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As there is anincreasing need for the computer-aided effective management of pathology in lumbar spine,
we have developed a computer-aided diagnosis and characterization framework using lumbar spine
MRI that provides radiologists a second opinion. In this paper, we propose a left spinal canal bound-
ary extraction method, based on dynamic programming in lumbar spine MRI. Our method fuses the
absolute intensity difference of T1-weighted and T2-weighted sagittal images and the inverted gradient
of the difference image into a dynamic programming scheme and works in a fully automatic fashion.
The boundaries generated by our method are compared against reference boundaries in terms of the
Euclidean distance and the Chebyshev distance. The experimental results from 85 clinical data show that
our methods find the boundary with a mean Euclidean distance of 3 mm, achieving a speedup factor of
167 compared with manual landmark extraction. The proposed method successfully extracts landmarks
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automatically and fits well with our framework for computer-aided diagnosis in lumbar spine.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

There has been a concern about a shortage of diagnostic radi-
ologists [1] and it was reported that the insufficiency was eased
by delaying retirement of radiologists or working longer hours [2].
On the other hand, the workload of radiologists has continuously
increased. According to the American College of Radiology Survey of
Radiologists, workload has grown by 7% in terms of procedures and
10%in terms of physician work relative value units from 2002-2003
to 2006-2007 [3]. As a solution to reduce radiologists’ workload,
there have been several efforts to increase the productivity of radi-
ologists while securing an accurate diagnosis. To this end, we have
developed a computer-aided diagnosis (CAD) framework, Lumbar-
Diagnostics, for computer-aided characterization and diagnosis of
lumbar spine pathology using multi-protocol magnetic resonance
imaging (MRI) in a reliable and rapid manner, allowing to enhance
the effectiveness and efficiency of examining procedures of lumbar
pathology.

* Corresponding author. Tel.: +1 821047307091.
E-mail addresses: jkoh@buffalo.edu, jaehan.koh@gmail.com (J. Koh),
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http://dx.doi.org/10.1016/j.compmedimag.2014.06.003
0895-6111/© 2014 Elsevier Ltd. All rights reserved.

MRI becomes a primary diagnostic tool as it has several
unique advantages over other imaging modalities. Differently from
computed tomography (CT), single photon emission computed
tomography, and positron emission tomography, MRI operates at
radio-frequency range. Thus, it does not involve hazardous radi-
ation. Second, the content of MR images contains much richer
information compared to other modalities. Especially, it depicts
excellent soft tissue contrast. In addition, volume renderings from
MRI data can be created for a thorough investigation of diseases,
while CT is limited to axial slices and images in other planes are
reconstructed by postprocessing.

CAD has become one of the major research topics in medical
imaging and diagnostic radiology. CAD has continuously evolved as
a supportive tool in clinical environments [4,5]. In the past decades,
a lot of CAD research and developments have been conducted
for detection and classification of various lesions utilizing several
imaging modalities for radiologists to use the output from comput-
ers as a second opinion in making their final decisions. Although
the performance of computers is not as exact as that of physicians,
CAD still plays complementary roles in diagnostic decision-making
processes. Recent clinical studies indicate that CAD enhances the
number of breast cancer detection by about 10% which is compa-
rable to double reading by two radiologists [4].

The spinal cord is a vital communication link between the brain
and the body that relays information between them. It also forms
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Fig. 1. (a) Lumbar spinal anatomy [13], (b) a T1-weighted sagittal image, (c) T2-weighted sagittal image, and (d) an image formed by intensity difference between the
T1-weighted image and the T2-weighted sagittal image. The spinal cord reaches around the level L1 where it divides into many individual nerve roots and the dural sac
shielding the spinal cord terminates around the level S2. The spinal canal is the anatomic covering for the spinal cord.

the elongated, cylindrical part of the central nervous system. As in
Fig. 1(a), it is 40-45 cm long and 1-2 cm in diameter on average.
In a sagittal view, the spinal cord extends from the brain to ver-
tebrae L1 or L2. The majority of dural sacs that encase the spinal
cord terminate around the level S2 with a range from S1 to S3.
Both the spinal cord and the dural sac are housed within the spinal
canal. In our CAD framework, the spinal canal is used as a land-
mark to locate a region of interest (ROI) and to localize neighboring
vertebrae and intervertebral discs since it gives constantly a sharp
contrast between the canal and across the set of sagittal images.
In other words, the exact spinal canal segmentation in an auto-
mated manner is one of the crucial prerequisites for localization
and characterization of bordering organs.

