
A supervised approach towards segmentation of
clinical MRI for automatic lumbar diagnosis

Subarna Ghosh1, Manavender R. Malgireddy1,
Vipin Chaudhary1, and Gurmeet Dhillon2

1Department of Computer Science and Engineering
State University of New York at Buffalo,Buffalo, NY 14260

2Proscan Imaging Inc.,Williamsville, NY 14221

Abstract. Lower back pain(LBP) is widely prevalent in people all over
the world. It is associated with chronic pain and change in posture which
negatively affects our quality of life. Automatic segmentation of interver-
tebral discs and the dural sac along with labeling of the discs from clinical
lumbar MRI is the first step towards computer-aided diagnosis of lower
back ailments like desiccation, herniation and stenosis. In this paper we
propose a supervised approach to simultaneously segment the vertebra,
intervertebral discs and the dural sac of clinical sagittal MRI using the
neighborhood information of each pixel. Experiments on 53 cases out of
which 40 were used for training and the rest for testing, show encour-
aging Dice Similarity Indices of 0.8483 and 0.8160 for the dural sac and
intervertebral discs respectively.
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1 Introduction

Lower back pain is the second most common neurological ailment in the United
States after headache [1] with more than $50 billion spent annually on rehabil-
itation and healthcare. In the past decade there has been a severe shortage of
radiologists [2] and projections show that by the year 2020 there will be a sig-
nificant boom in the ratio of their demand and supply. This concern motivates
us to automatically detect and diagnose various lumbar abnormalities from clin-
ical scans to reduce the average time for diagnosis and help to curtail excessive
burden on radiologists.

CT and MRI are two popular modalities used to diagnose causes of lower
back pain. While on one hand MRI is more expensive, it is non-invasive and also
much better in terms of soft tissue detailing. Fig. 1 illustrates intervertebral disc
herniation diagnosed via the sagittal and axial slices of lumbar MRI. Require-
ments for CAD systems of the lumbar region are unique since we need to segment
the dural sac and/or localize, label and segment the lumbar intervertebral discs
before we can diagnose any abnormalities.
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Fig. 1. (Left) Sagittal view of a lumbar MRI showing an L5-S1 disc herniation and
(Right) the corresponding axial view of the lumbar MRI confirming a left sided herni-
ation.

Fig. 2. This figure illustrates a cross section
of the lumbar vertebrae and spinal cord.
The position of the conus medullaris, cauda
equina, termination of the dural sac and
filum terminale are shown.

The lumbar vertebrae are the five
vertebrae between the rib cage and
the pelvis which are designated L1 to
L5, starting at the top. The lumbar
vertebrae help support the weight of
the body and permit movement. The
intervertebral discs are fibrocartilagi-
nous cushions serving as the spine’s
shock absorbing system, which pro-
tect the vertebrae, brain, and other
structures. They are named depend-
ing on the vertebral bodies above and
below, e.g., the disc in between L1 and
L2 is named L1-L2 and so on. Dural
sac is the membranous sac that en-
cases the spinal cord within the bony
structure of the vertebral column as
shown in Figure 2. The human spinal
cord extends from the foramen mag-
num and continues through to the
conus medullaris near the second lum-
bar vertebra, terminating in a fibrous
extension known as the filum termi-
nale. The dural sac usually ends at
the vertebral level of the second sacral
vertebra.

In general, MRI scans are very difficult to segment, since they suffer from
partial volume effects and bias fields which might blur the delineation between
different kinds of tissues. Moreover, localization of lumbar discs is a challenging
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problem due to a wide range of variabilities in the size, shape, count and ap-
pearance of discs and vertebrae. Similarly accurately segmenting the dural sac is
also difficult due to variations in grayscale values and distortion in shape due to
various abnormalities like stenosis. To this end we propose an automatic method
to simultaneously segment the vertebra, intervertebral discs and the dural sac
of clinical sgittal MRI using the neighborhood information of each pixel. In the
subsequent sections, we discuss in detail previous research (Section 2), our ap-
proach (Section 3) and experimental results (Section 4). Finally we draw our
conclusion and discuss the scope for future work in Section 5.

2 Related Work

There has been quite some research in the direction of automatic dural sac
segmentation [3–5], labeling and localization of intervertebral discs [6–10] and
diagnosis of abnormalities [11] from lumbar MRI.

