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Privacy Preserving Back-Propagation Neural
Network Learning

Tingting Chen, Sheng Zhong

Abstract— With the development of distributed computing
environment, many learning problems now have to deal with
distributed input data. To enhance coorperations in learning, it
is important to address the privacy concern of each data holder
by extending the privacy preservation notion to original learning
algorithms. In this paper, we focus on preserving the privacy in
an important learning model, multi-layer neural networks. We
present a privacy preserving two-party distributed algorithm of
back-propagation which allows a neural network to be trained
without requiring either party to reveal her data to the other.
We provide complete correctness and security analysis of our
algorithms. The effectiveness of our algorithms is verified by
experiments on various real world datasets.

Index Terms— Privacy, Learning, Neural Network, Back-
Propagation

I. INTRODUCTION

With the development of distributed computing environ-
ment, many learning problems now have distributed input
data. In such distributed scenarios, privacy concerns often
become a big issue. For example, if medical researchers want
to apply machine learning to study health care problems,
they need to collect the raw data from hospitals and the
follow-up information from patients. Then the privacy of the
patients must be protected, according to the privacy rules in
Health Insurance Portability and Accountability Act (HIPAA),
which establishes the regulations for the use and disclosure of
Protected Health Information [1].

A natural question is why the researchers would want to
build a learning model (e.g, neural networks) without first
collecting all the training data on one computer. If there is
a learner trusted by all the data holders, then the trusted
learner can collect data first and build a learning model.
However, in many real-world cases it is rather difficult to
find such a trusted learner, since some data holders will
always have concerns like “What will you do to my data?”
and “Will you discover private information beyond the scope
of research?”. On the other hand, given the distributed and
networked computing environments nowadays, collaborations
will greatly benefit the scientific advances. The researchers
have the interest to obtain the result of cooperative learning
even before they see the data from other parties. As a concrete
example, [2] stated that the progress in neuroscience could
be boosted by making links between data from labs around
the world, but some researchers are reluctant to release their
data to be exploited by others because of privacy and security
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concerns. More specifically, the neuroscientist in Dartmouth
College found it difficult to encourage the sharing of brain-
imaging data because there was possibility that the raw data
could be misused or misinterpreted [3]. Therefore, there is a
strong motivation for learners to develop cooperative learning
procedures with privacy preservation.

In this paper, we focus on one of the most popular tech-
niques in machine learning, multi-layer neural networks [4],
[5], in which the privacy preservation problem is far from
being practically solved. In [6] a preliminary approach is
proposed to enable privacy preservation for gradient descent
methods in general. However, in terms of multi-layer neural
networks, their protocol is limited as it is only for one simple
neural network configuration with one node in the output layer
and no hidden layers. Although their protocol is elegant in its
generality, it may be very restricted in practice for privacy
preserving multi-layer neural networks.

We propose a light-weight two-party distributed algorithm
for privacy preserving back-propagation training with verti-
cally partitioned data1 (i.e., when each party has a subset of
features). Our contributions can be summarized as follows.
(1) Our paper is the first to investigate the problem of train-
ing multi-layered neural networks over vertically partitioned
databases with privacy constraints. (2) Our algorithms are
provably private in the semi-honest model [7] and light-weight
in terms of computational efficiency. (3) Our algorithms in-
clude a solution to a challenging technical problem, namely
privacy preserving computation of activation function. This
problem is highly challenging because most of the frequently
used activation functions are infinite and continuous while
cryptographic tools are defined in finite fields. To overcome
this difficulty, we propose the first cryptographic method
to securely compute sigmoid function, in which an existing
piecewise linear approximation of the sigmoid function [8]
is used. In order to make our algorithms practical, we do
not adopt the costly circuit evaluation based approaches [9].
Instead, we use a homomorphic encryption based approach and
the cryptographic scheme we choose is ElGamal [10]. (4) Both
analytical and experimental results show that our algorithms
are light-weight in terms of computation and communication
overheads.

The rest of the paper is organized as follows. In Section

1For horizontally partitioned scenario (i.e., when each party holds a subset
of data objects with the same feature set), there is a much simpler solution
that one party trains the neural network first and passes the training result to
another party so that she can further train it with her data, and so on. So in
this paper we only focus on the vertical partition case, which is much more
technically challenging.
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II, we introduce the technical preliminaries including nota-
tions, definitions and problem statement. In Section III, we
present the novel privacy preserving back-propagation learning
algorithm and two key component secure algorithms. Then
we provide security analysis of the algorithm as well as the
computation and communication overhead. In Section VI, with
comprehensive experiments on various datasets, we verify the
effectiveness and efficiency of our algorithm. After that, we
conclude our paper.

A. Related Work
The notion of privacy preserving data mining was proposed

by two different papers ([11] and [12]) in the year 2000. Both
of the two papers addressed the problem of performing data
analysis on distributed data sources with privacy constraints.
In [11], Agrawal et al. presented a solution by adding noise to
the source data, while in [12] Lindell and Pinkas used crypto-
graphic tools to efficiently and securely build a decision tree
classifier.After these two papers, a good number of data mining
tasks have been studied with the consideration of privacy
protection, for example classification [13], clustering [14],
[15], association rule mining [16], etc.

In particular, privacy preserving solutions have been pro-
posed for the following classification algorithms (to name
a few): decision trees [12], [17], [18], Naive Bayes classi-
fier [19], [20], and SVM [21], [22], [23]. Generally speaking,
the existing works have taken either randomization based
approaches (e.g., [11], [21]) or cryptography based approaches
(e.g., [17], [24], [19], [23]). Randomization based approaches,
by perturbing data, only guarantee a limited degree of privacy.
In contrast, cryptography based approaches provide better
guarantee on privacy than randomized based approaches, but
most of the cryptography based approaches are difficult to be
applied with very large databases, because they are resource
demanding. For example, although Laur et al. proposed an
elegant solution for privacy preserving SVM in [23], their
protocols are based on circuit evaluation which is considered
very costly in practice.

