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Abstract—The virial equation of state (VEOS) is a density
expansion of the thermodynamic pressure with respect to an
ideal-gas reference. Its coefficients can be computed from a
molecular model, and become more expensive to calculate at
higher order. In this paper, we use GPU to calculate the 8th, 9th

and 10th virial coefficients of the Lennard-Jones (LJ) potential
model by the Mayer Sampling Monte Carlo (MSMC) method
and Wheatley’s algorithm. Two mixed-precision models are
proposed to overcome a potential precision limitation of current
GPUs while maintaining the performance benefit. On the latest
Kepler architecture GPU Tesla K40, an average speedup of 20
to 40 is achieved for these calculations.
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I. INTRODUCTION

Nowadays one graphic processing unit (GPU) could con-
tain thousands of cores and a complicated memory layout
where thousands of threads could be organized and launched
in a parallel way. General-purpose computing on graphic
processing units (GPGPU) is the application of GPUs to
perform general purpose computation traditionally done by
CPUs [1]. Compute Unified Device Architecture (CUDA)
[2] is a parallel computing platform and programming model
introduced by NVIDIA in 2006, with which the GPUs can
be utilized for general purpose processing. In the CUDA
programming model [3], data parallelism is realized by
launching a kernel which could consist of a large number
of CUDA thread blocks and executes on many GPU cores
to process different data elements. Data can be accessed in
multiple memory types, ranging from fast register to shared
memory to global memory, which is comparatively slow.

In recent years, CUDA has been applied across diverse re-
search areas such as physics, chemistry, biology, and finance,
for acquiring high computational power. Many problems
have been ported to GPUs, and remarkable computational
performance has been achieved. Molecular dynamics (MD)
and Monte Carlo (MC) simulations on GPU have been two
particularly successful examples, because large amounts of
sequential time is always required in these areas [4] [5] [6]
[7] [8] [9] [10]. For example, Friedrich et al. [4] developed
an all-atom protein MD simulation on GPU that can be more
than 700 times faster than a conventional implementation

on a single CPU core. Hou et al. [5] developed a scal-
able algorithm for GPU MD simulation of solid covalent
crystals using sophisticated many-body potentials, with an
acceleration of 650 over a contemporary CPU. Stone et
al. [6] have given an analysis of several MD algorithms
developed on GPU. As an example of an MC implemen-
tation, Preis et al. [7] calculated the critical temperatures
of phase transitions in the two- and three-dimensional Ising
models and obtained substantial acceleration. Levy et al. [8]
developed two different algorithms for lattice spin models
that led to speedup of 70- to 150-fold. Quinn and Abarbanel
[9] did research on data assimilation by GPU accelerated
Path Integral Monte Carlo method and reported a speedup
of about 300. Anderson et al. [10] presented a massively
parallel method obeying detailed balance and implemented
it for a system of hard disks on the GPU with a maximum
speedup of 100.

In this paper, we use GPU to calculate the coefficients
appearing in the virial equation of state (VEOS), one of
very few equations which provide an exact and tractable
connection between molecular and macro-scale descriptions
in statistical mechanics [11]. The simplicity of the VEOS
makes it very easy to apply in engineering calculations. It
can be applied to compressed gases and supercritical fluids
at conditions of considerable practical interest. The virial
coefficients BN are the temperature-dependent coefficients
of the number density appearing in the VEOS. They are
formally calculated as integrals over sums of products of
Mayer functions for a system. The order N of coeffi-
cients relates to the dimension of the integral. Singh and
Kofke [12] first proposed the Mayer Sampling Monte Carlo
(MSMC) method to calculate virial coefficients, and using
MSMC they evaluated for several temperatures the virial
coefficients of Lennard-Jones (LJ) potential model up to 6th

order (wherein B6 is given as a 15-dimensional integral).
Schultz and Kofke [13] then calculated the 6th, 7th and 8th

virial coefficients using MSMC. Schulz et al. [14] further
implemented the MSMC on GPU to calculate values of the
6th, 7th and 8th virial coefficients at more temperatures, and
achieving speedup of two orders of magnitude compared
to the CPU implementation. However, they did not find it
feasible to calculate the coefficients at even higher orders



Table I
SEQUENTIAL TIME OF CALCULATION OF VIRIAL COEFFICIENTS OF LJ
POTENTIAL WITH 1% UNCERTAINTY, FOR A REDUCED TEMPERATURE

T = 1.0.

