
A Data-Centric Approach to Insider Attack

Detection in Database Systems

Sunu Mathew⋆1, Michalis Petropoulos2,
Hung Q. Ngo2, and Shambhu Upadhyaya2

1 Information Security,
Amazon.com Inc., Seattle WA 98104, USA,

smathew@amazon.com,
2 Computer Science and Engineering,

University at Buffalo, Buffalo NY 14260, USA,
(mpetropo, hungngo, shambhu)@buffalo.edu

Abstract. The insider threat against database management systems is
a dangerous security problem. Authorized users may abuse legitimate
privileges to masquerade as other users or to maliciously harvest data.
We propose a new direction to address this problem. We model users’
access patterns by profiling the data points that users access, in contrast
to analyzing the query expressions in prior approaches. Our data-centric
approach is based on the key observation that query syntax alone is a
poor discriminator of user intent, which is much better rendered by what

is accessed. We present a feature-extraction method to model users’ ac-
cess patterns. Statistical learning algorithms are trained and tested using
data from a real Graduate Admission database. Experimental results in-
dicate that the technique is very effective, accurate, and is promising
in complementing existing database security solutions. Practical perfor-
mance issues are also addressed.

1 Introduction

Ensuring the security and privacy of data assets is a crucial and very difficult
problem in our modern networked world. Relational database management sys-
tems (RDBMS) are the fundamental means of data organization, storage and
access in most organizations, services, and applications. Naturally, the ubiquity
of RDBMSs led to the prevalence of security threats against these systems. An
intruder from the outside, for example, may be able to gain unauthorized ac-
cess to data by sending carefully crafted queries to a back-end database of a
Web application. This class of so-called SQL injection attacks are well-known
and well-documented, yet still very dangerous [1]. They can be mitigated by
adopting suitable safeguards, for example, by adopting defensive programming
techniques and by using prepared statements [2].

An insider attack against an RDBMS, however, is much more difficult to
detect, and potentially much more dangerous [29, 7, 14]. According to the most

⋆ Work done as a graduate student at the University at Buffalo.



recent U.S. Secret Service/CERT/Microsoft E-Crime report, insider attacks con-
stitute 34% of all surveyed attacks (outsiders constitute 37%, and the remaining
29% have unknown sources). For example, insiders to an organization such as
(former) employees or system administrators might abuse their already existing
privileges to conduct masquerading, data harvesting, or simply sabotage attacks
[11].

More formally, the RAND workshop devoted to insider threats [8] defined an
insider as “someone with access, privilege or knowledge of information systems
and services,” and the insider threat problem as “malevolent (or possibly inadver-
tent) actions by an already trusted person with access to sensitive information
and information systems.” Examples of insider attacks include masquerading
and privilege abuse which are well-known threats in the financial, corporate and
military domains; attackers may abuse legitimate privileges to conduct snooping
or data-harvesting [29] with malicious intent (e.g., espionage).

1.1 Main Ideas

By definition, detecting insider attacks by specifying explicit rules or policies is
a moot point: an insider is always defined relative to a set of policies. Conse-
quently, we believe that the most effective method to deal with the insider threat
problem is to statistically profile normal users’ (computing) behaviors and raise
a flag when a user deviates from his/her routine. Intuitively, a good statistical
profiler should be able to detect non-stealthy sabotage attacks, quick data har-
vesting attacks, or masquerading attacks, because the computing footprints of
those actions should be significantly different from day-to-day activities, from a
statistical point of view.

The user profiling idea for insider threat detection in particular, and anomaly
detection in general, is certainly not new (see, e.g., [30]). In the context of an
RDBMS (or any problem requiring statistical profiling), the novelty is in the
answers to two critical questions: (1) what is a user profile (and how to construct
it)? and (2) which machine-learning techniques and models should we adopt so
that the profiles are practically useful for the detection problem? By “useful” we
mean some relevant classes of insider attacks can be detected to a good degree
of accuracy. By “practical” we mean the method can be deployed and perform
effectively in a real RDBMS. The novelty and contributions of this paper come
from answering the above two questions.

Prior studies (e.g., [13, 21, 17, 34, 31, 18]) have led to the development of intru-
sion detection systems (IDS) that aimed to protect databases from attacks. Our
contribution is complementary, and is focused specifically on analyzing users’
interactions with an RDBMS by means of database queries. Analysis of other
behavioral features useful in insider threat detection (location of the attacker, in-
formational correlation between consecutive queries, and temporal features such
as time between queries, duration of session, etc.) is beyond the scope of this
paper, and is considered future work.

Perhaps the most natural user “profile” is the set of SQL queries a user issues
daily to the database, or more generally, some feature vectors representing past



queries. Indeed, [18] relied on the SQL-expression syntax of queries to construct
user profiles. This approach has the advantage that the query processing of the
insider detection system is computationally light: a new query is analyzed by
some statistical engine; only queries accepted by the engine are then issued to
the database. However, as we shall later demonstrate in this paper, this syntax-
centric view is ineffective and error-prone for database anomaly detection in
general, and for database insider threat detection, in particular. On the one hand,
queries may differ widely in syntax yet produce the same “normal” (i.e., good)
output, causing the syntax-based detection engine to generate false positives.
On the other hand, syntactically similar queries may produce vastly different
results, leading the syntax-based engine to generate false negatives.

Our main idea and also our conviction is that the best way to distinguish
normal vs. abnormal (or good vs. malicious) access patterns is to look directly
at what the user is trying to access – the result of the query itself – rather than
how he expresses it, i.e. the SQL expressions. In other words, this data-centric
approach values the semantics of the queries more than their syntax. When
a malicious insider tries to acquire new knowledge about data points and their
relationships, the data points accessed are necessarily different from the old (i.e.,
previously) accessed points. This deviation occurs in the data harvesting attacks
as well as in the masquerading attacks (e.g., when an intruder gains access to
an insider’s account by means of a compromised account).