In cryptography, there is also a general-purpose technique
called secure multi-party computation. The works of secure
multi-party computation originate from the solution to the
millionaire problem proposed by Yao [25], in which two
millionaires can find out who is richer without revealing the
amount of their wealth. In [9], a protocol is presented which
can privately compute any probabilistic polynomial function.
Although secure multi-party computation can theoretically
solve all problems of privacy-preserving computation, it is
too expensive to be applied to practical problems [26]. This
general solution is especially infeasible for cases in which
parties hold huge amounts of data.

There are few works on the problem of privacy preserving
neural networks learning (limited to [27], [28], [6]). The most
recent one is [6]. As discussed above, the difference between
our work and their is that we focus on privacy preserving neu-
ral networks and provide a light-weight algorithm applicable
to more complex neural networks configurations, while their
protocol is for gradient descent methods in general and thus
loses some power for neural networks in particular.

Protocols in [27], [28] are also designed for privacy-
preserving neural-network-based computations. In particular,
Chang and Lu [27] proposed a cryptographic protocol for
non-linear classification with feed-forward neural networks.
Barni et al. in [28] presented three algorithms with different
levels of privacy protections, i.e., protecting private weight
vectors, protecting private activation functions, and preventing
data providers from injecting fake cells to the system.

The fundamental difference between our work and the
protocols in [27] and [28] is that they work in different
learning scenarios. In [27] and [28], it is assumed that there
is a neural network owner; this neural network owner owns
a neural network, but does not have any data to train it. In
addition, there are some data providers who have data that
can be used to train the neural network. The goal of [27] and
[28] is to ensure that the neural network owner does not get
any knowledge about the data, and at the same time, the data
providers do not get the knowledge embedded in the neural
network (e.g., the node activation functions). In constrast, in
this paper we consider a totally different scenario in which
there are at least two neural network owners, each having his
own set of data. The two parties want to jointly build one
neural network based on all the data, but each party does not
want to reveal his own data. As a result, protocols in [27] and
[28] cannot be applied in the scenario that we are studying in
this paper.

Moreover, [27] and [28] are of theoretical interests only;
they have not implemented their protocols, neither have they
tested their protocols in any experiments. In contrast, we
have implemented our algorithm and carried out extensive
experiments. The results of our experiments show that our
algorithm is practical.

II. TECHNICAL PRELIMINARIES

In this section we give a brief review of the version of the
Back-Propagation Network (BPN) algorithm we consider [29]
and introduce the piecewise linear approximation we use for
the activation function. We also give a formal statement of
problem with a rigorous definition of security. Then we briefly
explain the main cryptographic tool we use, ElGamal [10].

A. Notations for back-propagation learning

For ease of presentation, in this paper we consider a neural
network of three layers, where the hidden layer activation
function is sigmoid and the output layer is linear. Note that it
is trivial to extend our work to more layers.

Given a neural network with a-b-c configuration, one input
vector is denoted as (x1, x2, · · · , xa). The values of hidden
layer nodes are denoted as {h1, h2, · · · , hb}, and the values
of output layer nodes are {o1, o2, · · · , oc}. wh

jk denotes the
weight connecting the input layer node k and the hidden layer
node j. wo

ij denotes the weight connecting j and the output
layer node i, where 1 ≤ k ≤ a, 1 ≤ j ≤ b, 1 ≤ i ≤ c.

We use Mean Square Error (MSE) as the error function in
the back-propagation algorithm, e = 1

2

∑
i(ti − oi)2. For the

neural networks described above, the partial derivatives are
listed as (1) and (2), for future reference.
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∂e

∂wo
ij

= −(ti − oi)hj (1)

∂e

∂wh
jk

= −hj(1− hj)xk

c∑

i=1

[(ti − oi)wo
ij ] (2)

B. The piecewise linear approximation of activation function

In this subsection, we introduce the piecewise linear approx-
imation of activation function. The major reason of introducing
the approximation is that cryptographic tools work in finite
fields and thus can not be directly applied to the secure
computation of functions like sigmoid. Approximating the
activation function in a piecewise way offers us an opportunity
to apply cryptographic tools to make the computation of
sigmoid function privacy-preserving.

Equation (3) is a piecewise linear approximation [8] of the
sigmoid function 1

1+e−x . Our privacy preserving algorithm for
back-propagation network learning is based on this approxi-
mation.2

y(x) =





1 x > 8
0.015625x + 0.875 4 < x ≤ 8
0.03125x + 0.8125 2 < x ≤ 4
0.125x + 0.625 1 < x ≤ 2
0.25x + 0.5 −1 < x ≤ 1
0.125x + 0.375 −2 < x ≤ −1
0.03125x + 0.1875 −4 < x ≤ −2
0.015625x + 0.125 −8 < x ≤ −4
0 x ≤ −8

(3)

C. Security definition and problem statement

• Semi-honest model. As many existing privacy preserving
data mining algorithms (e.g., [17], [30]), we adopt semi-
honest model in this paper. Semi-honest model is a standard
adversary model in cryptography [7]. In this paper the security
of our algorithm is guaranteed in this model. When computing
function f in a distributed fashion, semi-honest model requires
that each party that participates in the computation follow the
algorithm, but a party may try to learn additional information
by analyzing the messages that she receives during the execu-
tion. In order to guarantee the security of distributed algorithm
of computing f , it must be ensured that each party can learn
nothing beyond what can be implied by her own input and
output.

Semi-honest model is a right fit for our setting, because
normally participants want to learn the neural network learning
results and thus they are willing to follow the algorithm
to guarantee the results correctness. The security guaranteed
in semi-honest model can relieve the concerns about their
data privacy. Of course, in reality there may be scenarios
in which there are malicious adversaries. It has been shown

2It is easy to extend our work to other piecewise linear approximations of
activation function. Here we choose this specific approximation as an example
to demonstrate in detail how our algorithms work.

(see [7]) that a distributed algorithm that is secure in the semi-
honest model can be converted to one that is secure in the
malicious model, with some additional costs in computation
and communications for zero knowledge proofs. (It is a highly
challenging task to reduce these additional costs to achieve
security in the malicious model. We leave it as one of our
future research topics.)