Order, N Sequential Time

2 0.05 seconds

3 16.08 seconds

4 2.16 hours

5 8.27 hours

6 6.41 days

7 2.15 months

8 4.11 years

9 62.26 years

because the direct evaluation of the integrand value is very
inefficient when order is greater than 8.

In an important advance, Wheatley [15] recently proposed
an algorithm to evaluate the integrand value more efficiently
than the direct method. This algorithm scales exponentially
with N in time and memory. With this new approach,
Wheatley evaluated the 11th and 12th virial coefficients of
the hard-sphere potential model, and 9th and 10th virial coef-
ficients of a soft-sphere model. Still, even with this advance,
sequential calculation of high-order virial coefficients with
a useful precision is very time consuming. For instance, to
calculate the virial coefficients of LJ potential model with 1
percent relative uncertainty at a reduced temperature of 1.0
using MSMC, the sequential time required according to the
coefficient order is shown in Table I. For B8, four years are
required to get the result with required precision, while for
B9, more than sixty years of sequential time are needed.
Therefore, it is quite necessary and helpful to accelerate
calculation of high-order virial coefficients. GPU CUDA
offers an opportunity to achieve this goal.

Accordingly, in the present paper we use a GPU imple-
mentation of Wheatley’s algorithm in MSMC calculations
of 8th, 9th, 10th virial coefficients of the LJ potential model.
However, in this application a precision problem is encoun-
tered in evaluation of the integrand for configurations where
particles are far apart and the integrand value is near zero.
Wheatley mentioned this precision problem in his paper
[15] for the soft-sphere calculation, and he was able to
circumvent it through a simple truncation scheme. To resolve
the precision problem and get speedup on GPUs, we propose
two mixed-precision models which utilize both GPU and
CPU.

Obtaining an accurate and precise result while achiev-
ing best performance has been a major concern for many
researchers in multi-core computing, where high-precision
data types are unavailable or expensive. Göddeke and Str-
zodka first [16] presented a mixed-precision defect correc-
tion approach to accelerate vector and mtrix operations in
Finite Element (FEM) simulations using GPU. They [17]

further followed the track to adapt the mixed-precision
iterative refinement methods to FPGAs. Langou et al. [18]
exploited single-precision operations and resorted to double-
precision at critical stages of iterative refinement method
while attempting to provide the full double-precision results.
Their research group later [19] [20] applied the mixed-
precision method in sparse-matrix computations and some
linear algebra algorithms. In addition, emulating higher pre-
cision value with lower precision numbers is another way to
resolve precision problem. Thall [21] introduced emulated-
precision method to GPU by demonstrating ‘doublefloats’,
a software-based emulated-precision floating-point numbers
for GPU computation. Lu et al. [22] designed and imple-
mented a GPU-based emulated-precision library to enable
applications with high precision requirement to run on
GPUs.

In section II we briefly describe the methods to calculate
the virial coefficients-MSMC and Wheatley’s algorithm. In
section III we introduce a parallel algorithm design of the
methods. In section IV we propose two different mixed-
precision models to achieve accurate result on GPUs. Then
in section V we present experiment results and discuss them
before concluding in section VI.

II. METHOD

The VEOS can be expressed as follows [11]:

βP/ρ = 1+B2(T )ρ+B3(T )ρ
2+· · ·+Bn(T )ρ

n−1+. . . (1)

where P and ρ are the pressure and number density re-
spectively, β = 1/kBT with T the absolute temperature and
kB the Boltzmann constant. The classical virial coefficients
BN are calculated by an 3(N -1)-dimensional integral (for
models defined in a 3-dimensional space) as [23]

BN =
1−N

N !

∫
. . .

