide the current rack level
power statistics. In Section IV we introduce the Maui
scheduler and its high level algorithm. In Section V we
briefly explain the benefit of node allocation by considering
the rack level granularity. In Section VI we propose our
algorithm and give details of its implementation with
reference to the Maui Scheduler. In Section VII we describe
the experimental setup and Section VIII describes the results
obtained. We then conclude our work in Section IX and also
discuss the future enhancements.

IL.

Various techniques have been proposed for improved
power management in HPC clusters. SLURM [5] is a widely
used resource management and scheduling system for
supercomputers. It has a power management facility to put
the idle nodes in a lower power state. It has facilities to
contain the surge in the workload and alters the node states
gradually. However, not much research has been done to
provide a better power management policy [2].

RELATED WORK

In [6], Pinheiro et al. proposed a load concentration
policy. This turns on or off cluster nodes dynamically
according to the workload imposed on the system. Chase et
al. [7] take this further and propose Muse which uses Service
Level Agreement (i.e., SLA) to adjust active resources by
making a trade-off between service quality and power
consumption. These works can be classified as dynamic
cluster reconfigurations. Chen et al. [8] applied dynamic
voltage frequency scaling techniques along with dynamic
cluster reconfiguration to achieve much more improvements.

Scheduling solutions based on the use of virtualization
have also been proposed. The general idea is to utilize VM
consolidation or intelligent node allocation and achieve
overall energy conservation [2]. Verma et al. [9] investigated
aspects of power management in HPC applications by
determining the VM placements based on CPU, cache and
Memory footprints. Dhiman et al. [10] proposed a multi-
tiered software system called as vGreen, a solution which

815

takes migration overhead into consideration. Nathuji et al.
[11] suggested Virtual Power, which defines virtual power
states for the servers based on their scheduling policies as
well as the CPU frequency. They used power management
hints provided by the guest OS to implement global or local
power policies across the physical machines. In [24]
Hermenier et al propose a consolidation manager, Entropy,
which uses constraint programming (CP) to solve the VM
placement problem. The idea is to define the consolidation
problem as a set of constraints and use a standard library
such as Choco to solve the problem. Berral et al [25] use a
machine learning based approach for power modeling where
they predict the power requirements for a VM and make VM
placement and migration decisions based on this prediction.
Most of these server consolidation techniques focus on
utilizing as few nodes as possible, but they do not
concentrate on the packing of nodes based on actual node
locations.

Topology aware scheduling considers the scheduling of
jobs, based not only on the properties of the requested
machines but also on the data center properties. However,
largely this has been to do with machine interconnections.
Gabrielyan et al. [12] discuss one such strategy, but
concentrate on inter-node collective communication aspects.
There has also been significant work in thermal management
such as thermal management system by Heath et al. [13] and
a study of temperature aware workload placement by Moore
et.al [14].

In [23], Ranganathan et al. propose an ensemble
(enclosure) level power management scheme. However they
mainly focus on power capping at the enclosure level. A
controller exists at the enclosure level which is responsible to
ensure that the total power consumption of the enclosure
does not cross a predefined limit. This scheme does not
consider a cluster wide view and is in-effective from a
parallel job scheduling perspective.

Most of these cluster wide techniques consider the
physical node level granularity. None of them view the data
center from rack perspective. We show that we can consider
the rack level granularity and achieve additional energy
savings. Our technique can be applied in tandem with most
of these other techniques. Thereby we can incorporate our
technique into existing data center installations and realize
the additional power conservation benefits.

III.

We gathered statistics from a commercially running HP
Bladesystem p-class enclosure [15]. A typical rack consists
of 2 to 3 enclosures. We use the term rack invariably to mean
enclosure in this paper as it does not affect our discussion
and our technique can be evenly applied with very few
changes. We gather the runtime power statistics of such
racks using the proprietary monitoring tools provided by HP
[16]. This information is typical of any rack installation and
scales evenly across different racks. We utilize this statistics
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to estimate the energy savings the

implementation of our technique.

achieved by

The HP rack that we considered can support up to 16
blades and has 10 enclosure fans. The fans consume about
500 W of power on an average. The interconnect bays
connects the nodes within a rack. They consume about 133
W of power. These power consumptions are immaterial of
the node states. The same amount of power is consumed
even when the nodes are turned off completely.

In addition typically there are blowers associated with
each rack which help to bring down the rack temperature.
We can turn off these blowers by the use of our technique
and conserve much more energy. For simplicity, we do not
include the savings from the blowers in our results, which we
consider to be also significant. We also exclude the energy
consumed/savings associated with nodes for our discussion.

We argue that turning off the racks through the use of
remotely controlled power distribution units (PDU's such as
APC's Switched Rack PDU) [17] can significantly enhance
the power conservation.