1.2 Contributions

Our first contribution is the proposed data-centric viewpoint, which to the best
of our knowledge has not been studied in the database security and the insider
threat literature. Intuitively, the data-centric approach has the following advan-
tage: for an insider to evade our system, he has to generate queries producing
results that are statistically similar to the ones he would have gotten anyhow
with legitimate queries using his existing privileges, rendering the attempt at cir-
cumvention inconsequential. In contrast, in the syntax-based approach, queries
with similar syntax can give different results: the attacker may be able to craft
a “good-looking” malicious query bypassing the syntax-based detection engine
to access data he’s not supposed to access. This point is validated in Sections 3,
5 and 6.

The second contribution is a method to extract a feature vector from the
result set of a query, which is the core of our answer to question (1) above. The
dimension of the feature vector is only dependent on the database schema, but
independent of the size of the database. In particular, the dimensionality of a
query’s feature vector is independent of how large the result set of the query is.
This bounded dimensionality also partially addresses scalability and performance
concerns the acute reader might have had. Section 4 details the method.

The third contribution is to address the following potential performance prob-
lem: a query has to be executed before the decision can be made on whether or
not it is malicious. What if a malicious query asks for hundreds of gigabytes of
data? Will the query have to be executed, and will our detection engine have to



process this huge “result set” before detecting the anomaly? These legitimate
concerns are within the scope of question (2) above. We will show that this
performance-accuracy tradeoff is not at all as bad as it seems at first glance. We
experimentally show that a representative constant number of result tuples per
query is sufficient for the detection engine to perform well, especially when the
right statistical features and distance function (between normal and abnormal
result sets) are chosen. Furthermore, these (constant number of) result tuples
can be computed efficiently by leveraging the pipelined query execution model
of commercial RDBMS’s.

The fourth contribution, presented in Section 5, is a taxonomy of anomalous
database access patterns, which is needed to systematically evaluate the accuracy
of both the data-centric and the syntax-centric approaches.

The fifth contribution is a relatively extensive evaluation of several statis-
tical learning algorithms using the data-centric approach. Specifically, for the
masquerade detection problem on a real Graduate Admission data set, we found
that k-means clustering works very well, with detection rates of around 95-99%.
For detecting data harvesting, we develop an outlier detection method based
on attribute deviation (a sort of clustering using the L∞-norm) which performs
well. Furthermore, this method is suitable when the features are only extracted
from a constant number of tuples of the result set, thus making it practical.

In summary, though our results are derived in the limited context of insider
threat detection with respect to database security, this paper is a first step in
exploring the larger potential of the data-centric approach in anomaly detection.

Paper Outline The rest of this paper is organized as follows. Section 2 sur-
veys background and related work. Section 3 demonstrates the limitations of the
syntax-based approach, thus motivating the data-centric approach introduced in
Section 4. Section 5 gives a brief taxonomy of query anomalies facilitating the
experiments presented in Section 6. We further discuss our solution, its implica-
tions, and future research directions in Section 7.

2 Related Work

IDSs with direct or indirect focus on databases have been presented in the lit-
erature [23, 35]. In [22], temporal properties of data are utilized for intrusion
detection in applications such as real-time stock trading. Anomaly detection
schemes dealing with SQL injection attacks in Web applications were studied
in [20, 34]. SQL injection attacks are a specific kind of database query anomaly
that is detected by our approach in a straightforward manner as we shall show.

Data correlation between transactions is used to aid anomaly detection in
[17]. Similarly, in [32], dependency between database attributes is used to gen-
erate rules based on which malicious transactions are identified. The DEMIDS
system [13] detects intrusions by building user profiles based on their working
scopes which consist of feature/value pairs representing their activities. These
features are typically based on syntactical analysis of the queries. A system to
detect database attacks by comparison with a set of known legitimate database



transactions is the focus of [21]; this is another syntax-based system where SQL
statements are summarized as regular expressions which are then considered to
be “fingerprints” for legitimate transactions. Yet another syntax-based approach
was considered in [27] for web databases, where fingerprints of all SQL statements
that an application can generate are profiled. A binary vector with length equal
to the number of fingerprints is used to build session profiles and aid in anomaly
detection. This approach made assumptions such as restricting the number of
distinct queries possible; these techniques may complement our approach in cases
where the assumptions are valid. In [15], database transactions are represented
by directed graphs describing execution paths (select, insert, delete etc.) and
these are used for malicious data access detection. This approach cannot handle
adhoc queries (as the authors themselves state) and works at the coarse-grained
transaction level as opposed to the fine-grained query level. Database session
identification is the focus of [36]: queries within a session are considered to be
related to each other, and an information theoretic metric (entropy) is used
to separate sessions; however, whole queries are used as the basic unit for n-
gram-statistical modeling of sessions. A multiagent based approach to database
intrusion detection is presented in [26]; relatively simple metrics such as access
frequency, object requests and utilization, and execution denials/violations are
used to audit user behavior.

Prior approaches in the literature that most resemble ours are [31] and [18].
The solution in [31] is similar in the use of statistical measurements; however the
focus of the approach is mainly on detecting anomalies in database modification
(e.g., inserts) rather than user queries. The query anomaly detection component
is mentioned only in passing and only a limited set of features (e.g., session du-
ration, number of tuples affected) are considered. The recent syntax-based work
in [18] has the same overall detection goals as our work: detection of anomalies
in database access by means of user queries. A primary focus on this paper will
be on exposing the limitations of syntax based detection schemes; the approach
in [18] will be used in this paper as a benchmark for evaluating the performance
of our approach.