∫
fB(rN )dr12dr1N (2)

The integrand of N th order virial coefficients is defined
as a summation over all the biconnected graphs G on N
vertices, with each vertex corresponding to a molecule. Each
biconnected graph is represented as the product of Mayer
functions f(rij):

fB(rN ) =
∑
G

[
∏
ij∈G

f(rij)] (3)

The Mayer function f(rij) for any pair of particles labeled
i and j is formally defined by

fij = e−βu(rij) − 1 (4)

where u(rij) is the pair potential between particle i and
j separated by a distance rij (where we now assume a
spherically-symmetric potential). The expression for u(rij)
is different for different potential models. In particular,



the LJ potential model is defined by the potential energy
function:

u(r) = 4ε[(
σ

r
)12 − (

σ

r
)6] (5)

with ε the depth of the attractive energy well and σ the
size of the particle. From this point on, all temperatures will
be given in units of ε, so T represents kBT/ε, and all lengths
will be expressed in units of σ.

A. Mayer Sampling Monte Carlo Method

The MSMC method is an efficient method to evaluate
the configurational integral given in Eq. (2) via Monte
Carlo importance sampling [12]. In MSMC, the simulation
is performed in an infinite volume without any periodic
boundaries. The configurations of the particles are generated
as a Markov chain via an importance-sampling Metropolis
Monte Carlo process [12] [13] [24]. The virial coefficient
is calculated as a ratio of the desired target integral (LJ
potential model) over a known reference integral using
overlap sampling [13]. We adopt the hard-sphere potential
model as the reference system because the virial coefficients
of hard spheres are known. The working equation of overlap
sampling in MSMC is

BN (T ) = BN,0
< γ/π >π/< γOS/π >π

< γ0/π0 >π0
/< γOS/π0 >π0

(6)

where γ is the integrand of the target integral, π is
the absolute value of γ, the subscript 0 indicates a value
for the hard-sphere reference integral, the angle brackets
specify an ensemble average weighted by π, and γOS is
the overlap function in terms of the absolute value of target
and reference integrands:

γOS =
ππ0

απ0 + π
(7)

where α is the optimization parameter selected for the
convergence of the calculation.

B. Wheatley’s Algorithm

One significant step in MSMC is the evaluation of the
integrand γ for each sampled configuration. For N particles,
there are in total 2N(N−1)/2 possible graphs on them (in-
cluding singly and unconnected graphs). Clearly, the number
of total graphs increases rapidly when N becomes large (see
Table II), and the fraction of biconnected graphs (which are
those summed to evaluate fB) also continues to grow. It is
prohibitive to calculate the integrand directly for N > 8.

Wheatley’s algorithm [15] employs an indirect way to
evaluate integrand of the virial coefficients, and it is es-
pecially efficient at high order. It starts by calculating the
sum of all graphs, which is easily given as the product of
(1 + fij) over all i and j. Subsequently, the biconnected
graphs are obtained by subtracting first, contributions from

Table II
TABLE2. NUMBER OF TOTAL GRAPHS AND BICONNECTED GRAPH

PERCENTAGE

N Total Graphs 2
N(N−1) Biconnected Graph Percentage

2 2 50%

3 8 13%

4 64 16%

5 1,024 23%

6 32,768 34%

7 2,097,152 48%

8 268,435,456 62%

9 68,719,476,736 74%

10 35,184,372,088,832 83%

11 36,028,797,018,963,968 89%

12 73,786,976,294,838,206,464 93%

13 302,231,454,903,657,293,676,544 96%

f

f

f f

Figure 1. The basic idea of Wheatley’s algorithm

the disconnected graphs, and then contributions from graphs
with articulation points (singly-connected graphs). Let fQ
denote for a given configuration the sum of all 2N(N−1)/2

graphs, fC be the corresponding sum of all connected
graphs, and fA be the sum for all the articulated graphs.
This process is demonstrated in Figure 1. The subtracted
terms are formed as products of appropriate partitions of
the full set of points, and the procedure relies on evaluation
of fQ, fA, fC , and fB for all subsets of the points. This
is accomplished via a recursive scheme that culminates in
evaluation of fB for the full set.

III. PARALLEL ALGORITHM DESIGN

In the CUDA model, each CUDA thread is designed to
execute one Monte Carlo simulation in which the sum of
the integrand function γ and the sum of the overlap function
γOS are calculated repeatedly for many configurations of the
LJ particles. All simulations are independently executed to
take the same number of Monte Carlo steps on GPU. The
results of all Monte Carlo simulations are transferred back
from GPU to CPU after completion. The final results are
evaluated on CPU via Eq. (6). The reference system and the
target system are implemented separately for the purpose
of running the reference and target system with a different
number of Monte Carlo steps. The target system typically
requires more steps to reach the desired uncertainty.