Based on semi-honest model, the problem of privacy pre-
serving back-propagation neural networks learning in this
paper, is stated below.
• Privacy preserving two-party distributed neural network
training. Suppose that a set of training samples are vertically
partitioned between two parties A and B. A holds a dataset
D1 with mA attributes for each data entry. B holds a dataset
D2, with mB attributes for each data entry. We denote one
data entry in D1 as xA = (x1, x2, · · · , xmA) and in D2 xB =
(xmA+1, · · · , xmA+mB

).
Privacy preserving two-party distributed neural network

training is that in each round of neural network learning,
two parties jointly compute the additive values of connection
weights without compromising their privacy of input data.3

Formally, with training samples xA and xB from party A and
B respectively and a target value t(x), our goal is to let each
party get her own share of the additive value of each weight
∆w, without revealing the original training data, xA or xB ,
to each other.

Note that, in this paper, we restrict our attention to the
privacy concerns brought by insiders (i.e., participants of the
distributed neural network training) only. The security and
privacy issues associated with outsider attacks (i.e., attacks
by non-participating parties and attacks in the communication
channels) are orthogonal issues beyond the scope of this paper.
In practice, if our algorithms are to be used, appropriate access
control and security communication techniques must also be
used, to guarantee that all sensitive information is transmitted
over secure channels and unauthorized access to the system is
prevented.

D. ElGamal scheme

In our privacy preserving algorithms for neural net-
work learning, a homomorphic cryptographic scheme, ElGa-
mal [10], is utilized. In this subsection, we review the basics
and properties of ElGamal scheme.

ElGamal is a public-key encryption scheme which can be
defined on any cyclic group. Let G be a cyclic group of prime
order q with generator g. We assume that decisional Diffie-
Hellman assumption (DDH) [31] holds in G such that ElGamal
is semantically secure.
Components. ElGamal scheme consists of three components,
i.e., key generation, encryption and decryption.
• Key Generation.

3In this paper, we provide an algorithm in which two parties learn all the
weights after each round of training. Note that this algorithm can be extended
to a more secure fashion by making each party hold only a random additive
share of each weight at the end of each round and continue to the next round
with the partitioned weights [7]. But in this case much more computational
overhead will be added. So for efficiency reasons, we keep the algorithm as
it is.



4

A value x ∈ Zp is randomly chosen as the private key.
The corresponding public key is (G, q, g, h), where h =
gx.

• Encryption.
A message m ∈ G is encrypted as follows. A value
r ∈ Zp is chosen as random. Then the ciphertext is
constructed as (C1, C2) = (gr, m · hr).

• Decryption.
The plain text is computed as

C2

Cx
1

=
m · hr

gx·r =
m · hr

hr
= m.

Homomorphic Property. ElGamal scheme is homomorphic in
that for two messages, m1 and m2, an encryption of m1 +m2

can be obtained by an operation on E(m1, r) and E(m2, r)
without decrypting any of the two encrypted messages.
Probabilistic Property. ElGamal scheme is also probabilistic,
which means that besides clear texts, the encryption operation
also needs a random number as input. Let an encryption
of message m using public key (G, q, g, h) and a random
number r be denoted as E(G,q,g,h)(m, r). For simplicity we
use notation E(m, r) instead of E(G,q,g,h)(m, r) in the rest of
this paper.

In probabilistic encryption schemes, there are many encryp-
tions for each message. ElGamal allows an operation that
takes one encrypted message as input and outputs another
encrypted message of the same clear message. This is called
rerandomization operation. For instance, taking the encrypted
message (C1, C2) = (gr,m · hr) as input, one can do the
rerandomization and obtain another cyphertext of m as,

(C ′1, C
′
2) = (C1 · gs, C2 · hs) = (gr+s,m · hr+s).

In this paper, messages are randomized by both parties.
Therefore, no individual party can decrypt any message by it-
self. However, each party can partially decrypt a message [32].
When the message is partially decrypted by both parties, it is
fully decrypted.

III. PRIVACY PRESERVING NEURAL NETWORK LEARNING

In this section, we present a privacy-preserving dis-
tributed algorithm for training the neural networks with back-
propagation algorithm. A privacy preserving testing algorithm
can be easily derived from the feed-forward part of the privacy-
preserving training algorithm.

Our algorithm is composed of many smaller private com-
putations. We will look into them in detail after first giving
an overview.

A. Privacy preserving neural network training algorithm

Here we build the privacy preserving distributed algorithm
for the neural network training process under the assumption
that we already have the algorithm to securely compute the
piecewise linear function (Algorithm 2) and the algorithm to
securely compute the product of two numbers held by two
parties (Algorithm 3). We will explain the two component
algorithms in detail later.

For each training iteration, the input of the privacy-
preserving back-propagation training algorithm is
〈{xA, xB}, t(x)〉, where xA is held by party A, while
xB is held by party B. t(x) is the target vector of the
current training data and it is known to both parties. The
output of algorithm is the connection weights of output layer
and hidden layer, i.e., {wo

ij , w
h
jk|∀k ∈ {1, 2, · · · , a}, ∀j ∈

{1, 2, · · · , b}, ∀i ∈ {1, 2, · · · , c}} .
The main idea of the algorithm is to secure each step in the

non-privacy-preserving back-propagation algorithm, with two
stages, feeding forward and back-propagation. In each step,
neither the input data from the other party nor the intermediate
results can be revealed. In particular, we apply Algorithm 2
to securely compute the sigmoid function, and Algorithm 3 is
used to guarantee privacy preserving product computation.

To hide the intermediate results such as the values of hidden
layer nodes, the two parties randomly share each result so
that neither of the two parities can imply the original data
information from the intermediate results. Here by “randomly
share”, we mean that each party holds a random number and
the sum of the two random numbers equals to the intermediate
result. Note that with intermediate results randomly shared
among two parties, the learning process can still securely
carry on to produce the correct learning result (see correctness
analysis in Section III-A.1).

After the entire process of private training, without revealing
any raw data to each other, the two parties jointly establish a
neural network representing the properties of the union dataset.

Our training algorithm for back-propagation neural net-
works can be summarized as in Algorithm 1.