3 Limitations of Syntax-Centric Approach

This section demonstrates that two syntactically similar queries may generate
vastly different results, and two syntactically distinct queries may give similar
results. Consequently, SQL expressions are poor discriminators of users’ intent.
For example, a syntax-based approach may model a query with a frequency
vector, each of whose coordinates counts the number of occurrences (or marks
the presence) of some keywords or mathematical operators [18].

Consider the following query:

SELECT p.product_name, p.product_id

FROM PRODUCT p

WHERE p.cost = 100 AND p.weight > 80;



A syntactical analysis of this query and subsequent feature extraction (e.g.,
[18]) might result in the following features for query data representation – SQL
Command – SELECT, Select Clause Relations – PRODUCT, Select Clause
Attributes – product name, product id, Where Clause Relation – PRODUCT,
Where Clause Attributes – cost, weight. Now consider the alternate query:

SELECT p.product_name, p.product_id

FROM PRODUCT p

WHERE p.cost > 100 AND p.weight = 80;

This query has the same syntax-based feature set as the previous one; how-
ever, the data tuples accessed in the two cases are vastly different.

Conversely, suppose we rewrite the first query as follows:

SELECT p.product_name, p.product_id

FROM PRODUCT p

WHERE p.cost = 100 AND p.weight > 80

AND p.product_name IS NOT NULL;

This query is syntactically different (three columns in the WHERE clause),
but produces the same result tuples as the first (under the reasonable assumption
that all products in the database have a valid product name). Most syntax-based
anomaly detection schemes are likely to flag this query as anomalous with respect
to the first.

Syntax analysis, even if very detailed (taking into account differences in the
operand difference between ‘=’ and ‘>’ in the above examples) is complicated
given the expressiveness of the SQL language, and involves determining query
equivalence, which is difficult to perform correctly. In fact, query containment and
equivalence is NP-complete for conjunctive queries and undecidable for queries
involving negation [10]. Our data-centric approach bypasses the complexities and
intricacies of syntax analysis.

4 Data-Centric User Profiles

A relational database often consists of multiple relations with attributes and
relationships specified by multiple primary key and foreign key constraints. One
can visualize a database as a single relation, called the Universal Relation [24],
incorporating the attribute information from all the relations in the database.

Our approach profiles users as follows: for each query we compute a statistical
“summary” of the query’s result tuples. The summary for a query is represented
by a vector of fixed dimension regardless of how large the query’s result tuple
set is. This way, past queries (i.e. normal queries) from a user can be intuitively
thought of as a “cluster” in some high dimensional space. We’d like to emphasize
that clustering is only one of several statistical learning technique we will adopt
for this problem. The term clustering is used here to give the reader an intuitive
sense of the model. When a new query arrives, if it “belongs” to the user’s
cluster, it will be classified as normal, and abnormal otherwise.



Table 1. Statistics Vector Format for Sample Database Schema

Database Schema S-Vector Features

Relation Attribute

Product.type(varchar) Product.type.ncount
Product.type.ndistinct

Product Product.cost.Min
Product.cost(numeric) Product.cost.Max

Product.cost.Mean
Product.cost.StdDev
Product.cost.Median

Our query summary vector is called an S-Vector. An S-Vector is a multi-
variate vector composed of real-valued features, each representing a statistical
measurement; it is defined by the columns of the universal relation correspond-
ing to a database. Each attribute of the universal relation contributes a number
of features to the S-Vector according to the following rules.

Numeric Attributes: each numeric attribute contributes the measurements
Min (value), Max (value), Mean, Median and Standard deviation.

Non-Numeric Attributes: the standard statistics do not make sense for non-
numeric attributes (e.g., char and varchar). For categorical attributes, one op-
tion is to expand a k-value attribute into k binary-valued attributes (value 1
if the category is represented in the set of result tuples and 0 otherwise) and
compute statistics on them as usual. However, the expansion of categorical at-
tributes may result in an S-vector that has far too many dimensions, affecting
the time-performance of the learner. We compromise by replacing each categori-
cal attribute with two numeric dimensions representing the total count of values,
as well as the number of distinct values for this attribute in the query result.

The S-Vector format for a database is determined by its schema; the value
of the S-Vector for a query is determined by executing the query and computing
the relevant attribute statistics based on the set of result tuples. Table 1 shows
the S-Vector format for a database consisting of a single relation. To illustrate
how an S-Vector value for a query is generated, consider the following query
executed against the database in Table 1:

SELECT p.cost

FROM PRODUCT p

WHERE p.type = ‘abc’;

For this query, the result schema consists of the single column Product.cost
and statistics computed on the result tuples are used to populate the Prod-

uct.Min, Product.Max, Product.Mean, Product.StdDev and Prod-

uct.Median features of the S-Vector format for the database – the result is the
S-Vector representation of this query.



5 A Data-Centric Taxonomy of Query Anomalies

In order to evaluate the effectiveness and accuracy of a threat detection engine,
a taxonomy of query anomalies can help us reason about potential solutions.
Subsequent experiments can analyze the performance of detection schemes with
respect to specific anomalies in light of this taxonomy. We shall classify query
anomalies based on how “far” the anomalous query is from a normal query. From
a data centric view point, two queries are represented by the two result sets, each
of which consists of the result schema (the columns) and the result tuples (the
rows). If the result schemas are (very) different, the two queries are different. If
the result schemas are similar, then we need to look into how different the result
tuples are. On this basis we classify query anomalies. Table 2 summarizes the
taxonomy.

Table 2. A Taxonomy of Query Anomalies

Anomaly Cases Types Detected by Detected by Attack Models
Syntax-Centric? Data-Centric?