In our previous work [6], we confirmed that the absolute pixel
intensity difference between a T1-weighted sagittal image and
its corresponding T2-weighted sagittal image gives an excellent
outline of the spinal canal boundary as T1-weighted images and T2-
weighted images are co-registered by technicians asin Fig. 1(b)-(d).

Meta Data Analysis -«

Inter- and Intra-Slice Analysis —

y

T

Regions of Interest Determination

y

Validation

Different from the previous method [6] that finds the left or the
right boundary or somewhere between the two at random depend-
ing on the characteristics of an image, the proposed algorithm more
accurately finds the left boundary of the spinal canal that con-
nects the spinal cord, vertebrae, and intervertebral discs in sagittal
plane. That is, while the previous method roughly finds the bound-
ary that resides within the spinal canal, the proposed method in
this paper finds exactly the left boundary between the spinal canal
and the vertebral column that can be used as a landmark region.
When compared with the right boundary, the left boundary can
be used as a clue to diagnose the degree how much vertebra is
slipped, so the accurate delineation of it is crucial. Based on the
intensity difference of each pixel in two co-registered planes, in this
paper we propose a method to extract a landmark region, i.e., the
left spinal canal boundary for computer-aided diagnosis in lumbar
spine by applying dynamic programming to the inverted gradi-
ent of the pixel intensity difference of the image. In other words,
dynamic programming traces the boundary of the left spinal canal

Reference Generation

LumbarDiagnostics
Repository

Fig. 2. The overview of LumbarDiagnostics framework for landmark generation.
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(a) A cropped region of
a T2-W sagittal image

image

(b) A Gaussian smoothed

(¢) A median filtered image

Fig. 3. The comparison of the effects of image blurring: (b) the resulting image after Gaussian smoothing with a standard deviation (o) of 2 and a 5 x 5 kernel is applied.
(c) The blurred image after median filtering of a 5 x 5 kernel is applied. Gaussian smoothing blurs boundaries along with noise while median filtering attenuates noise and

preserves boundaries.

without interruption albeit disc herniation or spinal stenosis blocks
the canal in the sagittal plane. In the dynamic programming pro-
cedure, the inverted magnitude of the difference image gradient
is used as the cost function. The optimal solution of the cost func-
tion is found by backtracking, resulting in the desired boundary.
This approach runs faster than our previous one that used inter-
polation to connect the spinal canal pieces into the one [7]. In our
framework, this automated spinal canal detection in an accurate,
fast manner is a prerequisite for localizing neighboring vertebrae
and intervertebral discs, for background removal, and for feature
generation that will be used in the task of pathology diagnosis in
lumbar spine as stated earlier.

Recently, some advanced techniques and developments have
been reported in computerized spine analysis including vertebra
detection and segmentation and spinal canal detection from MRI.
Chevrefils et al. [8] developed a watershed-based technique for
segmenting intervertebral discs and spinal canal from MRI. A quali-
tative analysis of the results was compared favorably with other fast
and unsupervised techniques including Canny and Marr-Hildreth
edge detectors. They claimed that the method was robust to han-
dle variability of shapes and topologies characterizing MRI images
of scoliotic patients. Huang et al. [9] developed a fully auto-
matic vertebra detection and segmentation system consisting of
three stages: Adaboost-based vertebra detection, detection refine-
ment via robust curve fitting, and vertebra segmentation by an
iterative normalized cut algorithm. They claimed that the pro-
posed system achieved nearly 98% vertebra detection rate and 96%