For clarity of presentation, in Algorithm 1, we separate the
procedure to compute

∑
i[−(ti−oi)wo

ij ]hj(1−hj) and explain
it in Algorithm 1.1.

1) Correctness: We show that if party A and party B follow
Algorithm 1, they will jointly derive the correct weight update
result in each learning round, with each of them holding a
random share.

For any output layer weight wo
ij , in step (2.1) of Algorithm

1 we have

∆1w
o
ij + ∆2w

o
ij

= (oi1 − ti)hj1 + r11 + r21 + (oi2 − ti)hj2 + r12 + r22

= (oi1 − ti)hj1 + (oi2 − ti)hj2 + hj1oi2 + hj2oi1

= −(ti − oi1 − oi2)(hj1 + hj2)
= −(ti − oi)hj

=
∂e

∂wo
ij

= ∆wo
ij .

Therefore the additive random shares of the two parties
can add up to the correct value for hidden layer connection
weights.

Now we show that the correctness is also guaranteed for
hidden layer weights.

In step (2.2) of Algorithm 1, it is easy to get that no matter
which party holds the attribute xk, we always have
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Algorithm 1 Privacy preserving distributed algorithm for
back-propagation training

Initialize all weights to small random numbers, and make
them known to both parties.
Repeat
for all training sample 〈{xA, xB}, t(x)〉 do

Step1: feed forward stage
(1.1) For each hidden layer node hj , party A com-

putes
∑

k≤mA
wh

jkxk, and party B computes∑
mA<k≤mA+mB

wh
jkxk.

(1.2) Using Algorithm 2, party A and B jointly compute
the sigmoid function for each hidden layer node
hj , obtaining the random shares hj1 and hj2

respectively s.t. hj1 + hj2 = f(
∑

k wh
jkxk).

(1.3) For each output layer node oi, Party A computes
oi1 =

∑
i wo

ijhj1 and party B computes oi2 =∑
i wo

ijhj2, s.t. oi = oi1 + oi2 =
∑

i wo
ijhj1 +∑

i wo
ijhj2.

Step2: back-propagation stage
(2.1) For each output layer weight wo

ij

Party A and B apply Algorithm 3 to securely com-
pute the product hj1oi2, obtaining random shares
r11 and r12 respectively, s.t. r11 + r12 = hj1oi2.
Similarly they compute the random partitions of
hj2oi1, r21 and r22, s.t. r21 + r22 = hj2oi1.
Party A computes ∆1w

o
ij = (oi1 − ti)hj1 + r11 +

r21 and B computes ∆2w
o
ij = (oi2−ti)hj2+r12+

r22.
(2.2) For each hidden layer weight wh

jk

Using Algorithm 1.1, party A and B jointly com-
pute

∑
i[−(ti − oi)wo

ij ]hj(1− hj), obtaining ran-
dom shares q1 and q2 respectively, s.t. q1 + q2 =∑

i[−(ti − oi)wo
ij ]hj(1− hj).

If k ≤ mA, that is A holds the input attribute xk,
applying Algorithm 3 to securely compute xkq2,
A and B respectively get r61 and r62 s.t. xkq2 =
r61+r62. Then ∆1w

h
jk = q1xk+r61 and ∆2w

h
jk =

r62.
If mA < xk ≤ mA + mB , A and B apply Algo-
rithm 3 to get r61 and r62 s.t xkq1 = r61 + r62.
In this case, ∆1w

h
jk = r61, ∆2w

h
jk = q2xk + r62.

A and B respectively compute ∆1w
h
jk, ∆2w

h
jk.

Step3:
A (B, resp.) sends ∆1w

o
ij , ∆1w

h
jk(∆2w

o
ij , ∆2w

h
jk, resp.)

to B(A, resp.). A and B compute wo
ij ← wo

ij−η(∆1w
o
ij +

∆2w
o
ij) for each hidden layer weight, and wh

jk ← wh
jk −

η(∆1w
h
jk + ∆2w

h
jk) for each output layer weight.

end for
Until (termination condition)

Algorithm 1.1 Securely computing
∑

i[−(ti − oi)wo
ij ]hj(1− hj).

Input: hj1, oi1 (hj2, oi2 resp.) for party A (party B resp.)
abtained inside Algorithm 1.
Output: random shares q1, q2 for A and B resp.

1. Using Algorithm 3, party A and B get random shares of
hj1hj2, r31 and r32 respectively, s.t. hj1hj2 = r31 + r32.
2. For clarity, we name intermediate results as
hj1 − h2

j1 − 2r31 = p1,
∑

i(−ti + oi1)wo
ij = s1,

hj2 − h2
j2 − 2r32 = p2 and

∑
i oi2w

o
ij = s2.

3. Party A computes p1 and s1; B computes p2 and s2.
4. Applying Algorithm 3, party A gets r41 and r51, party B
gets r42 and r52, s.t. r41 + r42 = s1p2, r51 + r52 = s2p1.
5. Name q1 = s1p1 + r41 + r51 and q2 = s2p2 + r42 + r52.
Party A computes q1 and party B computes q2 locally.

∆1w
h
jk + ∆2w

h
jk

= xkq1 + xkq2

= (s1p1 + r41 + r51 + s2p2 + r42 + r52)xk

= (s1 + s2)(p1 + p2)xk

= (
∑

i

(−ti + oi1)wo
ij +

∑

i

oi2w
o
ij)

(hj1 − h2
j1 − 2r31 + hj2 − h2

j2 − 2r32)xk

=
∑

k

[−(ti − oi)wo
ij ](hj1 + hj2)(1− hj1 − hj2)xk

=
∑

i

[−(ti − oi)wo
ij ]hj(1− hj)xk

=
∂e

∂wh
jk

= ∆wh
jk

Hence using Algorithm 1, the additive update of hidden layer
weights can be correctly computed by the two parties without
compromising their data privacy.

B. Securely computing the piecewise linear sigmoid function

In this subsection we present a secure distributed algorithm
for computing piecewise linear approximated sigmoid function
y(x) (as shown in Algorithm 2).