Type 1 Yes Yes Masquerade
Different Schema/
Different Results
Type 2 (a) Distinct Syntax Yes Yes SQL-Injection
Similar Schema/ (b) Similar Syntax No Yes Data-Harvesting
Different Results
Type 3 (a) Different Syntax/ False Positive Yes Data Harvesting
Similar Schema/ Similar Semantics (True Positive)
Similar Results (b) Different Syntax/ Yes No (Rare)

Different Semantics

Type 1: Distinct Schema and Tuples Anomalous queries of this type
have result sets whose columns and rows are very different from those of normal
queries. Intuitively, anomalous queries of this type should be detected by both
the syntax-based and the data-centric approaches. The syntax-based approach
works because queries that differ in the result schema should have distinct SQL
expressions (especially in the SELECT clause). The data-centric approach works
because the S-vector of the anomalous query not only differ in the dimensions
(the result schema) but also in the magnitudes in each dimension (the statistics
of the result tuples). From the insider threat perspective, data harvesting and
masquerading can both result in this type of anomaly. As an example, consider
the following two queries to the database described in Table 1:

Query 1: SELECT p.cost

FROM PRODUCT p

WHERE p.type = ‘abc’;

Query 2: SELECT p.type

FROM PRODUCT p

WHERE p.cost < 100;

Distinguishing these kinds of queries has received the most attention in the
literature (e.g., [18]) especially in the context of masquerade detection and Role
Based Access Control (RBAC) [28], where different user roles are associated
with different authorizations and privilege levels. An attempt by one user-role



to execute a query associated with another role indicates anomalous behavior
and a possible attempt at masquerade. Syntax-based anomaly detection schemes
have been shown to perform well for this case and we experimentally show later
that data-centric schemes are also equally effective.

Type 2: Similar Schema, Distinct Tuples Anomalous queries of this
type have result sets whose columns are similar to normal queries, but whose
rows are statistically different. The syntax of type-2 anomalous queries might be
similar to or different from normal queries. For example, consider the following
normal query:

SELECT *

FROM PRODUCT p

WHERE p.cost = 100;

Execution of this query results in the schema (p.type, p.cost) and data
corresponding to the WHERE condition p.cost = 100. On the one hand, the fol-
lowing type-2 anomalous query has the same result schema as the normal one
with a statistically different result tuple-set (matching the additional constraint
of the product type):

SELECT *

FROM PRODUCT p

WHERE p.cost < 100 AND p.type = ‘abc‘;

The SQL expression syntax is also distinctly different from the normal query.
The WHERE clause has an additional attribute that is checked (p.type) com-
pared to the previous query. On the other hand, the following type-2 anomalous
query has the same result schema and also similar syntax as the normal query:

SELECT *

FROM PRODUCT p

WHERE p.cost < 100 AND p.cost > 100;

Yet the result tuples are the complement of that of the normal query. Thus, we
further classify type-2 anomalous queries into type-2a and type-2b, where type-
2a contains type-2 anomalous queries whose syntax are also distinct from normal
ones, and type-2b contains the rest. The intuition is that a syntax-based scheme
such as that in [18] is unlikely to be able to detect type-2b anomalous queries.
Indeed, the scheme in [18] represents the above type-2b query variation and
the original example query identically. Furthermore, type-2b anomalous queries
can be rewritten in multiple ways (e.g. p.cost != 100), varying combinations
of constants, arithmetic and logical operators; even very detailed syntax-based
models may be hard-pressed to consider all variations. We will show that data-
centric schemes are likely able to detect both of these anomalous types.

From the insider threat perspective, data harvesting and masquerading can
both result in type-2 anomaly. Another example of a well-known attack class
that may fall in this category is SQL injection since a typical attack is one that
injects input causing condition checks to be bypassed resulting in the output of



all tuples – e.g., a successful exploit of the first example above may lead to the
execution of:

SELECT *

FROM PRODUCT p

WHERE 1;

Type 3: Similar Schema and Tuples A query whose execution results in
a similar schema and tuples as a normal one is considered to be similar from a
data-centric viewpoint. Clearly, if the queries also have the same syntax, then
their resulting schemas and tuples are the same and they are identical from both
the data-centric and syntax-centric view.

The interesting case arises when a query producing the same result as a
normal query is syntactically different from the normal query. The question is,
should we consider such a query “anomalous”?

On the one hand, it seems to be obvious that a user accessing the same data
schema and tuples as those in his normal access patterns should not be flagged
as malicious regardless of how different the syntax of the queries he issued. For
example, the following two queries should be considered identical:

SELECT p.type

FROM PRODUCT p

WHERE p.cost < 100;

SELECT p.type

FROM PRODUCT p

WHERE p.cost < 100 AND p.type IN (

SELECT q.type

FROM PRODUCT q

);

The two queries have identical outputs, semantics, and thus user intent. We
will refer to an “anomalous” query of this type a type-3a query. Note again that
“anomalous” is not the same as “malicious.” Our approach will not raise a red
flag, while the syntax-based approach would issue a false positive.

On the other hand, two queries resulting in the same output might actually
reveal more information than what is in the output. To see this, we have to look
a little deeper into the semantics of the queries. Consider the following query in
relation to the ones from the previous paragraph.

SELECT p.type

FROM PRODUCT p

WHERE true;

Now assume, for the sake of illustration, that the attacker is attempting to see
all product types (data harvesting). If the above query returns more (or different
tuples) with respect to the first example, then the data-centric approach should,
conceptually detect this. But in the rare case when the result tuples are exactly
the same, this would (as expected) be permitted by the data-centric approach.
However, the attacker has now gained the additional information (based on his
results from the query from the previous paragraph), that all product types in
the database cost less than 100, and has refined his knowledge regarding some
entity. We call to this type of anomalous query type-3b.