In our algorithm, the main factor limiting performance is



the memory usage per thread. The primary memory usage
is the arrays needed for Wheatley’s algorithm. Three arrays
are used for storing fQ, fC , fB values of all subsets of N
particles; each array requires 2N memory units. fQ is needed
only for calculating fC , therefore the array used for storing
fQ can be reused for fA. We use bitmaps to index all subsets
of the particles. For example, to calculate virial coefficient
B3, we first number the particles as 0, 1 and 2. Then 3 bits
are used to represent 8 subsets formed by 3 particles. For
example, ‘001’ represents the set which include only particle
0, ‘010’ has only particle 1 and ‘101’ has particles 2 and
0. With the bit manipulation, we could loop over all the
subsets of N particles, and do other manipulations needed
to generate and operate on partitions of each subset.

Additional memory usage is required for the 2-
dimensional array used for storing all current particle 3D
coordinates. There are (3N-1) particle coordinates to be
stored (with one particle always located at the origin). In
addition, another (3N-1) particle positions are required for
storing previous particle coordinates, which are needed when
an MC trial is rejected. The Mayer function values fij
between all pairs needs and additional N(N−1)/2 memory
units. All these data are declared as ‘float’ with 32-bit
floating point data type.

Because our parallel algorithm design is simple, with each
thread executing independently, we do not use a number
of GPU features. The shared memory is not utilized in
the implementation because first, shared memory with only
48KB per block currently is too small to be helpful, and
second, independent threads do not require use of shared
memory. In addition, there is no need for synchronization
or communication between threads.

IV. MIXED-PRECISION MODEL

In section II-B, we mentioned the procedures in Wheat-
ley’s algorithm in which there is subtraction. The numerous
subtractions cause a precision problem due to strong cancel-
lation between terms. The cancellation is most severe when
the particles are far apart, due to the cancellation between
(f + 1) and 1 factors in the terms being subtracted. For
high-order coefficients and high temperature, 64-bit floating
point data type is not enough to acquire an accurate result,
so GPU is inadequate.

The direct resolution to this problem is to use a data
type with more precision than ‘double’. Therefore, we need
the help from CPU. The gcc compiler offers two kinds of
floating point data types with more precision digits on CPU
architecture than ‘double’ : ‘long double’and ‘ float128’.
They each use 16 Bytes of memory. ‘long double’ could
provide 20 decimal precision digits while ‘ float128’ has
35 decimal precision digits.

CPU and GPU computations proceed independently, han-
dling disjoint subsets of the configurations. The GPU han-
dles the configurations which can be accurately processed

with 64-bit precision data type; the CPU handles all other
configurations. The final result is obtained as the sum of
GPU integral with CPU. We note that the mixed-precision
model is very successful because the time spent on CPU
computation is trivial compared with the GPU computation,
because the number of configurations requiring the high-
precision calculation is much less than those that do not
require it. A key feature of the approach is in focusing the
CPU calculation just on those configurations that require its
higher precision.

So the next issue to discuss is how to effectively partition
configurations between the GPU and CPU just using the
64-bit data type. There are two approaches developed here
to achieve this goal: partitioning by critical biconnected
distance, and by integrand value.

A. Partition by Critical Biconnected Distance

This approach is based on biconnected distance (BD),
defined as follows. Given a configuration, we construct a
graph by checking whether the distance between each pair
is greater than a cutoff value X. If it is greater, then there
is no edge between two vertices in the corresponding graph
representing the configuration; otherwise, there is an edge
between them. Then the BD is the smallest value of X that
results in a biconnected graph for the configuration when
this construction is performed.