Schmidt et al. [6] introduced a probabilistic inference method using a part-
based model that measures the possible locations of the intervertebral discs in
full back MRI. They achieve upto 97% part detection rate on 30 cases. Bhole
et al. [7] presented a method for automatic detection of lumbar vertebrae and
discs from clinical MRI by combining tissue property and geometric information
from T1W sagittal, T2W sagittal and T2W axial modalities. They achieve 98.8%
accuracy for disc labeling on 67 sagittal images. Alomari et al. [8] proposed a
two-level probabilistic model that captures both pixel- and object-level features
to localize discs. The authors use generalized EM (Expectation Maximization)
attaining an accuracy of 89.1% on 50 test cases. Oktay et al. [9] proposed another
approach using PHOG(pyramidal histogram of oriented gradients) based SVM
and a probabilistic graphical model and achieved 95% accuracy on 40 cases.
In all these works, the authors have concentrated on localizing the vertebrae
and/or intervertebral discs, i.e. they provide a point within the structure. Ghosh
et al. [10] presented another approach using heuristics and machine learning
methods to provide tight bounding boxes for each disc achieving 99% localization
accuracy on 53 cases.

Koh et al. [3] presented an automatic method for the segmentation of the
dural sac using Gradient Vector Flow Field which achieved a similarity index of
0.7 on 52 cases. Horsfield et al. [4] proposed a semi-automatic method for the
segmentation of the spinal cord from MRI utilizing an active surface model to
assess multiple sclerosis. Koh et al. [5] also proposed an unsupervised and fully
automatic method based on an attention model and an active contour model,
achieving 0.71 Dice Similarity Index on 60 cases.

3 Proposed Approach

In most of the previous work, segmentation of the dural sac and the interver-
tebral discs have been handled separately which might lead to overlapping tis-
sue regions. Moreover, some techniques depend on shape models which might
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lead to errors in case of high variability in appearance. Hence, in our proposed
method, we adopt a unified approach where we simultaneously label each pixel
as belonging to one of four class labels (vertebra, intervertebral disc, dural sac
or background) using a probabilistic atlas and two decision trees based on the
neighborhood information of each pixel.

3.1 Our Clinical Dataset

Clinical lumbar MRI used by our group is procured using a 3T Philips MRI
scanner at Proscan Imaging Inc. It consists of manually co-registered T2 and
T1 weighted sagittal views and T2 weighted axial views. We randomly pick 53
anonymized cases, all of which have one or more lumbar disc abnormalities.
According to the radiologist’s report there are a total of 65 herniated discs, 27
bulging discs, 26 desiccated discs, 60 degenerated discs and 73 disc levels having
mild to severe stenosis.

For our experiments we use the T2 weighted mid-sagittal slice, each image
having a resolution of 512 x 512. We use our own labeling tool for manual seg-
mentation, which performs B-spline interplolation to interactively give a smooth
outline of segmented regions, as shown in Fig. 4 (b) and Fig. 5 (b). We randomly
select 40 cases for training and the rest is kept aside for testing.

Let us denote X = {xi : i ∈ {1, 2..., n}} as the set of pixel grayscale values
in the mid-sagittal image. Our approach treats the segmentation of lumbar MRI
as a 4-class problem where each pixel can belong to any one of the following
categories : vertebra, intervertebral disc, dural sac and background. The class
labels are denoted by the set L = {l : l ∈ {1, 2, 3, 4}} and the set of pixel labels
Y = {yi : i ∈ {1, 2..., n}, yi ∈ {L}} where yi is the output class label for the ith
pixel.

3.2 Training Phase

The training phase consists of the following three steps :

1) Creation of a probabilistic atlas : We create a simple probabilistic atlas
(probability map) by combining the label information from manual segmentation
of the 40 training images as illustrated in Fig. 3. Since the vetebral column is
centrally located in the 512x512 image, we avoid a registration step which can
be complicated due to high variability in intensities and shapes of structures in
the lumbar region. The atlas is thus a r x c x 4 matrix where r and c are the
total num of rows and columns respectively and n = r x c is the total number of
pixels. Thus the probabilistic atlas gives us : Patlasi ∝ P (yi = l|rowi, coli) where
l is the class label assigned to the ith pixel and (rowi,coli) gives the location of
the ith pixel in the image.
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Fig. 3. Probabilistic Atlas of the lumbar region : (a), (b) and (c) shows the atlas for
the dural sac, the intervertebral discs and the vertebra respectively