This kind of successive knowledge accrual has received much interest in the
areas of privacy preserving data mining and query auditing ([4, 19]). The attack
here arises from information refinement through temporal interaction between a
user and a database and not from a property of the query itself (i.e., its syntax
or result data). Exploiting temporal features from a data-centric viewpoint is an
important future research direction of ours. It should be noted, however, that it is
difficult for an attacker to intentionally exploit this condition, since presumably
he is unable to predict the nature of query output to ensure that result statistics
are unchanged from a normal query. In any case, addressing this type of attacks
is beyond the scope of this paper.

6 Experimental Validation

6.1 The Test Environment

The test environment consists of a real and currently active web application
for Graduate Student Admissions (called GradVote) that relies on a Postgresql
database at the back-end. Users of the system query the database primarily via
the web application. The users fall into several roles, including Chair, Faculty
and Staff.

The database schema consists of 20 relations with multiple (over 20 for some
tables) numeric and non-numeric attributes and 39 multi-level views (i.e., the
views refer to base relations as well as to other views). The training and testing
datasets consist of tens of thousands user queries labeled both by individual user-
name as well as by user-role. These views are significantly complex, possessing
multiple subqueries, complex joins and statistical attributes.

Our system, QStatProfiler, is positioned in the middle of the interaction
channel between the application and the database. It observes the queries to the
database as well as the results returned to the application. As queries are submit-
ted to the database and result tuples are returned, QStatProfiler simultaneously
computes query statistics and the S-vectors for the queries. QStatProfiler is flex-
ible and can accommodate a variety of machine learning/clustering algorithms.
We shall elaborate on different algorithms and anomaly detection goals later.

Query Filtering: The first task of QStatProfiler is profiling users or roles. It is
thus necessary to ignore queries that are are common for all users. For example,
the application may issue a query to the database to obtain the currently active
list of users, or the time-line for a particular activity, and so on. These queries
may sometimes be generated as part of application startup. This set queries is
well-known a priori, since they may be embedded in the application code and can
be ignored while profiling. In our case, we maintain a list of url tags that indicate
common application queries, called Framework Queries by QStatProfiler.

Query Parsing and Unfolding: This component is concerned with obtaining
the mapping between the schema of the result set and the overall schema of the
database. The syntax of a user query may not refer directly to elements of the
base database schema (i.e., base relations and their attributes). References may



be made to views that might refer to other views; the use of aliases and in-line
subquery definitions can complicate the task of schema mapping. QStatProfiler
uses a query parsing component that is tailored to the Postgresql SQL syntax.
Query parse trees are constructed and analyzed to determine the subset of the
database relations and attributes that are present in the result tuples. The output
of this phase is thus a set of relations and attributes that describe the result
tuples, from which S-vectors are constructed.

6.2 Approximating S-vectors

As alluded to earlier, having to execute a query before classifying it as anomalous
is a legitimate performance concern – we address this issue in this section.

First, we argue that the approach does not impose significant additional bur-
den to the database server. In most application environments (e.g., web database
applications), execution of database queries is part of typical application func-
tion. For example, a user might submit queries through a web form; the queries
are executed at a remote database server and the results are made available to
the application. Our system operates as a passive component between the appli-
cation and the database server, observing queries and the corresponding results
without disrupting normal functioning. The database does not experience any
additional load due to the anomaly detection system; the computational cost
of calculating result statistics falls on a different host that runs the ID system
(QStatProfiler).

Second, the data-centric approach needs to see some data, necessitating some
performance penalty if we compare it to the syntax-centric approach on a mali-
cious query that the syntax-centric approach is able to detect (a true positive!).
However, as we shall see, the execution of one pipelined round in the RDBMS is
sufficient for the data-centric engine to perform well. The extra burden put on
the server is minimal, and is only marginally worse than the syntax-centric ap-
proach when that approach produces a true positive while ours produces a false
negative (type-3b queries, e.g., which are difficult for attackers to construct).
This marginal penalty is more than offset by queries on which our approach
produces a true positive while the syntax-based approach gives a false negative
(type-2b queries, e.g., which are easy for attackers to construct).

We propose to utilize only k tuples from the result set to build the corre-
sponding S-vector. We tested two ways to choose k tuples from a result set.

Initial-k tuples: Only the initial k tuples in the result set are used to ap-
proximate the entire result set. Statistics computed from these tuples are used
to generate the S-Vector representation of the query. As soon as the S-Vector is
classified as anomalous, we can stop the rest of the pipelined rounds from the
database, avoiding extra execution overheads.

Random–k tuples: k tuples are chosen at random from the complete result
set – the S-vector of these k tuples are computed to represent the result set. This
approach is expected to produce better accuracy as compared to the initial-k
approach as it is not likely to be sensitive to specific orderings of the result tuples
by the database (this is especially important if the SQL query contains ‘ORDER



Table 3. Detection Percentage (%) – Type 1 Anomalies (Role Masquerade)

Syntax-Centric Data-Centric
Roles Algorithm C M F S-V S-V S-V S-V S-V S-V S-V

quip. quip. quip. (all) I(20) R(20) I(10) R(10) I(5) R(5)
Chair N-Bayes 81.67 85.33 75 85 85 82.67 78.33 77 81.67 90
vs. Dec. Tree 88 87.67 87.67 96.33 88.3 88.3 89 88.67 88.67 88.67

Faculty SVM 83.3 81 87.67 82.33 74.67 77 71.33 75.67 68 74.33
Clustering 73.3 72 65.67 92 92.67 92.33 94 94 92.67 93.33

Chair N-Bayes 58 93.5 95.5 60.5 59 60.5 62 57.5 62.5 60.5
vs. Dec. Tree 75 88 96 95.5 92.5 96 96 93 95 92.5

Staff SVM 51.5 84.5 96 80 84 85.5 78.5 81.5 85.5 82
Clustering 88.5 85.5 90.5 91.5 99 96 98.5 95 100 96

Faculty N-Bayes 84.33 90.67 93 58.67 61.3 60.3 60.3 59.3 63 60
vs. Dec. Tree 90 93.67 95.67 89.3 92.3 91.67 92 93.67 91.33 91.67

Staff SVM 87 93 95.67 69.67 71.67 71 69.33 72 68.67 72
Clustering 78.7 73.3 78 99 100 99.6 99.3 99.3 100 99.3

BY’ clauses). Fortunately, we show that our choice of the distance function seems
to be insensitive to result set ordering, as long as the set is not too small.