When the configuration is spread out, the integrand fB
is very small, and also the BD is relatively large. Hence,
probability of visiting a configuration should decrease with
increasing BD. However, when there is a precision problem,
the probability of accessing the configurations which are
spread out starts to grow inappropriately. The smallest non-
zero magnitude of the integrand that can be resolved by
the ‘double’ data type is approximately 10−16, and any
configuration having a π value that is in fact less than this
will instead compute (incorrectly) to a value of order 10−16.
Once this point is reached, π becomes flat with increasing
BD, and the probability to visit a configuration below this
precision limit will (again, incorrectly) increase with BD.
We must avoid including such configurations in the MC
averages. Accordingly, we define the critical biconnected
distance (CBD) as the turning point where this inaccuracy
takes hold and the trend of the probability begins to change.
We use this criterion to screen out configurations that are not
suitable for processing with the GPU, and we relegate to the
CPU the evaluation of their contribution. Identification of the
CBD can be done by making the histogram of BD. Figure 2
shows the relationship between the BD and its probability
for B8 with T = 2. To generate this histogram, we force
the biconnected distance of the configurations to fall into the
region near the minimum, in order to collect data without
spending too much time on configurations not relevant to the
plot. From Figure 2 we can see that, as expected, the CBD



3 4 5 6 7 8
Biconnected Distance

0.001

0.01

0.1
Pr

ob
ab

ili
ty

Double

Long Double 

Figure 2. Probability density to observe a configuration, as a function of its
biconnected distance (BD). The lines should decrease monotonically with
BD, but precision errors cause them to increase for large BD, as shown.
The critical biconnected distance is identified as the location where the
lines no longer decrease with BD.

1 10 100
Temperature

0

5

10

15

20

C
ri

tic
al

 b
ic

on
ne

ct
ed

 d
is

ta
nc

e 
(L

on
g 

D
ou

bl
e)

B4
B5
B6
B7
B8
B9

Figure 3. Critical biconnected distances for ‘long double’. Points show
values from experiment, and dashed lines are the fit to a quadratic
polynomial in ln(T ).

with ‘long double’ is greater than the CBD with ‘double’(6.0
vs. 4.5, respectively).

We can in this manner determine the CBDs for several
different temperatures at each order, and then generalize
them by fitting the points to a quadratic polynomial. From
the fitted function, we could calculate the CBD of any
temperature and coefficient order. Figure 3 and 3 show the
points and fitted functions of CBDs from virial coefficients
B2 to B9.

Taking B8 as an example, the fitted functions to calculate
the CBDs of both ‘double’ and ‘long double’ are

CBDdouble = 0.087[ln(T )]2 − 0.987ln(T ) + 4.772 (8)

CBDlong double = 0.180[ln(T )]2−1.515ln(T )+6.676 (9)

where T is again the reduced temperature.
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Figure 4. Critical biconnected distance for ‘double’. Points show values
from experiment, and dashed lines are the fit to a quadratic polynomial in
ln(T ).

In the GPU implementation, GPU is first used to com-
pute the major part of integral with data type ‘double’
for configurations where BD < CBDdouble. CPU further
computes the integral with ‘long double’ for configurations
where CBDdouble ≤ BD < CBDlong double. In particular,
for the CPU calculations, if BD < CBDdouble or BD >
CBDlong double for a configuration, then the integrand value
equals to 0 and attempts to sample the configuration are
rejected; otherwise, the integrand is calculated with ‘long
double’.

B. Partition by Integrand Value

For the second approach, the integrand value itself is
used for partitioning between GPU and CPU. This second
approach is simpler than the first one, and it does not require
extra effort during the computation. It is the method adopted
by Wheatley to screen inaccurately weighted configurations.
His calculations were performed on a CPU, and for the soft-
sphere model that he studied, he found that no correction
was required for neglect of these configurations.

The precision problem appears when the integrand value
is sufficiently small, so this makes a natural basis for the
screening decision. To find a good truncation value for the
data type ‘double’, we calculate integrand values using both
the data type ‘double’ and the more precise ‘ float128’.
Ideally, if there were no precision problem, the integrand
value calculated by ‘double’ and ‘ float128’would be the
equal for the same configuration. A plot of the integrand
values calculated by ‘double’ versus those computed via
‘ float128’ clearly shows the region where the precision
problem appears. Figure 5 presents this construction for
configurations encountered in calculations of B6, B8, and
B10, respectively. From Figure 5, we can see that over the
range of π values considered, the majority of the points are
located the upper region of y = x, which means that the
value calculated by ‘ float128’ reaches values smaller than
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Figure 5. Construction used to determine proper truncation for integrand
value calculated by ‘double’. Solid black line is y = x.

can be resolved by ‘double’. For B6, when πdouble is bigger
than 3.6×10−15, the difference between it and the accurate
value is small; for B8, this threshold occurs at about of about
8 × 10−14; for B10, it is about 10−13. We conclude from
this analysis that πdouble=10−12 is a safe truncation value
for all order of virial coefficients examined here.