2) Training a HOG tree : We train a classification tree [12] based on a pixel’s
neighborhood HOG(Histogram of Oriented Gradients) [13]. HOG are feature de-
scriptors popularly used in computer vision and image processing for the purpose
of object detection. This technique counts occurrences of gradient orientation in
localized portions of an image. For our experiments, given an h x w neighbor-
hood around a pixel, we divide it into 3 x 3 = 9 sub-windows and fix the bin
size to 9 resulting in a vector of length 81. We empirically fix h = w = 27 and
train the HOG tree using HOG feature vectors and pixel class labels obtained
from our 40 training images. The hog tree gives us :

PhogTreei ∝ P (yi = l|hognhoodi
),

where hognhoodi is the HOG calculated from the 27 x 27 image neighborhood
around the ith pixel.

3) Training a label tree : We train another classification tree [12] based on a
pixel’s 27 x 27 neighborhood class labels. Hence the feature length is 27x27-1 =
728. The label tree gives us :

PlabelTreei ∝ P (yi = l|labelnhoodi
),

where labelnhoodi
is the class label information of the 27 x 27 neighborhood

around the ith pixel.

3.3 Testing Phase

We implement two methods to segment our 13 test images.
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1) Method 1 : In this maximum-likelihood method we assign a class label to
each pixel according to its location in the image (using the probabilistic atlas)
and its neighborhood HOG information (using the HOG Tree). Mathematically,
given a new image we assign a class label to each pixel as :

yi = argmax
l

P (yi = l|nhoodi),

where P (yi = l|nhoodi) ∝ PhogTreei ∗ Patlasi .

2) Method 2 : In this method we assign a class label to each pixel according
to its location in the image (using the probabilistic atlas), its neighborhood
HOG information (using the HOG tree) and its neighborhood label information
(using the label tree). Given a new image we randomly assign a class label to
each pixel and then utilise Gibbs sampling to sample a label for each pixel given
its neighborhood HOG feature vector and all the other pixel labels. The update
equation used is as follows :

P (yi|nhoodi,¬yi) ∝ (PhogTreei ∗ Patlasi ∗ PlabelTreei).

We run Gibbs sampling for 200 iterations and use the last 100 iterations to
decide the final class label, i.e. allow 100 iterations as burn in period.

Morphological Post-Processing : We finally apply binary morphological
post-processing operations like closing, opening and hole filling on the result-
ing label maps to generate smoother segmentations.

4 Experimental Results

We use the Dice Coefficient as a Similarity Index to evaluate the validity of the
automatic segmentation results. The Dice Coefficient D(G,M) is defined as the
ratio of twice the intersection over the sum of the two segmented results, the
gold standard G and our automated result M :

Dice(G,M) =
2 ∗ n{G ∩M}
n{G}+ n{M}

,

where n{G} is the number of elements in set G. This measure is derived from a
reliability measure known as the kappa (κ) statistic to evaluate the inter-observer
agreement in regard to categorical data. According to this D > 0.8 indicates
near-perfect agreement and 0.6 < D ≤ 0.8 represents substantial agreement and
0.4 < D ≤ 0.6 moderate agreement [14].

Tables 1 and 2 tabulate the Dice Similarity Indices of our automatic segmen-
tation with respect to the expert manual segmentation. Table 1 lists the indices
achieved by the two methods before morphological post-processing and Table 2
shows the indices after post-processing. We observe that the average results be-
fore post-processing fall in the category of ‘substantial agreement’, while after
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Table 1. Results : Dice Similarity Indices before morphological post-processing

Case Num
Method 1 Method 2 (Gibbs)

Dural sac Disc Vertebra Dural sac Disc Vertebra

1 0.8203 0.6490 0.5730 0.8375 0.7271 0.8046

2 0.7949 0.6754 0.6784 0.8291 0.7622 0.8302

3 0.8245 0.6960 0.6934 0.8597 0.7938 0.8494

4 0.6467 0.5465 0.6401 0.6494 0.6136 0.8041

5 0.6918 0.4535 0.5961 0.6735 0.4716 0.6962

6 0.8136 0.6971 0.7004 0.8523 0.7799 0.8052

7 0.8312 0.5691 0.5897 0.8419 0.6189 0.7880

8 0.7436 0.6051 0.5676 0.7856 0.6804 0.7673

9 0.7506 0.5950 0.6069 0.7033 0.6431 0.7968

10 0.7433 0.6695 0.6280 0.8025 0.7803 0.7944

11 0.7416 0.6945 0.6948 0.7463 0.7510 0.7431

12 0.7710 0.5896 0.5740 0.8170 0.6769 0.7378

13 0.7024 0.6990 0.6863 0.6810 0.7689 0.8181

Avg 0.7597 0.6261 0.6330 0.7753 0.6975 0.7873

Table 2. Results : Dice Similarity Indices after morphological post-processing.