6.3 Detecting Type 1 and 2a Anomalies, and Masquerade Attacks

This section will show that the data-centric approach works slightly better than
the syntax-centric approach for type 1 and type 2a anomalies. The fact that both
approaches work well is to be expected by definition, because both the syntax
and the query result statistics are different in type 1 and type 2a anomalies. The
syntax-centric scheme in [18] has been shown to perform well in detecting role-
based anomalies. Because the results are similar and due to space limitation, we
will present only the type-1 anomaly results. Our experiments are also aimed at
evaluating the accuracy of both approaches in detecting role masquerade attacks.
Recall that each query for GradVote comes with a user role, and the execution of
a typical query in one role by a user with a different role constitutes an anomaly.

Syntax-Centric Features: For the sake of completeness, we briefly summarize
the syntax-centric data formats of [18]. Three representations are considered:
Crude (C-quiplet), Medium (M-quiplet), and Fine (F-quiplet). C-quiplet is a
coarse-grained representation consisting of the SQL-command, counts of pro-
jected relations, projected attributes, selected relations, and selected attributes.
M-quiplet is a medium-grained format recording the SQL command, a binary
vector of relations included in the projection clause, an integer vector denoting
the number of projected attributes from each relation, a binary vector of rela-
tions included in the selection clause, and an integer vector counting the number
of selected attributes from each relation. F-quiplet is fine-grained, differing from
the M-quiplet in that instead of a count of attributes in each relation for the
selection and projection clauses, a binary value is used to explicitly indicate the
presence or absence of each attribute in a relation in the corresponding clauses.

Test Setup: The available dataset of queries is labeled by the roles Staff, Fac-
ulty, and Chair, in addition to Framework, for the common application-generated
queries. The query set is randomized and separated into Train and Test sets of



Table 4. Detection Percentage (%) – Type 2b Anomalies (Data Harvesting Attacks)

Syntax-Centric Data-Centric
Algorithm C M F S-V S-V S-V S-V S-V S-V S-V

quiplet quiplet quiplet (all) I(20) R(20) I(10) R(10) I(5) R(5)

Cluster Detection 23.5 26.4 17.64 83.87 12 67.7 6.4 45.1 6.4 35.4
Outlier False

Positive 14.47 11.84 15.8 10.5 3.9 6.5 3.9 5.2 2.6 6.6

Attrib Detection 0 17.64 2.9 87 87 87 87 87 12.9 64.5
Deviation False

Positive 0 4.8 4.8 22.6 26 15 23.8 15.8 23.8 20.4

1000 and 300 queries, respectively. Four query data representations are tested:
our S-Vector (dimensionality 1638) and the syntax-centric C-quiplet (dimen-
sionality 5), M-quiplet (dimensionality 73), and F-quiplet (dimensionality 1187).
Four supervised learning algorithms are tested with each of these feature sets:
Naive Bayes, Decision Tree Classifier, Support Vector Machines, and Euclidean
k-means clustering (see, e.g., [6]).

The results for the binary classifiers for masquerade detection are shown in
Table 3 (the best performance for each format with respect to separating user
roles is shown in boldface). In the table, I(k) and R(k) denote the Initial-k and
Random-k S-Vector approximations. There are two main results. First, the per-
formance of the S-Vector based detection using k-mean clustering is virtually
uniformly better than the syntax-based schemes. In many cases, the detection
rates are approaching 100%. Note also that, the false positive rates is the com-
plement of the entries in the table, as there are only two classes. Second, the
Initial-k and Random-k S-Vector approximations perform very well. This result
is important because the Initial-k representation is the most practical one, as
alluded to earlier.

It is also noteworthy that the performance of syntax-based schemes is rela-
tively poor using the clustering outlier algorithm. There is one abnormal entry
which is the clustering performance of S-V (all) in the “Chair vs. Staff” case,
which most likely is due to overfitting.

6.4 Detecting Type 2b Anomalies and Data Harvesting Attacks

The focus here is on detecting syntactically similar queries, but differ in output
data (data-values, output volume, or both). This is a significant query anomaly
since, in a typical attack, a minor variation of a legitimate query can output a
large volume of data to the attacker. This may go undetected and may be ex-
ploited for the purpose of data-harvesting. In other attack variations, the volume
of the output may be typical, but the data values may be sensitive. These kinds
of attacks fall into Type 2b in Table 2.