Although each party only holds one part of the input to the
sigmoid function, this algorithm enables them to compute the
approximate value of the function without knowing the part
of input from the other party. Actually, in this algorithm there
is no way for each party to explore the input of the other, but
the function value can still be computed.

Formally, the input of the algorithm is x1 held by party A,
x2 held by party B. The output of function y, y(x1 + x2), is
also randomly shared by the two parties. Note that the parties
can always exchange their random shares of result at the end
of the algorithm, so that they can learn the complete value of
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sigmoid function, but since in our paper the result of sigmoid
function is only an intermediate result for the whole learning
process, here we keep it randomly shared.

For ease of presentation, we write the algorithm under the
assumption that x1 and x2 are integers. Note that we can easily
rewrite the algorithm to allow real numbers with precision of
a few digits after the dot. Actually the algorithm for factorial
numbers is the same in essence, given that we can shift the
float point to the right to get integer numbers, or in other
words, integers and factorials are easy to exchange to each
other in binary representation.

After the piecewise linear approximation, as the input is
splitted between two parties, both parties do not even know
which linear function to use without the knowledge of which
range the input falls in. Our main idea is to let one party
compute all possible values according to her own input and
among those values, the other party picks the result they are
looking for.

As shown in Algorithm 2, party A first computes the
sigmoid function values for different possible inputs of B.
After subtracting a same random number R from each of the
function values, A encrypts each of them (step 1). Actually
the random number generated by A is the final output for A,
the random share of the sigmoid function value. The random
share for B is one of the clear texts hidden behind ElGamal
scheme. So the remaining task of this algorithm is to let B
obtain that clear text, y(x1 + x2) − R, which corresponds to
her input without revealing the input of any party to each
other. As A does not know the input of B, she sends all the
encrypted results to B and lets B pick the one based on her
own input. Here since all the results are encrypted, B cannot
get any information about A’s original data either. Because A
can get to know the value of x2 by comparing the encrypted
message chosen by B with all those generated by herself, a
rerandomization is conducted by B, before B sends back her
choice to A to protect B’s data, x2. After A and B sequentially
decrypt, B gets her share of the final sigmoid function value
(step 3 and step 4).

Algorithm 2 Securely computing the piecewise linear sigmoid
function

Step 1: Party A generates a random number R and com-
putes y(x1 + i) − R for each i, s.t. −n < i ≤ n. Define
mi = y(x1 + i) − R. Party A encrypts each mi using
ElGamal scheme and gets E(mi, ri), where each ri is a
new random number. Party A sends each E(mi, ri) in the
increasing order of i.
Step 2: Party B picks E(mx2 , rx2). She rerandomizes it and
sends E(mx2 , r

′) back to A, where r′ = rx2 + s, and s is
only known to party B.
Step 3: Party A partially decrypts E(mx2 , r

′) and sends the
partially decrypted message to B.
Step 4: Party B finally decrypts the message (by doing
partial decryption on the already partially decrypted mes-
sage) to get mx2 = y(x1 + x2) − R. Note R is only
known to A and mx2 is only known to B. Furthermore,
mx2 + R = y(x1 + x2) = f(x).

Note that in Step 1 of Algorithm 2, party A must generate a
new random number ri for encrypting each message. Although
party B can get hrx2 at the end of the algorithm from
E(mx2 , rx2) and the clear message mx2 , he has no way to
get other numbers of hri . On the other hand, party A can
always conduct the partial decryption without knowing which
encrypted message B has chosen, because the decryption
of ElGamal scheme is independent from random number ri

(please see details in Section II-D).

C. Privacy-preserving distributed algorithm for computing
product

To securely compute product, some existing secure multi-
party computation protocols for dot product can be utilized
(e.g. [33], [34]) by taking integer numbers as a special form
of vector input. Here we provide another option for privacy
preserving product computation, stated as Algorithm 3. The
advantage of Algorithm 3 is that it can be very efficient for
some applications, when the finite field of input is small.

Before applying Algorithm 2, a pre-processing step is
needed to convert the input of each party into a small integer.

Assume party A holds integer M and party B holds integer
N , both M and N are in the same range −n < M ≤ n,
−n < N ≤ n (Recall that n is a small integer). Basically
it follows a similar idea as of Algorithm 2. After running
Algorithm 3, A and B get random numbers respectively which
are summed to M ·N .

Algorithm 3 Securely computing the product of two integers
Step 1: Party A generates a random number R and com-
putes M · i − R for each i, s.t. −n < i ≤ n. Note
mi = M · i − R. A encrypts each mi using ElGamal
scheme and gets E(mi, ri), where each ri is a new random
number. Then party A sends each E(mi, ri) to party B in
the increasing order of i.
Step 2: Party B picks E(mN , rN ). She rerandomizes it and
sends E(mN , r′) back to A, where r′ = rN + s, and s is
only known to party B.
Step 3: Party A partially decrypts E(mN , r′) and sends the
partially decrypted message to B.
Step 4: Party B finally decrypts the message (by doing par-
tial decryption on the already partially decrypted message)
to get mN = M ·N −R. Note R is only known to A and
mN is only known to B. Furthermore, mN + R = M ·N .

IV. SECURITY ANALYSIS

In this section, we explain why our algorithms are secure in
the semi-honest model. Recall that in semi-honest model, the
parties follow the protocol and may try to analyze what she
can see during the protocol execution. To guarantee security in
the semi-honest model, we must show that parties can learn
nothing beyond their outputs from the information they get
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throughout the protocol process4. A standard way to show this
is to construct a simulator which can simulate what the party
can see in the protocol given only the input and output of the
protocol for this party.

Since the privacy preserving back-propagation training (Al-
gorithm 1) uses Algorithm 2 and Algorithm 3 as building
blocks, we first analyze the security of Algorithm 2 and
Algorithm 3, and then we conduct a security analysis of
Algorithm 1 in the viewpoint of overall security level.