segmentation accuracy. Horsfield et al. [10] proposed a semi-
automatic method for segmentation of the spinal cord in MRI. The
method utilized an active surface model that was generated based
on the approximated cord centerline marked by a human. It was
applied to assessing the multiple sclerosis and was evaluated in
terms of the intra-observer reproducibilities. Lootus et al. [11] pre-
sented a histogram of oriented gradients (HOG)-based algorithm
to automatically localize vertebrae in lumbar spine MRI scans.
It was based on Deformable Part Model (DPM) object detector
and inference using dynamic programming on chain and claimed
to be simple, accurate and efficient. The method was evaluated
quantitatively and they claimed that the method could cope with
pathologies such as scoliosis, joined vertebrae, deformed vertebrae
and discs, and imaging artifacts. Suzani et al. [12] proposed a semi-
automatic method for segmenting vertebral bodies in multi-slice
MR images. Adding a statistical model to the existing multi-
vertebrae shape+pose model to accommodate, it was applied to
volumetric MR images. They claimed that it is fast and can accom-
modate largest inter-slice gaps. Their segmentation results were
quantitatively evaluated against the manual segmentation. That is,
they claimed that the proposed method can segment the lumbar
vertebral bodies in MRI with a mean error of 3 mm.

In addition, boundary tracking and extraction has been stud-
ied by many researchers using diverse modalities. Geiger et al.
[14] provided methods to detect, track and match deformable
contours based on dynamic programming that can be applied
to a wide variety of shapes. The algorithm with the boundary

Fig. 4. The original image in the T2-W view is shown on the left and the resulting image after initial background marking is shown on the right.
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into the following main classes: (i) pattern recognition techniques,
(ii) model-based approaches, (iii) tracking-based approaches, (iv)
artificial intelligence-based approaches, (v) neural network-based

- X approaches, and (vi) tube-like object detection approaches. Lam
- :::: - y and Yan [16] proposed a technique by which the user-defined ini-
a &=zl - VA tial curve moves towards the object data by combining a level set

method and an affine transform method. They claimed that the
method could handle corrupted data effectively by noise having
sets of spurious points. Qian et al. [17] presented an accurate car-
diac boundary tracking framework for 2D tagged MRI. This method
integrated the boundary appearance, the shape constraints and the
dynamic model naturally in a boosting and nonparametric track-
Fig. 5. Distance between two curves. Among three pixel pairs (a.x), (a.y), (a.2).the jno framework. The method required a training step. Sargin et al.
pair, (a, y), gives the shortest distance. . .. . .
[18] proposed a constrained optimization method to extract curvi-
linear structures from live cell fluorescence images. They argued
that the method worked well in noisy images, showing its robust-
ness to frequent intersections, intensity variations along the curve.
Garibotto and Garibotto [19] described a method for computer-
assisted contour tracking and following method by local profile

tracking techniques had been comprehensively tested on MRI car-
diac data. Kirbas and Quek [15] gave a literature survey of vessel
extraction techniques and algorithms based on several modali-
ties. They classified vessel extraction techniques and algorithms

c
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(b) Dynamic programming the the image domain

Fig. 6. Dynamic programming in the graph and the image domain. Starting from the layer 1, it computes the partial costs to the neighbors at the next layer. In this example,
the cumulative cost of the first layer is given by —|| VI(x, ¥) |. Subsequently, the pixel at layer m computes its cost with 3 neighbors in the next layer. The optimal path is
found by back-tracking from the last layer, i.e., layer 4 in this example, after the cost computation is finished. The partial path cost between two neighboring node is shown
in the green box and the cumulative cost value of each node is in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of the article.)
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Fig. 7. Some examples where the spinal canal is not clearly captured in the sagittal image. Since the gradient profile does not capture the right position in the first row (see
green arrows), the boundary starts from the incorrect position. However, if we restrict our problem domain to the lumbar spine area where the starting row is marked by
yellow arrows, we have a correct boundary that is clearly observed in that region. Note that the lumbar region is selected manually based on reference boundaries. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

matching using MR images. The contour tracking was performed
with adaptive control of the local direction along with a continuous
update of the gradient profile model. They insisted that this semi-
automatic tracking model was very promising to allow accurate
and fast processing of multiple images. Socher et al. [20] presented
a hierarchical learning based vessel detection and segmentation
method that was driven by data. They argued that this method
was automatic, fast and robust against noise often observed in
low quality X-ray images. Their boundary detection and segmenta-
tion task was formulated as a hierarchical learning problems over
three levels: border points, cross-segments and vessel pieces, cor-
responding to the vessel’s position, width and length. Bhole et al.
[7] presented a method to detect lumbar vertebrae and disc struc-
ture from MR images. By combining information from T1-weighted