Case Num
Method 1 Method 2 (Gibbs)

Dural sac Disc Vertebra Dural sac Disc Vertebra

1 0.8765 0.8324 0.6853 0.8765 0.8023 0.8350

2 0.8881 0.8608 0.8130 0.8907 0.8595 0.8713

3 0.9107 0.8672 0.8329 0.9088 0.8703 0.8892

4 0.7419 0.7112 0.8197 0.7070 0.6849 0.8621

5 0.7844 0.5972 0.7166 0.7371 0.5704 0.7446

6 0.8985 0.8663 0.8644 0.9028 0.8533 0.8894

7 0.8960 0.7811 0.7245 0.8824 0.7362 0.8324

8 0.8427 0.8091 0.7284 0.8411 0.7955 0.8161

9 0.8522 0.7912 0.7934 0.7671 0.7532 0.8571

10 0.8272 0.8844 0.8071 0.8530 0.8728 0.8490

11 0.8090 0.9006 0.8731 0.7829 0.8479 0.8295

12 0.8843 0.8310 0.7700 0.8848 0.8165 0.8108

13 0.8167 0.8762 0.8444 0.7545 0.8530 0.8797

Avg 0.8483 0.8160 0.7902 0.8299 0.7935 0.8435
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morphological operations the result indicates ‘near-perfect agreement’. While
Method 1 depends on the post- processing stage for its enhanced performance,
before post-processing Method 2 (Gibbs Sampling) performs better than Method
1 since neighborhood label information is included within it. Hence, we could po-
tentially improve its performance by designing better neighborhood masks and
by adding some shape information.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 4. Illustration of a challenging case showing low dice similarity indices (Test case
5): (a) shows the original mid-sagittal MRI, (b), (c), (d) and (e) show the manual
segmentation (ground truth), (f), (g) and (h) show the label maps for the dural sac,
disc and vertebra respectively using Method 1, while (i) and (j) show the dural sac and
disc segmentation after morphological post processing. (k), (l) and (m) show the label
maps generated at the end of iteration number 1, 6 and 200 respectively using Method
2 (Gibbs Sampling), while (n) and (o) show the dural sac and disc segmentation after
morphological post processing.
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The segmentation results of two test cases are illustrated in Figures 4 and 5.
Fig. 4 illustrates a relatively challenging case (Test case 5) which shows low
similarity indices in the automatic segmentation. Not only does the patient have
an abnormal intervertebral disc (L5-S1), the intensity variations make automatic
segmentation very difficult. Fig. 5 illustrates another case (Test case 6) which
shows good automatic segmentation results (high dice similarity indices) inspite
of having an abnormal intervertebral disc (L5-S1).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 5. Illustration of a case with high dice similarity indices (Test case 6): (a) shows
the original mid-sagittal MRI, (b), (c), (d) and (e) show the manual segmentation
(ground truth), (f), (g) and (h) show the label maps for the dural sac, disc and vertebra
respectively using Method 1, while (i) and (j) show the dural sac and disc segmentation
after morphological post processing. (k), (l) and (m) show the label maps generated at
the end of iteration number 1, 6 and 200 respectively using Method 2 (Gibbs Sampling),
while (n) and (o) show the dural sac and disc segmentation after morphological post
processing.
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5 Conclusion and Future Work

We have proposed a supervised and unified approach towards complete segmen-
tation of lumbar MRI. Using this approach we can simultaneously segment a
sagittal slice into 4 class labels : dural sac, intervertebral disc, vertebra and
background. We have also provided validation of our method using 53 clinical
cases out of which 40 were used for training and the rest for testing. On an
average, we achieved greater than 0.8 Dice Similarity Indices for both the du-
ral sac and the intervertebral dics. Keeping in mind our encouraging results,
we propose to experiment on larger datasets and also enhance our approach by
incorporating shape and better neighborhood information into our model.

Acknowledgements : This research was funded in part by NSF Grants DBI
0959870 and CNS 0855220 and NYSTAR grants 60701 and 41702.
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