A. Security of Algorithm 2 and Algorithm 3

Before we discuss the security of computing piecewise lin-
ear sigmoid function (Algorithm 2), recall that the encryption
scheme, ElGamal, which we are using here is semantically
secure [31] and satisfies the properties discussed in the earlier
section. Since ElGamal is semantically secure, each ciphertext
can be simulated by a random ciphertext. Hence, we can con-
struct two simulators, for A and B in Algorithm 2, respectively.

In step 1, the simulator for A does what A should do in the
protocol. In step 2, the simulator for A generates a random
ciphertext to simulate the ciphertext A should receive. In step
3, again the simulator for A does what A should do in the
protocol. Since A does not observe anything in step 4, the
simulator for A does not need to simulate this step.

In step 1, the simulator for B generates random ciphertexts
to simulate the ciphertexts B should receive. In step 2, the
simulator for B does what B should do in the protocol. In
step 3, the simulator for B generates a random encryption of
the output of B in this algorithm to simulate the ciphertext B
should receive. In step 4, again the simulator for B does what
B should do in the protocol.

The simulators for Algorithm 3 can be constructed in the
same way as simulators for Algorithm 2.

B. Security of Algorithm 1

In Algorithm 1, the termination condition of training is
known to both parties, so the simulators can set up the
training loop for both parties. In each training round, most
of the message transmissions are taking place inside the calls
of Algorithm 2 and 3, except in step 3, where B and A
respectively receive ∆1w

o
ij , ∆2w

o
ij and ∆1w

h
jk,∆2w

h
jk. We

will first show that ∆1w
o
ij and ∆1w

h
jk can be simulated by the

simulator for party B, and then likewise ∆2w
o
ij and ∆2w

h
jk

can be simulated for party A.
In Section 2.1, ∆2w

o
ij is defined as (oi2−ti)hj2+r12+r22.

The variable hj2 can be simulated because of the fact that
Algorithm 2 is secure (as shown above). The variables r12 and
r22 can also be simulated based on the security of Algorithm 3.
Since oi2 and ti are part of the input of party B, ∆2w

o
ij can be

simulated for B by only looking at its own input. Meanwhile,

4The definition of security we use here is actually standard for a distributed
algorithm in the semi-honest model (see [35], in which a distributed algorithm
is called a “protocol”). Note that we do not use the definition of semantic
security, because it is for an encryption scheme (see [35], in which an
encryption scheme is called a “cryptosystem”), not for a distributed algorithm.
In this paper, we build a distributed learning algorithm and study its security.
Hence, we have to use this definition, not the definition of semantic security.

since weights are output of the training algorithm and η is
known to both parties as input, by the weight update rule,
wo

ij ← wo
ij − η(∆1w

o
ij +∆2w

o
ij), ∆1w

o
ij can be simulated for

party B. The simulation of ∆1w
h
jk for party B is likewise.

Similarly, we can construct the simulator for party A to
simulate ∆2w

o
ij and ∆2w

h
jk.

Note that, in the above, the simulators for Algorithm 1
integrates the simulators for Algorithm 2 and 3 when the two
component algorithms are called together with the simulations
of α1, α2, β1, β2 in step 3. This completes the construction of
simulators for Algorithm 1.

V. ANALYSIS OF ALGORITHM COMPLEXITY AND
ACCURACY LOSS

A. Complexity analysis

In this subsection, we analyze the computation and com-
munication complexity of our privacy preserving back-
propagation algorithms. First we present the computation and
communication cost in the two component algorithms(i.e.,
for computing piecewise linear sigmoid function and product
computing) and then use the result to further analyze the
running time of Algorithm 1.

1) Securely computing the piecewise linear sigmoid func-
tion: In step 1 of Algorithm 2, there are 2 × n encryptions
by party A, where n is the parameter in piecewise linear
sigmoid function definition. In step 2, 1 rerandomization is
conducted. In step 3 and step 4, party A and party B perform
one partial decryption respectively. So the total computation
cost in Algorithm 2 is T = (2n + 1)C + 2D, where C is the
cost of encryption and D is the cost of partial description.

Similarly, the total computation cost in Algorithm 3 is also
(2n + 1)C + 2D.

2) Execution time of one round training: The running time
of one round of back-propagation training consists of two
parts, time for feedforward stage and for back-propagation
stage.

We first consider the execution time of non-privacy pre-
serving back-propagation algorithm. When executing a non-
privacy-preserving fully-connected neural network with a−b−
c configuration defined earlier in this paper, one multiplication
operation and one addition operation are needed for each
connecting weight. Besides, we also need to call activation
function one time for each hidden layer node. Therefore the
running time for feeding forward is (ab+bc)S +b×G, where
S is the cost for one multiplication and one addition, G is the
cost for computing activation function, and a, b, c represent the
number of units in each layer, respectively.

In step 1 of Algorithm 1, the major difference from the non-
privacy-preserving version is the execution of Algorithm2 in
(1.2) instead of calling the sigmoid function. In (1.3), one more
addition and multiplication is needed for each connection since
the value of each hidden layer unit of activation is splitted
by the two parties. But since the party A and B can run the
algorithm in parallel, this does not increase the execution time
of the whole algorithm. With the time cost for Algorithm 2
is T , we get the running time in feedforward step is (ab +
bc)S + b× T .
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Now we consider the back-propagation stage. In step (2.1)
there are two calls of the Algorithm 3 for each hidden-output
connection. Time for one multiplication and three additions
is also needed. Because multiplication time is much more
significant than addition time, for simplicity, we also use S
to denote the time for one multiplication and three additions.
In step (2.2), Algorithm 3 are called 4 times, and thus the
time for multiplications and additions is (c + 4)S. The total
execution time for back-propagation is bc(2×T +S)+ab(4×
T + 4× S + c× S) = (2bc + 4ab)T + (bc + 4ab + abc)S.

Combining the time for the two stages, we obtain the run-
ning time of one round privacy preserving back-propagation
learning, (5ab + 2bc + abc)S + (2bc + 4ab + b)T .

3) Communication overhead: In Algorithm 2 and 3, there
are 2n + 2 messages have been passed between party A and
B. With each message being s bits long, the communication
overhead is (2n + 2)× s. The total communication overhead
of one round learning in Algorithm 1 is the overhead caused
by calling algorithm 2 and 3, plus 2 × s in step 3, which is
(b + 2bc + 4ab)(2n + 2)s + 2s.