() ®

Fig. 8. The whole process of the left boundary extraction of the spinal canal. (a) The absolute pixel intensity difference between T1-weighted and T2-weighted images, (b) the
gradient magnitude of the pixel intensity difference, and (c) the boundary output and the profile of gradient magnitude. The green profile represents the gradient magnitude,
IV I(x, ¥) |, at the first layer while the magenta profile shows the gradient magnitude at the last layer. Note that in (b), the larger magnitude maps to a brighter color. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

sagittal, T2-weighted sagittal, and T2-weighted axial MR images,
they automatically detected the boundary of spinal column and
vertebral columns, achieving 98.8% accuracy.

The above algorithms do not work automatically, are not com-
pared with manually extracted boundaries or require a training
phase. Thus, the advantages of the proposed framework using our
novel framework are as summarized as follows: (i) it works fully
automatic requires no human intervention, (ii) it does not require
a training phase, and (iii) the tracked boundaries are quantitatively
evaluated.

The rest of the paper is organized as follows. In Section 2, our
CAD framework and the left boundary detection method are pre-
sented. In Section 3, experimental results and discussion will be
given. Finally Section 4 concludes the paper.

©
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Fig. 9. The magnitude map of the gradient of absolution pixel intensity difference
clearly shown that the boundary between the vertebral column and the spinal canal
has the largest magnitude.

2. Proposed method
2.1. LumbarDiagnositcs framework for landmark extraction

The proposed method works within LumbarDiagnostics frame-
work to detect the left boundary of the spinal canal.

The framework comprises 6 components as in Fig. 2: meta data
analysis, inter- and intra-slice analysis, preprocessing, regions of
interest determination, reference generation, and validation. Each
step performs specific tasks as follows.

2.1.1. Meta data analysis

In this step, protocol-related information is extracted from the
Digital Imaging and Communications in Medicine header of each
MR slice image. The slice number of each image makes it possible
to sort slice images in sagittal plane.

2.1.2. Inter- and intra-slice analysis

One patient image data consist of MR images in multiple pro-
tocols and in each protocol there are usually tens of slice images.
So among a set of multiple slice images, the selection of a proper
image is crucial for subsequent processes and for fast image analy-
sis. As in the previous approach [6], we use the mid-sagittal image
in sagittal plane for characterization and diagnosis.

2.1.3. Preprocessing

Image quality improvement and initial background marking is
performed at this step along with image resizing. In addition, the
absolute intensity difference of each pixel between a T1-weighted
sagittal slice and a T2-weighted sagittal slice is calculated.

Image resizing. The slice image is resized to a 512 x 512 image
as different scanners produce images of diverse matrix size.

Image quality enhancement and noise attenuation. Image qual-
ity is improved by median filtering with a window size of 3. The
window size is chosen heuristically for fast image data processing.
Median filtering also reduces the impacts of noise on image analy-
sis. As Fig. 3 shows, median filtering works better than a Gaussian
blur since Gaussian smoothing blurs both boundaries and noise.

Initial background marking. The spinal canal is positioned in the
middle of a sagittal image in the image acquisition stage, so mark-
ing pixels on far left and far right sides as background reduces a
large amount of noise as well as makes the successive processes

faster. Fig. 4 compares the original T2-weighted slice image to the
image after the initial background marking is done. Heuristically,
the width of the foreground is set to 182 pixels.

Computation of the absolute intensity difference between co-
registered sagittal slices. Our previous study [7] demonstrated that
the absolute pixel intensity difference between the T2-weighted
sagittal slice image and the corresponding T1-weighted sagittal
one gives a clearer snapshot of the spinal canal contours than the
T1-weighted sagittal one and the T2-weighted sagittal one as in
Fig. 1(b)-(d). Thus, we use the absolute pixel intensity difference
result for subsequent processing.