Thus, in the GPU implementation, using data type ‘dou-
ble’ with 16 digits of precision, we reject any configuration
where the calculated integrand is less than 10−12. In the
CPU implementation, we evaluate the contribution of these
neglected configurations by performing calculations with the
data type ‘ float128’ having 35 digits of precision. For the
CPU calculations, a configuration is rejected if the calculated
integrand is less than 10−30 or greater than 10−12. The final
integral is the sum of both the GPU and CPU results.

V. EXPERIMENT AND DISCUSSION

The experiments to evaluate the performance of the virial
coefficients computation are conducted on NVIDA GPU
Tesla K40, GTX580, Tesla M2050 and Intel CPU Xeon
E5645 (6 cores) with 2.40GHz clock rate at the University
at Buffalo’s Center for Computational Research.

The major device parameters of Tesla K40, GTX580 and
Tesla M2050 are shown in Table V, VI and VII. Tesla
K40 is the latest Kepler architecture GPU with the compute
capability 3.5. Both GTX580 and Tesla M2050 belong to the
Fermi architecture GPU with the compute capability 2.0.

We verify the accuracy of the mixed-precision model in
the first experiment. The result of partition by integrand
value is shown in Tables III and IV. The results for B8

and B9 at T = 5.0 are tested. The truncation values 10−5

and 10−12 are examined in the experiment. In Tables III
and IV, the ‘Sequential’ rows show the result and time
when the coefficient is completely calculated on CPU. At the
‘Truncation’ rows, the final result is calculated by summing
the GPU and CPU results. So is the time. We find that the
results with different truncation values are consistent with

Table III
ACCURACY VERIFICATION FOR B8 AT T = 5.0

Result Time(days)

Sequential -0.087 (7) 152.6

Truncation at 10−5

GPU -0.625(10) 5.8

CPU 0.55(8) 4.7

GPU+CPU -0.08(8) 10.5

Truncation at 10−12

GPU -0.097(7) 9.3

CPU 0.00030(15) 1.6

GPU+CPU -0.097(7) 10.9

Table IV
ACCURACY VERIFICATION FOR B9 AT T = 5.0

Result Time(days)

Sequential -0.21(3) 551.6

Truncation at 10−5

GPU 1.58(9) 7.0

CPU -2.1(3) 13.1

GPU+CPU -0.6(3) 20.1

Truncation at 10−12

GPU -0.16(5) 9.6

CPU 0.005(4) 1.5

GPU+CPU -0.15(5) 11.1

the sequential results. For truncation at 10−12, the value
of CPU correction is much less than the uncertainty of the
GPU result. Therefore, the CPU correction is negligible in
the actual computation. If we run GPU part much longer,
the CPU correction would become important. In addition,
the result from truncation at 10−5 proves the approach is
working. The GPU result itself does not agree with the
sequential result, but with adding the CPU error correction,
the result is consistent.

On GPUs, the number of registers per thread and the size
of shared memory per block used are two key resources
which determine the active threads per multiprocessor [25].
Once these two parameters are decided, with optional num-
ber of threads per block, the number of active threads
per multiprocessor could be further decided, and the total
number of threads will be the product of threads per multi-
processor and number of multiprocessors. In current CUDA
implementation, GPU occupancy is a major factor to affect
the performance since all the threads are independently
executed. To get the best occupancy, we investigate the
relationship between the number of total threads and the
speed of the program. Figure 6, 7 and 8 plot the speed vs.
number of threads for B8, B9, and B10 separately at T = 1
for the target system simulation. The speed is measured by
both number of MC steps per second and GFLOPS. The
GFLOPS is obtained by counting double precision instruc-
tions within integrand calculation by Wheatley’s algorithm
since that is the most expensive part for the whole program.
The maximum speed measured in GFLOPS for Figure 6,
7 and 8 is less than 14 which is much below than the