Test Setup: Since type-2b anomalous queries are not available from the
real query set, we generate type-2b queries by slightly modifying the normal
queries (i.e. queries normally executed by GradVote users). Thus, this gen-
erated “anomaly set” has approximately the same distribution as the normal



queries. Anomalous queries are generated by varying arithmetic and logical op-
erators and constants. As an example, consider the query

SELECT *

FROM vApplicants

WHERE reviewStatusID = ‘a’

AND reviewStatusID = ‘b’;

can be slightly modified to become

SELECT *

FROM vApplicants

WHERE reviewStatusID = ‘a’

OR reviewStatusID = ‘b’;

which yields a vastly different result set.
It must be noted that the queries considered here are different from mas-

querade attacks (since they are not representative of any authorized user of the
system) and are thus not available for training QStatProfiler. Hence, supervised
learning is not suitable here. We devise two detection techniques based on a sin-
gle class of normal queries: Cluster-Based Outlier Detection based on Euclidean-
distance clustering, and Attrib-Deviation which is a variation of clustering using
the L∞-norm as the distance function.

Cluster-based Outlier Detection: The set of queries encountered during the
training phase are viewed as points in an m-dimensional Euclidean vector space,
where m is the dimensionality of the S-vectors. For each user cluster, we select
a point in the Euclidean space that is representative of the entire cluster, called
the cluster centroid, which minimizes the sum of the squared Euclidean distances
of the cluster points. For a test vector, the Euclidean distance from the cluster
centroid is computed. The query is flagged as an outlier if the vector distance
is greater than a specified threshold from any user. In our case, the threshold is
chosen to be 3 times the standard deviation.

Attrib-Deviation: Consider, for example, that a user issues an anomalous
query with a different statistic for the same attribute in the result schema as
a normal query. In our representation, this difference shows up in one or more
(depending on whether the attribute is categoric or numeric) dimensions of the
S-Vector. Hence, monitoring for anomalies on per-dimension basis is a promis-
ing approach. Further, if a query generates unusual output for more than one
attribute, this is likely to reflect in anomalous values for several S-Vector dimen-
sions; thus, the number of anomalous dimensions for the S-Vector is a parameter
that can be used for ranking potential query anomalies (i.e., queries with more
anomalous S-Vector dimensions rank high as likely candidates for possible at-
tacks). We utilize this approach for testing the custom-developed anomaly set
– normal Chair and Faculty queries are used to compute the mean values of S-
Vector attributes; three times the standard-deviation is again used as an anomaly
separator.

A typical performance result with two user roles (Chair and Faculty) and
corresponding anomalous query set is shown in Table 4.



With respect to the performance of the cluster-based outlier detection algo-
rithm, a few points are worth noticing. As expected, the syntax-based schemes
show poor performance (since they are essentially ‘blind’ by design to the Type
2b anomalies). The detection rate for the S-Vector (all) is reasonable (83.87%).
However, the Initial-k approximation’s accuracy suffers significantly. Upon care-
ful inspection, we find that many of the user queries make extensive use of the
SQL ORDER-BY clause, which makes the Initial-k statistics unrepresentative
of the overall result set statistics. This is ameliorated to some extent by the
Random-k variation (e.g., for random k = 20, the detection rate improves to
67.7%); however, there is still a marked decline in performance indicating that
the clustering scheme is sensitive to the approximation schemes and is affected
negatively by them. Further analysis into the clustering reveals that this might
not be a good choice for this type of anomaly detection. Although anomalies with
significant variations in multiple dimensions are easily detected by clustering (as
is the case with type-1 and type-2a anomalies), this may not be true with type-
2b anomalies. Euclidean distances in high-dimensional space may be misleading
indicators of anomalies because of the curse of dimensionality. For example, it is
possible to have a highly anomalous value along a single dimension, which may
not translate to a significant Euclidean cluster-distance (and vice-versa).

The results for Attrib-Deviation are much better. The syntax based schemes
still perform poorly as expected. The data-centric schemes are much better,
with detection rates close to 87%, better than the cluster-based schemes. The
more important finding is that the attribute-deviation schemes are remarkably
resilient to the approximation method. Both Initial-k and Random-k perform as
well as the full vector representation; and the Initial-k performs unexpectedly
well even with queries generating specific ordering of results.

The resiliency and accuracy of Attrib-Deviation can partially explained as
follows. First, note that a single anomalous attribute in the result corresponds
to variations in multiple dimensions of the S-Vector, each of which represents
a statistical measurement. Also the extent of the anomaly may vary between
result attributes (e.g., some attributes may have more atypical values). While
a selective ordering (e.g., by SQL ORDER-BY clauses) may offer a skewed
view of overall result statistics, the Attrib-Deviation technique operates on a
per-attribute basis and is thus still able to identify anomalies. Secondly, many
queries have more than one anomalous attribute; hence selective ordering may
mask anomalies in some attributes, but not all of them. Thirdly, the selective
ordering may not affect all statistical measurements of a single attribute equally
(e.g., it may affect Max, but not Median). It is only when k is very low (k =
5) that initial-k performance drops, however Random-k as expected still offers
reasonable performance.

We believe that the good performance of the Initial-k approximation with
this detection technique has several practical implications. First, it indicates
that a fast online anomaly detector can perform well by considering just a few
(as long as it is not too few) initial output tuples. Randomized sampling of
query results may not be feasible in general, especially for queries generating



hundreds or thousands of output tuples (e.g., due to performance constraints),
but our results here indicate that accuracy may not have to be sacrificed always
in the process of giving up random sampling. Further, we also believe that the S-
Vector representation scheme and attribute-deviation based anomaly detection
algorithm are quite resilient to attacks designed to mislead or bypass detection.
It is very difficult for an attacker to craft queries so that multiple statistical
measurements are controlled. A theoretical explanation of this intuition is an
interesting research problem.

On the minus side, the false positive rates are still too high for the Attrib-
Deviation schemes. Reducing the false-positive rates while maintaining/increasing
the accuracy (true positive rates) is an important research question, which we
plan to address in future work.