Computation of the magnitude of image gradient. The gradient of
an image, I, is defined by the vector

a, o
ax’Y oy |’

The elements of the vector are the partial derivatives of the image.
This vector points in the direction along which the rate of change
of I is maximum. The magnitude of the gradient is given by

VI I =\ (8 + ) @

After computation of the magnitude of the image gradient,
to find the minimal cost path, the gradient magnitude matrix is
inverted by taking the additive inverse of |V I(x, y) | as follows:

=IVI(x, Y1 (3)

This is required as the strong edges give larger magnitude values in
the image domain but the dynamic programming finds the opti-
mal path by minimizing the cost. Then the boundary tracing is
performed by dynamic programming.

V(I(x,y)) = [Ix = (1)

2.1.4. Reference generation
Reference is a left boundary of the spinal canal manually marked
by two humans.

2.1.5. Validation by distance measure

Similarity of two curves is compared using two distance metrics
between two curves: the Euclidean distance and the Chebyshev
distance. Specifically, the Euclidean distance D¢ between two points
with coordinates (x1, y1) and (x,, y») is defined by

De ((x1,y1), (%2, ¥2)) = V(%1 — %20 + (1 — y2 ). (4)

In the Euclidean distance, each point on one curve computes the
distance metric and find the closest point in a set of points on the
other curve. For example, in Fig. 5, the point pair (a, ¥), gives the
shortest distance among others. Also, the Chebyshev distance D¢
(also called maximum value distance) between two points with
coordinates (x1,y1) and (x3, ¥2) is defined by

Dc ((x1,y1), (X2, ¥2)) = max (|x; — X2, [y1 —Y2l). (5)

In the Chebyshev distance, the distance between two sets of points
on a curve is the longest distance between a pair of points. In
other words, the Chebyshev distance gives the maximum distance
between two vectors taken on any of the coordinate dimensions.

The distance between a boundary curve by the proposed method
is compared against two reference boundaries by two medical spe-
cialists.

2.2. Dynamic programming

Dynamic programming for detecting, tracking, and matching
deformable contours are comprehensively studied by Geiger et al.
[14]. The basic idea behind dynamic programming is whatever the
path to the node p was, there exists an optimal path between node
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p to the end node [21]. The advantage of it is that it runs fast and
exact.

If a graph has R layers and C nodes, and m is the current layer
and p is the current node, then the optimal path to the next level is
computed by

D (x*!) = min (D (") +£™(. p)) - (6)
m+1

) is the updated cost to the node x;

from the first
layer and f™(i, p) is a cost between nodes x™ and xg“l

4 . For simplic-
ity and fast computation, we assume that we only consider three
neighboring nodes in the nextlayer, i.e.,,ic{ —1,0,1}asin[21]. This
also keep from jumping between nodes when moving to the next
layer. This computation is continued until one of the end point is

reached. Then the optimal path is computed by

min {D (x],...,xR)} :XR:S (D’) (7)

where
s(D) =

where D (xg1+l

min {D (%)} ®)
xR are the end nodes, R the number of layers,and D (x', ..., xR) the
cost of a path between the first and the last layer. In other words,
the optimal path is obtained by back-tracking the node from the
last layer to the first layer. Fig. 6(a) and (b) shows snapshots of
computing the minimum cost function at column p with layer m in
the graph domain and in the image domain, respectively.

Based on this basic idea, the left boundary extraction of spinal
canal is performed as follows.

Left boundary of spinal canal extraction algorithm

GIVEN: The matrix of the pixel intensity difference between a
T1-weighted sagittal image and a T2-weighted sagittal image.

STEP 0. Compute the inverted magnitude of the image gradient.

STEP 1. Set the initial cost D(xj1 ) for each nodes j=1, ..., Cin the
first layer to the inverted magnitude of the image gradient com-
puted by Egs. (1), (2), and (3). In addition, set distance matrix f™(j,
p) to 0 where m=1, ..., R—1 and R is the number of layers. The
distance matrix stores the cumulative cost and is used in back-
tracking. Note that rows, columns in the image domain correspond
to layers, nodes, respectively.