Table V
TESLA K40 DEVICE PARAMETERS

#. of Streaming Multiprocesssors 15

#. of Streaming processsors 192

#. of cores 15× 192 = 2880

GPU Clock Rate 0.88GHz

Max #. of Registers per thread 255

Max #. of Registers per Block 65536

Shared memory per block 48KB

Global Memory 11520MB

Constant Memory 64KB

Max #. of threads per block 1024

Table VI
GTX580 DEVICE PARAMETERS

#. of Streaming Multiprocesssors 16

#. of Streaming processsors 32

#. of cores 16× 32 = 512

GPU Clock Rate 1.54GHz

Max #. of Registers per thread 63

Max #. of Registers per Block 32768

Shared memory per block 48KB

Global Memory 1535MB

Constant Memory 64KB

Max #. of threads per block 1024

Table VII
TESLA M2050 DEVICE PARAMETERS

#. of Streaming Multiprocesssors 14

#. of Streaming processsors 32

#. of cores 14× 32 = 448

GPU Clock Rate 1.15GHz

Max #. of Registers per thread 63

Max #. of Registers per Block 32768

Shared memory per block 48KB

Global Memory 2687MB

Constant Memory 48KB

Max #. of threads per block 1024

theoretical GFLOPS in [3] because a large proportion of
instructions are used for bit manipulation to search partitions
of each subset and memory access but not floating point
operations in Wheatley’s algorithm. In measuring the speed
of GPU, the extra time for equilibration of MC process is
included without counting corresponding steps, so the speed
of GPU measured by the number of MC steps per second
could be faster than the ones shown in all the plots.

Tesla K40 is used in this experiment. For B8, speed
shown in Figure 6, 69 registers are used by each thread,
with no shared memory used. When the number of threads
per block is set to 64 or 128, the number of threads per
multiprocessor is limited to 896 with 44% of multiprocessor
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Figure 6. Occupancy of K40 for B8
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Figure 7. Occupancy of K40 for B9

occupancy. From Figure 6 we can see that the speed does
not always increase with increasing number of total threads.
The maximum speed appears at the point where the total
number of threads equals 8960. After that point no more
speed is gained. The speed with the maximum number of
threads is 98% of the maximum speed.

Figure 7 and 8 show the GPU occupancy when calculating
B9 and B10. For B9, the maximum speed is obtained when
the total number of threads is 10752 and the threads per
block are 128. When the number of threads goes up to
the maximum, its speed is 99% of the maximum speed. A
similar situation happens for B10.

Figure 9 demonstrates the speedup of virial coefficients
of all order for both reference system and target system. All
CUDA speeds are tested under the maximum occupancy of
the threads. We can see that the target system can get higher
speedup than reference system for any order. Generally,
the speedup falls down when the order goes high except
that at B4 the speedup becomes lowest. When the order
is higher, on one hand the GPU occupancy will go down
because the limited resources (such as fast registers) are used
more; on the other hand more data such as the arrays using
’double’ are accessed from slower memory. Therefore, the
speed of GPU implementation naturally goes down. This
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Figure 8. Occupancy of K40 for B10
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Figure 9. The speedup of virial coefficients of all orders.

mainly affects the trend of the speedup curve. In addition,
the speed of single core of CPU measured in GFLOPS is
calculated by counting the double precision instructions in
Wheatley’s algorithm. For example, when calculating B4,
the GPU and single core of CPU achieve 4.83 GFLOPS
and 0.15 GFLOPS, respectively, where the speed of single
core of CPU is also far below its peak GFLOPS. As with
the GPU, this slow performance reflects the fact that the
floating point instructions occupy a small part of the overall
computational effort.

Figure 10, 11 and 12 illustrate the speedup for B8, B9,
and B10 among temperatures ranging from very low to very
high values. The speedup of both reference system and target
system are plotted. For B8 and B9, the speedup among
Tesla K40, GTX580 and Tesla M2050 are compared. In
Figure 11, we could see that the speedup of B8 reference
system on K40 could be more than twice as fast as M2050,
whereas the speedup of target system is less than 2. GTX580
could obtain almost the same speedup as K40. B9 speedup
comparison on three devices shows a similar situation in
Figure 11. For temperatures above 20, the reference system
could gain much higher speedup. For B10, the K40 could
offer the program with the speedup average between 20 and
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Figure 10. B8 speedup as a function of temperature.
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Figure 11. B9 speedup as a function of temperature.
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Figure 12. B10 speedup on Tesla K40 as a function of temperature.