IV. MAUI SCHEDULER

The Maui scheduler is one of the widely used schedulers
in HPC clusters [4, 18]. Like many other batch schedulers,
Maui determines which job needs to be run when and where
and informs the resource manager. Torque is one of the
most commonly used resource managers [19]. Its function is
to issue commands in interest of Maui’s scheduling
decisions and also provide up to date information about the
cluster. Torque also acts as an interface for the users to
interact with their jobs. Thus Maui learns the job and user
information from Torque.

Maui is well known for its highly configurable
components. Changing job priorities based on adjustable
parameter weights and node allocation policies are some of
the things among many that are relevant for our discussion.
Apart from being run along with a resource manager such as
torque, Maui can also be run in simulation mode, where it
can simulate years of workload in just a few hours. Thereby,
Maui is a very powerful tool to study scheduling of different
workloads in HPC clusters.

At every periodic time interval Maui performs one cycle
of the following steps, which is called as a scheduling
iteration [4]. (Only the steps relevant to our discussion are
described here)

a) Change the priorities of the jobs in the job input
queue. (Job Priority polices like weights to
queue time, quality of service, usage, etc. are
applied here)

Choose a batch of jobs from the input job queue
based on the new priorities.

b)
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¢) Allocate nodes for this batch of jobs one at a
time based on the node allocation policy and
inform the resource manager.

d) Backfill — a scheduling optimization.

We are interested in step (c) of the scheduling iteration
described above. We implement our algorithm as a node
allocation policy plug-in. We also discuss a possible
enhancement to step (a) which affects the job priorities.

V.

Our goal is to bring rack awareness into the scheduler.
Mainly we would want to allocate nodes more intelligently
to a particular job which will reduce the total number of
racks being utilized during the job's execution.

CONCEPT

TABLE 1.  THE STATE OF THE CLUSTER WHEN A NEW JOB JT ARRIVES
RACK ID BUSY NODES | FREE NODES
1 0 3
2 2 1
3 1 2

Consider for example a cluster depicted by Table (1). The
cluster has 3 racks with 3 nodes each. Each rack has a set of
free nodes and occupied nodes. The occupied nodes are
being utilized by currently running jobs.

Suppose at this time a new job Jt has to be allocated
nodes on the cluster. Assume Ji requires 3 nodes to start
running. If we allocate one node from each rack, we will be
using all the three racks which will increase the power
consumption by an additional amount due to the rack
components that we described in Section III. Had we
allocated all the 3 nodes from the rack with Rack Id 1, we
would still end up utilizing all the three racks. This would
be how a possible rack unaware job scheduler would
perform the node allocation for the job Jr.

However, a rack aware scheduler like ours would choose
one node from the rack with Rack Id 2 and 2 nodes from the
rack with Rack Id 3, resulting in keeping the rack with Rack
Id 1 shut off. Thereby, we can have more energy savings.
Our algorithm takes advantage of this form of node
allocation as shown in the following section.

VI

We formulate and implement the following algorithm as
a node allocation policy in the Maui scheduler. The reason
we choose the rack with the maximum remaining time is
that, we expect that particular rack to remain occupied for
longer period of time when compared to any of the other

ALGORITHM AND IMPLEMENTATION DETAILS



ALGORITHM: Allocate Nodes to a job J..

INPUT: Node Requirements for job J;, Rack
occupancy.
OUTPUT: Node Allocation for job J..

1. Categorize the racks as utilized and not-
utilized.

2. Sort the racks in the utilized category based on
the maximum remaining time of the jobs on the
nodes in that particular rack.

3. Allocate nodes from the rack with the
maximum remaining time first and then with
lesser maximum remaining time.

4. If the request is still not satisfied we allocate

from the not-utilized racks.

racks. Thus by choosing the rack with the job that has
longer maximum remaining time, we will keep certain
number of racks always utilized. To avoid this situation we
make certain additions to the proposed algorithm.

The additions to the algorithm keep track of the rack
utilization over time and categorize the racks as utilized,
over-utilized and relaxed. These additions are incorporated
to reduce the repeated usage of the same hardware. These
additions do not cause note worthy deviation from our
results. Therefore for simplicity of the discussion we
exclude this aspect.

This algorithm affects the STEP (c) of the Maui
scheduling iteration. Maui provides a “LOCAL” Node
Allocation Policy, which calls a well defined function
MlocalJobAllocateResources() with input parameters being
a list of eligible nodes and job details (including the job’s
node requirements). This function is called when we need to
allocate nodes for a job that is selected to run based on its
priority. We extend this particular function to implement the
above described algorithm.

We also model the racks into the frame data structure of
Maui. The frame data structure till date mainly served the
purpose of node organization, for displaying the node
information properly. By using this data structure of Maui
most of the scheduler code remains untouched. We have
also added code to gather and generate runtime statistics
related to the energy consumption of the cluster. We take
care that the statistics generation code is not included in the
scheduling time calculation, which is discussed in detail
below.
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The simulation mode of Maui is a useful feature which
helps to simulate different workloads for various cluster and
scheduler configurations. It generates lot of useful statistics
which can be used to further tune the scheduler to suit your
cluster environment. We use the Maui scheduler in this
mode to test our implementation.