STEP 2. Foreachm=1, ..., R—1, do the following. For each nodes

p=1,...,Cin the corresponding layer m compute
D X"’l+1 — min D (x™ m i, - o
( P ) ie{—1,0,1} ( ( p ) +f ( p)) ( )

Update the distance matrix accordingly. Set pointer from node xg”l
back to node x,.m* where * means the optimal predecessor. Let us
do an example using Fig. 6(b). Suppose we are in the first layer.
The cumulative cost to the first layer is set to — || VI(x, y)| . In the
second layer, each node looks at three neighbors in the first layer
and find the index that gives the smallest path cost. In case of the
node (2, 2), the cumulative cost is computed by min { -2 +(—10),
—3+(-10), —7+(-10)} =—17 and the pointer is set to “shift to left
by one pixel.” Fig. 6(b) shows how the cumulative cost is com-
puted as the algorithm moves from the first layer to the last layer.
Also it shows how the optimal boundary is formed. The total num-
ber of cost computations of this approach is 3C(R — 1) whereas the
brute-force method requires C(38-1) computations. Obviously, the
dynamic programming approach is cost-effective than the brute-
force one.

STEP 3. Find the optimal node x§" in the last layer R and find the
optimal path from node x{" to the node le by back-tracking. That is,
the optimal path is found by looking at the pointers from the node
xR to the node x].l*.

Table 1
Scanning parameters. TR stands for repetition time, TE for echo time, and ST for slice
thickness.

Protocol type TR (ms) TE (ms) ST (ms) Matrix size
T1-weighted sagittal 530.0 7.2 4.5 512 x 512
T2-weighted sagittal 26224 100.0 4.5 512 x 512

InFig. 6(b), backtracking is performed by looking for the smallest
cumulative cost. The first node of the last layer gives the small-
est cumulative cost, —38. Then using pointer that means “shift one
pixel to right,” the algorithm moves one pixel to right and gets the
cumulative cost of —27. Using pointers as shown above, it finds the
set of column indices of a node in each layer that forms the spinal
boundary.

Note that the boundary can be formed in two ways. First, the
boundary can be formed by finding the node having the smallest
cumulative cost at the last layer and backtracking using the pointer.
Let us take an example using Fig. 6(b). Once the cumulative cost is
computed, the algorithm starts backtracking. At layer 4, the pair, (R,
(), that gives the minimum cumulative cost is (4, 1). Subsequently,
the pairs that give the minimum cumulative cost are (3, 2), (2, 2),
(1, 3) at layer 3, 2, 1, respectively. The series of pairs from the last
layer to the first forms the boundary.

In addition, the boundary can be constructed by connecting the
nodes that give the minimum cumulative cost in each row. At layer
4, the pair, (R, C), that gives the minimum cumulative cost is (4, 1).
At layer 3, the pair, (R, C), that gives the minimum cumulative cost
is determined to (2, 2) after “shifting one pixel to right” from the
pair that gives the minimum cumulative cost at layer 4. At layer 2,
there is no need to shift. At layer 1, it is required to shift one pixel
to right. Using the cumulative cost and the pointer information, the
boundary is formed.

These two approach actually gives the same boundary. This
answers to why the location of the first layer and the last layer
match with the peak of the gradient profiles in the first layer and
the last layer in Fig. 10.

2.3. Image data

Clinical MRI data are obtained from the affiliated radiology
group and 85 subjects are used in this experiment. Each data
contains images in T1-weighted sagittal and T2-weighted sagittal
protocol and each slice in different protocols is co-registered. All MR
images were taken by a 3 Tesla (3T) Philips scanner of 512 x 512
matrix size. The detailed scanning parameters are shown in
Table 1.