40 shown in Figure 12, yet both GTX580 and Tesla M2050
would fail.

From Table V, VI and VII, we have clearly seen that
the number of GPU cores in Tesla K40 is 6.4 times of the
cores in Tesla M2050 and 5.6 times of the cores in GTX580.
However, we do not receive 6 times more speedup on K40



compared with TeslaM2050. At some temperatures K40 is
even slower than GTX580. This problem is mainly from the
memory bottleneck and speed limitation of K40.

For the memory bottleneck, we can take the target system
of B8, B9, and B10 as an example. For the NVIDIA GPU
with the compute capability 2.0, there are maximum 63
registers with 32 bits which could be allocated to each
CUDA thread by NVCC compiler. When calculating B8

and B9 on Tesla M2050 and GTX580, all registers are
used up. For Tesla K40 with compute capability 3.5, there
are maximum 255 registers with 32 bits which could be
allocated to each thread. However, actually only 69 registers
for B8, 76 registers for B9 and B10 are assigned by the
compiler, far below the maximum number of registers which
could be allocated.

Why does the NVCC compiler not allocate all registers?
We first know that in each thread the Wheatley’s algorithm
has many operations and consumes a large amount of mem-
ory. There are three major arrays in Wheatley’s algorithm
used to store fQ or fA, fC and fB , each of which needs
2N memory unit. Declaration of ‘double’ is also required for
enough precision. So each array takes up 28×8B = 2MB for
B8 per thread, 4MB for B9, and 8MB for B10. Apparently
these data declared with automatic variables will be pushed
to slower local memory but not the registers because they are
32 bits with limited amount. Beside, it is also not possible
to store these data into shared memory with only 48KB per
block. Therefore, the speed to access fQ or fA, fB and fC
does not improve even though the code is ported to K40.

For the speed limitation, we first notice that the GPU
clock rate of K40 is slower than GTX580 and M2050. Then
take the target system of B8 at T = 1.0 as an example.
Figure 13 shows the speed comparison among K40, GTX580
and M2050 with the increasing number of total threads. The
speed is also measured by two measurements-number of MC
steps and GFLOPS. The number of threads per block is set
to 64 for K40, GTX580 and M2050. In Figure 13, the single
thread speed of K40 is 127 steps/sec while the single thread
speed of GTX580 and M2050 are 160 steps/sec and 117
steps/sec. When the number of total threads increases, the
speed of K40 initially increases linearly. When the number
of total threads goes up to 8960, the speed almost has no
increase before reaching the maximum number of threads
(13440). The highest speed of K40 is 376100 steps/sec when
the number of threads is equal to 10752, about 97% of
GTX580. For GTX580, the faster single-core speed and
approximate linear growth mainly accounts for its better
speedup than K40, although there are fewer cores. For
M2050, the speed could also keep an approximate linear
growth rate. The speed is 233786 steps/sec when the number
of threads reaches 7168-the maximum number of threads.
So K40 is only 1.61 times faster than M2050. Therefore,
being unable to keep the linear growth rate with increasing
number of threads leads to the result that K40 cannot be 6
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Figure 13. K40, GTX580 and M2050 Speed comparison with increasing
number of threads.

times faster than M2050.

VI. CONCLUSION AND FUTURE WORK

Sequentially, the computation of high order virial co-
efficients of LJ potential model could cost years. In this
work, we target accelerating the computation by develop-
ing the efficient algorithms on GPU. For the precision of
our calculations of B8, B9, and B10 described here, we
could obtain accurate results using the precision available
on the GPU, while obtaining a speedup of 20 to 40 on
the latest Tesla K40 GPU. However, calculations made to
higher precision, or perhaps for other model potentials or
cluster integrals, it may be necessary to employ the mixed-
precision GPU/CPU approach outlined here. The experiment
shows that the limited shared memory size, and nonlinear
speed growth rate with increasing number of threads, are
the bottlenecks of K40 that prevent the application from
achieving further speedup.

In the future, we will continue focusing on how to further
improve the performance of computing virial coefficients,
trying more optimization strategies on GPU. In addition, we
will spend more time on generalizing the mixed-precision
model and applying it to other related areas having precision
limitations.
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