EXPERIMENTAL SETUP

In the simulation mode Maui accepts a resource trace file
and workload trace file, which depict cluster configuration
and workload logs respectively. We utilize a reduced
version of the workload log of HPC2N [20], which is about
1.5 years of cluster log. The HPC2N is a 120 node cluster
with 2 processors per node. We generate the resource trace
file for different cluster utilizations for our experiment.

VIII. RESULTS

Figure (1) shows the utilizations of different real world
clusters. The log information is sourced from various
academic and commercial HPC installations [21, 22]. We
see that most of these clusters are around 40% to 50%
utilization and rarely do we find high utilization clusters.
Hence we can safely assume that there are many clusters in
the real world which have 40% to 50% utilization. On an
average they have about 45% utilization. We shall see that
our algorithm is very well suited for clusters which fall in
this range of utilization. We have also used this assumption
for few of our experiments. To mention we compare our
algorithm with existing node allocation policies at 45%
cluster utilization.

Figure (2) shows how much energy is saved for different
percentages of cluster utilizations by the use of our
technique. We use the same HPC2N workload trace file, but
change the cluster configuration (number of nodes) via the
resource trace file to obtain the savings for different
utilizations. We see that our algorithm gives considerable
savings at lower and middle levels of cluster utilization and
the savings decay as the utilization rises. Most of the real
world clusters fall in the lower and middle levels of cluster
utilization as discussed below.

We define rack utilization as a metric to measure the
number of racks utilized over the entire period of the
workload. Higher the rack utilization, more energy will be
consumed. Figure (3) shows the rack utilization comparison
of our algorithm with other node allocation policies
currently existing in Maui. The First Available node
allocation policy simply selects the nodes it finds first and
matches the requirements. The Max Balance allocates the
nodes with a balanced set of node speeds. In a homogeneous
cluster it simply falls through First Available. The fastest
selects the fastest node first. The CPU load selects nodes



based on the current CPU node. In min resource those nodes
with the fewest configured resources which still meet the
job's resource constraints are selected. We see that our
algorithm consistently performs better than any other node
allocation policy.

Figure (4) shows the energy savings in terms of
Megawatt Hours (MWh) in comparison with other node
allocation policies described above. We see that our
algorithm gives about 7 % more energy savings than the
existing best node allocation policy (in terms of energy
savings). It gives about 14% more savings when compared
to Min Resource which is the default node allocation policy
for Maui.

Figure (5) shows the comparison of the average
scheduling time for the different node allocation policies.
Our algorithm does not lead to any significant increase in
the scheduling time. It remains on par with other policies.

Figure (6) compares the change in number of racks for
the different node allocation policies. We see that our
technique does not lead to frequent changes in the number
of racks utilized in consecutive scheduling iterations as
compared to other policies. This means that we will have
sufficient time to perform the rack power on/off and would
keep the cluster utilization stable enough as compared to the
other policies. This does not mean that we have to take the
rack power on/off decisions at every scheduling iteration.
We suggest doing it at some small multiple of scheduling
iterations.

Figure (7) shows the savings for different number of
nodes per rack, cluster configuration. We see that the
savings due to interconnect bays remain more or less
consistent, where as the savings due to the fans increases as
the number of nodes per rack decrease. This is expected as
the number of fans is in direct proportion to the number of
nodes in a rack.

IX. CONCLUSION

This paper demonstrates that at rack level granularity we
can further enhance existing energy aware scheduling
techniques and achieve significant energy conservation. We
have consistently demonstrated savings of 7% to 14% over
existing node allocation schemes. We have also seen that
our technique can be applied in tandem with many other
existing energy conservation schemes. As further
improvements we can modify the job priorities based on the
existing node allocation patterns in the racks. We also need
to provide a quantification of the energy savings due to the
blowers associated with the racks. We believe these savings
would also be significant. Another aspect that we need to
consider is the energy loss due to possible increased traffic
across the network switches that connect the racks.
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However, these losses are for communication intensive
parallel jobs.
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Figure 1: Cluster Utilizations data of academic and commercial clusters
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Figure 2: Power Savings for different percentages of cluster utilizations
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Figure 3: Rack Utilizations for different Node Allocation Policies
Rack Aware (1), First Available (2), Max Balance (3), Fastest (4), CPU Load (5), Min resource (6)
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Figure 4: Power Savings for different Node Allocation Policies
Rack Aware (1), First Available (2), Max Balance (3), Fastest (4), CPU Load (5), Min resource (6)
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Figure 5: Average Scheduling Times for different node allocation policies
Rack Aware (1), First Available (2), Max Balance (3), Fastest (4), CPU Load (5), Min resource (6)
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