As we are only concerned with the lumbar spine region, we
restrict our attention to the lumbar spine when generating ref-
erential boundaries and computing similarity metrics. This is due
to the fact that doctor’s reports we have used as reference only
diagnosed the lumbar spine. Note that we can assume that the
lumbar region is selected manually as the reference boundaries
are drawn manually by two humans and the lumbar region is
defined based on the two. In addition, some mid-sagittal slices do
not capture the spinal canal clearly in the top row as shown in
Fig. 7 (refer to green arrows) and our method finds the incorrect
location caused by an incorrect gradient profile. This issue can be
overcome by analyzing only the lumbar spine region in which the
gradient profile clearly captures the strong boundaries that have
high gradient magnitude (refer to yellow arrows). This restriction
also gets rid of computational overhead that requires considering
additional slice images that clearly depict the spinal canal in the top
row.
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Fig. 10. Several boundary extraction results. The gradient profile, |V I(x, y) ||, in magenta shows the gradient magnitude of absolute pixel intensity difference in the first layer
while the gradient magnitude in green represents the gradient magnitude of the last layer. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article.)

Fig. 11. Some not-so-good boundary extraction results. When the border between the spinal canal and the vertebral column is blurry or not clear for some reasons, the
proposed algorithm does not the find exact boundary.
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Fig. 12. Comparison between output boundary from a computer against two manually drawn reference boundaries. The red dotted curves are reference 1, the green dotted
curves are the reference 2 and the yellow dotted ones are output boundaries from computer. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article.)

3. Experiments

The code for the experiments is implemented using MATLAB
and the experiments are conducted on a machine with an Intel(R)
Core i7 CPU at 2 GHz speed, and 6 GB physical memory.

3.1. Results and discussion

Fig. 8 shows the whole process of the boundary extraction.
Fig. 8(a) shows the absolute pixel intensity difference between the

T1-weighted sagittal slice image and its corresponding slice in T2-
weighted sagittal view. As we saw previously, the contrast of the
intensity between the spinal canal and the neighboring regions is
enhanced. In Fig. 8(b) the magnitude map of the gradient of the
absolute intensity difference is shown. In Fig. 8(c) the magnitude
map of the gradient of absolute pixel intensity difference in Eq. 2
is overlaied on the T2-weighted sagittal image as a 1-D profile. The
green profile represents the distribution of the gradient magnitude
of the absolute pixel intensity difference in the first layer of the
lumbar spine region. As Fig. 9 depicts, in the first layer the pixel

(b)

Fig. 13. A synovial cyst arising from the right L4-L5 facet joint. It is sometimes related to spinal tumors. (a) Our method finds the desirable boundary even in the presence
of a cyst. (b) Its Sobel edges and a zoomed-in image. The Sobel edges are discontinuous around the disc L4-L5 making hard to form the correct boundary by edge following.
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Table 2
Performance evaluation in terms of the Euclidean distance and the Chebyshev dis-
tance in millimeter.

Metric in mm Euclidean distance Chebyshev distance

Mean Std Max Mean Std Max
Ref. 1to 2 133 0.29 1.96 1.19 0.26 1.76
Ref. 1 to computer 3.61 0.63 5.67 3.21 0.56 5.43
Ref. 2 to computer 441 0.74 7.78 3.93 0.66 7.47
Table 3
Distance metric in millimeter.
Distance metric Mean (mm) Std (mm)
This method 3.61 0.63
Previous method [6] 717 16.98

corresponding to the boundary between the vertebral column and
the spinal canal has the largest magnitude (i.e., the brightest point).

—IVI(x, y)|| provides the starting cost to the dynamic pro-
gramming. That is, it is fed to a path finding process as dynamic
programming seeks a minimum cost path. The location of the path
at the last layer matches to the peak of the distribution of the gra-
dient magnitude at the last layer in magenta. Fig. 10 shows several
boundary extraction results from many patients. Note that in each
slice the distribution of the gradient magnitude spans the center
region specified by the initial background marking step. Usually
the spinal canal is positioned in the middle since the location is
adjusted by medical specialist in image acquisition phase. Once the
peak location of the gradient magnitude is chosen, the distance
matrix is updated as the dynamic programming iteratively forms
the path. In the experiments, the mean number of layers in the lum-
bar spine area is 257.8 +20.4 and each layer has 512 nodes across
all datasets. In addition, three nodes are considered for updating
costs in each layer.