B. Analysis of accuracy loss
There are two places in our algorithms where we introduce

approximation for the goal of privacy. One is that the sigmoid
function used in the neuron computing is replaced by a piece-
wise linear function. The other approximation is introduced
by mapping the real numbers to fixed-point representations
to enable the cryptographic operations in Algorithm 2 and
Algorithm 3. This is necessary in that intermediate results,
for example the values of neurons, are represented as real
numbers in normal neural network learning, but cryptographic
operations are on discrete finite fields. We will empirically
evaluate the impact of these two sources of approximation on
the accuracy loss of our neural network learning algorithm in
Section VI. Below we give a brief theoretical analysis of the
accuracy loss caused by the fixed-point representations.

1) Error in truncation: Suppose that the system, in which
neural network is implemented, uses µ bits for representation
of real numbers. Recall that before applying Algorithm 2 and
Algorithm 3, we preprocess the input numbers into finite field
that is suitable for crytographic operations. Assume that we
truncate the µ-bit numbers by chopping off the lowest ν bits
and leaves the new lowest order bit unchanged. The precision
error ratio can be bounded by ε = 2µ−ν .

2) Error in Feeding-forward stage: In the feed forward
stage of Algorithm 1, since only Algorithm2 is applied once,
the error ratio bound introduced by number conversion for
cryptographic operations is ε.

3) Error in Output-layer Delta: In Step (2.1) of Algorithm
1, ∆1w

o
ij = (oi1 − ti)hj1 + r11 + r21, in which oi1 and hj1

are already approximated in preceding operations. Therefore,
the error ratio bound for ∆1w

o
ij is (1+ ε)2−1. We can obtain

the same result for ∆2w
o
ij .

4) Error in Hidden-layer Delta: In Step (2.2) of Algorithm
1, Algorithm 3 is applied 4 times sequentially. The error ratio
bound for ∆1w

h
jk and ∆2w

h
jk is (1 + ε)4 − 1.

5) Error in Weight update: In Step (3) of Algorithm 1, the
update of weights introduces no successive error.

TABLE I
DATASETS AND PARAMETERS

Dataset Sample Class Architecture Epochs Learning Rate
kr-vs-kp 3196 2 36− 15− 1 20 0.1

Iris 150 3 4− 5− 3 80 0.1
diabetes 768 2 8− 12− 1 40 0.2
Sonar 104 2 60− 6− 2 150 0.1

Landsat 6435 6 36− 3− 6 12 0.1

VI. EVALUATION

In this section, we perform experiments to measure the
accuracy and overheads of our algorithms. We have two sets
of experiments on the accuracy. In the first set, we compare
the testing error rates in privacy-preserving and non-privacy-
preserving cases. In the second set, we distinguish two types of
approximation introduced by our algorithms: piece-wise linear
approximation of sigmoid function and conversion of real
numbers to fixed-point numbers when applying cryptographic
algorithms, and analyze how they affect the accuracy of the
back-propagation neural networks model. Our experiments on
overheads cover the computation and communication costs as
well as comparisons with an alternative solution using general
purpose secure computation.

A. Setup

The algorithms are implemented in C++ and compiled with
g++ version 3.2.3. The experiments were executed on a Linux
(Red Hat 7.1) workstation with dual 1.6 GHz Intel processors
and 1 Gb of memory. The programs used GNU Multiple
Precision Arithmetic Library in implementation of ElGamal
scheme. The results shown below are the average of 100 runs.

The testing datasets are from UCI data set repository [36].
We choose a variety of datasets, kr-vs-kp, Iris, Pima-indian-
diabetes (diabetes), Sonar and Landsat with different charac-
teristics, in the number of features, the number of labeled
classes, the size of datasets and data distributions. Different
neural network models are chosen for varying datasets. Table I
shows the architecture and training parameters used in our
neural network model. We choose the number of hidden nodes
based on the number of input and output nodes. This choice
is based on the criteria of having at least one hidden unit
per output, at least one hidden unit for every ten inputs, and
five hidden units being a minimum. Weights are initialized
as uniformly random values in the range [-0.1, 0.1]. Feature
values in each dataset are normalized between 0 and 1. The
privacy preserving back-propagation neural networks have the
same parameters as the non-privacy-preserving version. For
privacy preserving version, we use the key length of 512 bits.

B. Accuracy loss

First we measure the accuracy loss of our privacy preserving
algorithms when the neural network is trained with a fixed
number of epochs (shown in Table I). The number of epochs
set is based both on the number of examples and on the
parameters (i.e., topology) of the network. Specifically, we
use 80 epochs for small problems involving fewer than 250
examples; 40 epochs for the mid-sized problems containing
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TABLE II
TEST ERROR RATES COMPARISON

Non-privacy-preserving Privacy-preserving
Dataset Version Algorithm 1
kr-vs-kp 12.5% 15.5%

Iris 14.17% 19.34%
Pima-indian-diabetes 34.71% 38.43%

Sonar 18.26% 21.42%
Landsat 4.12% 5.48%
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Fig. 1. Error Rates on Training Epochs

between 250 to 500 examples; and 20 epochs for larger
problems.

Table II shows testing set error rates for both non-privacy-
preserving back-propagation neural network and privacy pre-
serving back-propagation neural networks.

Since the numbers of training epochs are fixed, the global
error minimum may not be achieved when the training ends.
That explains the relatively high error rates for both privacy-
preserving training and the non-privacy-preserving case. From
Table II, we can see that for experiments on different datasets,
the increase of test error rates by privacy-preserving algorithm
remain in small range, 1.26% for Landsat to 5.17% for Iris.

We extend the experiments by varying the number of
epochs and evaluate the accuracy of privacy preserving back-
propagation neural networks on different training epochs. For
clarity of presentation, we only show the results of dataset Iris
and kr-vs-kp in Figure 1. The result of other datasets have the
similar characteristics but with different epochs scales. From
Figure 1, we can see clear that the error rates are decreasing
when the number of epochs increases. Furthermore, the error
rates of privacy preserving back-propagation network decrease
faster than the standard algorithm, which means increasing the
number of epochs can help to reduce the accuracy loss.

C. Effects of two types of approximation on accuracy

In this set of experiments, we aim to analyze the causes
of accuracy loss in our privacy preserving neural network
learning algorithms.

Recall that we have two types of accuracy loss, introduced
by sigmoid function approximation and mapping real numbers
to fixed point representation respectively. We distinguish and

TABLE III
ERROR RATES BY DIFFERENT APPROXIMATIONS

Dataset Non-P.P. Sigmoid Apx. Algorithm 1
kr-vs-kp 11.3% 12.2% 13.98%

Iris 14.10% 14.80% 17.04%
Pima-indian-diabetes 33.11% 34.98% 37.28%

Sonar 18.01% 18.85% 21.02%
Landsat 4.10% 4.56% 5.48%

evaluate the effects of these two approximation types by per-
forming a back-propagation learning on approximated piece-
wise linear sigmoid function, without cryptographic operations
(we call it sigmoid approximation test). This will eliminate
the security of the learning, but note that the purpose of this
modification is to measure the two kinds of accuracy loss, and
thus we have to separate them.

Table III displays the training error rates and testing error
rates comparison of backpropatation learning without privacy
concern, versus sigmoid approximation test and privacy pre-
serving learning with two types of approximations. In this set
of experiments, we make the training process stop when the
error is less than the error tolerance threshold 0.1 and if the
the number of epochs reaches the maximum number of 1000
before converging, the training also stops. We call the latter
case a failure case of training.

From Table III, we can observe that both of the approx-
imation types cause a certain amount of accuracy loss. The
approximation brought by piecewise linear sigmoid function
is less significant than by real numbers conversion to fixed-
point numbers. For example, in testing of dataset Iris, sigmoid
function approximation only contributes 0.70% out of 2.96%
in the total accuracy loss while, while conversion of real
numbers to fixed-point numbers causes the remaining accuracy
loss, which is 2.26%.

D. Computation and Communication overhead

We now examine the computation and communication over-
head of our algorithm to verify that it is light-weight and
practical. In particular, we measure and record the overall
time for privacy computation and the time for communication
between party A and B in the entire training process.

Since we are the first to study privacy preserving neural
network learning with vertically partitioned data, no other
complete algorithm is now available for this problem. Conse-
quently, in order to demonstrate that our algorithm is efficient
among possible cryptographic privacy preserving solutions, we
consider a modification of Algorithm 1, in which we replace
the calls to Algorithms 2 and 3 with executions of Yao’s
general-purpose two party secure computation protocol [9].
(We utilize the Fairplay secure function evaluation system [37]
in our implementation of Yao’s protocol.) In the setting
described in Section VI-A, we compare our original Algorithm
1 with this modified algorithm in terms of computation and
communication overheads.

Table IV shows the computation and communication over-
head measurements (in minutes) of our algorithm and the
modified algorithm. It is clear that, in experiments on the
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TABLE IV
COMPUTATION OVERHEAD AND COMMUNICATION OVERHEAD

Our Algorithm Modified Algorithm
Dataset Comp. Comm. Comp. Comm.
kr-vs-kp 63.49 39.20 1778.29 443.43

Iris 10.94 6.23 310.62 75.19
diabetes 24.19 14.24 628.32 169.33
Sonar 317.43 197.37 8868.04 2193.13

Landsat 8.14 4.92 211.92 56.98

TABLE V
COMPUTATION OVERHEAD AND COMMUNICATION OVERHEAD

COMPARISON WITH [27] AND [28]

Overhead Our Algoirthm Protocol in [27] Protocol in [28]
Computation 63.49 > 1057.10 > 111.65

Communication 39.20 > 219.24 > 71.38

five different datasets, our algorithm is significantly more
efficient than the algorithm integrated with Yao’s protocol.
More precisely, our algorithm is 25.97 − 28.39 times more
efficient in terms of computation overhead, and 11.11−12.06
times more efficient in terms of communication overhead.

Now we compare the computation and communication over-
head of our work with [27] and [28]. As we have mentioned,
the objectives of [27] and [28] are different from ours; the
authors of [27] and [28] have not implemented their protocols;
neither have they performed any experiment. Consequently,
in order to compare their overhead with ours, we have to
implement these protocols by ourselves and measure their
overheads.

Nevertheless, for practical purposes, we do not implement
and measure the complete protocols of [27] and [28]. The
reason is that these protocols are so slow in practice that even
parts of them have significantly more overheads than ours. So
measuring the overheads of such parts is sufficient to demon-
strate the better efficiency of our algorithm. Furthermore, if
we measure the overheads of the complete protocols, [27] and
[28] (especially [27]) will take more time than we can afford.

Hence, we have implemented a key compnent of both [27]
and [28], namely secure evaluation of the activation function.
When we measure the overheads of [27] and [28], we count
the accumulative overhead of secure activation function evalu-
ations only, and ignore the overhead of all other operations. We
compare the measured partial overhead of [27] and [28] with
the total overhead of our own algorithm, which includes the
computation and communication overheads of all components.
Table V shows the comparison results when we train the neural
network using dataset kr-vs-kp. We put the symbol “>” before
the measured partial overheads of [27] and [28], to emphasize
that these are not the total overheads. As we can see, for
both [27] and [28], the measured partial overheads are already
significantly more than the total overhead of our protocol,
either in terms of computation or in terms of communication.
Therefore, we can safely claim that our algorithm is more
efficient than the protocols in [27] and [28].

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a privacy preserving algorithm
for back-propagation neural network learning. The algorithm
guarantees privacy in a standard cryptographic model, the
semi-honest model. Although approximations are introduced
in the algorithm, the experiments on real world data show that
the amount of accuracy loss is reasonable.

Using our techniques, it should not be difficult to develop
the privacy preserving algorithms for back-propagation net-
work learning with three or more participants. In this paper
we have considered only the back-propagation neural network.
A future research topic is to extend our work to other types
of neural networks training.
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