Fig. 11 shows some cases when the extracted boundary is a bit
away from the referential boundaries. A blurry or unclear boundary
causes the small gradient magnitude and results in an incorrect
boundary. This leads to about a 2.7 times larger distance metric
between the computer and a human than the metric between two
humans. In most cases, however, our method automatically finds
the desirable boundary as in Fig. 12.

Table 2 shows the mean, standard deviation, and maximum
between the computer-generated boundary and reference of two
distance metrics in millimeter defined by Egs. (4) and (5). In case of
the Euclidean distance, about 1.3 mm are off between two reference
boundaries whereas about 3.6 mm are apart between a model-
generated boundary and a manually-drawn boundary. Table 3
compares the current method and the previous method in terms
of a mean error. As the previous method finds the boundary within
the spinal canal, the error is relatively large and the standard devi-
ation is also high. On the other hand, the proposed method finds
the boundary improving the accuracy about two times compared
with the previous method [6].

Since the image domain is in two dimensions, the Chebyshev
distance is computed base on one of two absolute differences while
the Euclidean distance is calculated based on two differences. This
makes the Chebyshev distance give a smaller or equal distance
value than the Euclidean one for all comparisons. For example,
when reference data by human 1 are used, 3.21 +0.56 mm of the
Chebyshev distance is better than 3.61 & 0.63 mm of the Euclidean
distance. Considering the maximum Euclidean distance between
two references that is 1.96 mm and the Euclidean distance between
reference 1 and computer output, we can conclude that the com-
puter output is off about 1 mm more.

Table 4
Elapsed time for extracting boundaries.

Boundary Gen. by Mean elapsed time (s) Std of elapsed time (s)

Proposed method 0.1294 0.0337
Bhole’s method [7] 14.6385 2.7414
Medical specialist 21.3628 2.7875

Differently from the previous results for the spinal canal seg-
mentation [22,23], the extracted boundary does not show any
discontinuity regardless of the image quality and some pathol-
ogy such as intramedullary tumors that blocks the spinal canal.
Fig. 13(a) shows a synovial cyst, that is sometimes related to tumors,
in the T2-weighted sagittal view arising from the right L4-L5 facet
joint severely compressing the dural sac. Our method extracts the
desirable boundary in the presence of an obstacle, the cyst. On the
other hand, Fig. 13(b) shows Sobel edges and its zoomed-in ver-
sion. The cyst kept the boundary from being correctly formed. In
this case, to get the desirable boundary, interpolation needs to be
followed. The previous ones extract the spinal canal only when the
distinction of the intensity of gradients are obvious in the border
between the vertebral column and the spinal canal. The extracted
boundary can be used as a landmark to mark background areas,
to localize neighboring vertebrae and intervertebral discs, and to
diagnose spondylolisthesis.

Table 4 gives the elapsed time of automated boundary extraction
and manual boundary extraction. For the left boundary extraction
of the spinal canal, Bhole’s method takes about 13.64s, giving an
average speedup factor of 1.5, whereas the proposed method takes
an average of 0.13 s, achieving a speedup factor of 167. Obviously,
our method outperforms Bhole’s method as it does not require com-
putationally intensive interpolation algorithms. Our method also
gives the smaller standard deviation in terms of the elapsed time.
We expect that our method would achieve a higher speedup factor
if it could run on a faster machine.

4. Conclusion

There have been a concern about the increasing workload of
radiologists. Due to technological advancements and the digiti-
zation of scanned images, the need for computer-aided diagnosis
has been increased recently. To meet the need for the automated
management of the lumbar spine pathology, we have developed
a computer-aided diagnosis framework. In this paper, we propose
an automated method to extract the left boundary of the spinal
canal in the lumber spine MRI that fits into our CAD framework.
Our method incorporates the gradient magnitude of the absolute
intensity difference of two co-registered images in T1-weighted
and T2-weighted sagittal planes into a dynamic programming in a
fully automatic way. The boundaries generated by our method is
compared against reference boundaries in terms of the Euclidean
distance and the Chebyshev distance. Experimental results on 85
clinical data show that our method finds the boundary with a mean
Euclidean distance of 3 mm and works about 167 times faster than
the manual boundary extraction.
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