7 Concluding Remarks and Future Work

Queries: We construct the S-vectors by expressing the schema of each query
result in terms of the attributes of the base schema. For select-project-join
(SPJ) queries on base relations, the base schema is easily determined. When
SPJ queries are also expressed on top of views, then we employed the view un-
folding technique [33] to determine the base schema. View unfolding recursively
replaces references to a view in a query expression with its corresponding view
definition. For a class of queries larger than SPJ queries on base relations and
views, it is not clear if the base schema can be determined. For example, union
queries can map two different attributes in base relations into a single one in the
query result, as the following example shows:

SELECT g.name, g.gpa

FROM GRADS g

UNION

SELECT u.name, u.gpa

FROM UGRADS u;

Here, there is no dimension in the S-vector to accommodate the first attribute
of the query result. The same is true for computed attributes in results of com-
plex (aggregation, group-by) queries. To accommodate such cases, we plan to
investigate data provenance techniques [9] and revise the definition and the use
of the S-vector accordingly.

Databases: The framework proposed in this paper assumes that the under-
lying database is static, i.e., there are no updates. Although this assumption is
adequate for certain classes of databases (e.g., US census database), we plan to
extend our work to dynamic databases. The first challenge is to determine if
and when updates shift the boundary between normal and abnormal queries. If
the database instance is updated significantly, then the classifiers become obso-
lete and two things need to be done: (a) detect when a phase shift occurs and
re-train, and (b) adopt some form of re-enforcement and/or online learning.



For relatively less dynamic databases where updates are less frequent, such
as OLAP databases that are heavily used for business intelligence and hence
are good targets for insider attacks, it is possible to still apply the data-centric
approach, depending on the relative frequency between re-training and data
updates. For instance, one can keep a history of legitimate user queries, re-
execute them on the new data when the data changes are sufficiently heavy, and
use the new result sets to re-train the machine learning model.

Another approach is to separate parts of the schema where data does not
change very often and the part that does. Then, the data-centric approach can
be applied to the ”projection” of the data space which is static, and the syntax-
centric approach can be applied to the dynamic part of the data. This separation
can also be done automatically as one can keep track of the statistics of various
attributes in the universal table. For example, attributes with high variation
over time are more dynamic than others (e.g., Social Security numbers, bank
accounts of existing customers, dates of births, addresses, and similar fields are
mostly static attributes).

Activity context: In our approach, the context of a user’s activity is a set of
query results generated in the past by the same user or the group in which she
belongs. We plan to investigate richer activity contexts and examine their effec-
tiveness in detecting sophisticated attacks. Such contexts might include statistics
of a user’s session with the database, temporal and spatial correlations of the
query results, and so on.

Performance: In cases where user queries return a significantly large number
of results, computing statistics over the entire query result for anomaly detection
is unacceptable from a performance standpoint. The initial-k approximation
proposed in Section 6 can help improve performance without sacrificing too
much accuracy. One potential drawback of this approach is that the queries in
the training set might sort the results by a different attribute or in different
order (ascending, descending) than an otherwise normal user query, thus leading
to false positives. A possible solution to this problem is to choose one attribute
of each base relation as the default order by attribute. Then, for every query in
the training set add a designated ORDER BY clause that orders the result by
the chosen attribute of the first base relation (alphabetically) used in the query.
When a user query is submitted, the system submits a “shadow query” with the
designated ORDER BY clause and uses this query result for detection.

Another source of performance improvement might be to design a new sta-
tistical model based on both the syntax-based and the data-centric approaches.
In cases where we are relatively confident that the syntax-based approach gives
a true positive, we may want to skip the data-centric engine altogether to avoid
the database execution. In terms of accuracy, a good combined classifier might
perform better too.

Although random-k does not markedly outperform initial-k in our experi-
ments, we expect random-k to perform consistently for a wider range of datasets
and queries. Of course, a problem that arises then is how to sample a query
result without computing the complete result, given that RDBMSs follow the



pipelined query execution model. For this hard problem, we plan to leverage
prior work on both SPJ queries [25, 12] and queries for data analytics in the area
of approximate query answering [16, 3, 5].

In conclusion, the techniques that we have presented and analyzed in this
paper show significant potential as practical solutions for anomaly detection
and insider threat mitigation in database systems.

References

1. Owasp top 10 2007. http://www.owasp.org/index.php/Top 10 2007 (2007)
2. Owasp-sql injection prevention cheat sheet. http://www.owasp.org/index.php/

SQL Injection Prevention Cheat Sheet (2008)
3. Acharya, S., Gibbons, P.B., Poosala, V., Ramaswamy, S.: Join synopses for ap-

proximate query answering. In: SIGMOD Conference. pp. 275–286 (1999)
4. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proc. of the ACM

SIGMOD Conference on Management of Data (SIGMOD ’00). pp. 439–450 (2000)
5. Babcock, B., Chaudhuri, S., Das, G.: Dynamic sample selection for approximate

query processing. In: SIGMOD Conference. pp. 539–550 (2003)
6. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (October 2007)
7. Bishop, M.: The insider problem revisited. In: Proc. of the 2005 Workshop on New

Security Paradigms (NSPW’05). pp. 75–76 (2005)
8. Brackney, R., Anderson, R.: Understanding the Insider Threat: Proceedings of a

March 2004 Workshop. RAND Corp (2004)
9. Buneman, P., Khanna, S., Tan, W.C.: Why and where: A characterization of data

provenance. In: ICDT. pp. 316–330 (2001)
10. Calvanese, D., Giacomo, G.D., Lenzerini, M.: On the decidability of query con-

tainment under constraints. In: Proc. of the ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS ’98). pp. 149–158 (1998)

11. Cappelli, D.: Preventing insider sabotage: Lessons learned from actual attacks
(2005), http://www.cert.org/archive/pdf/InsiderThreatCSI.pdf

12. Chaudhuri, S., Motwani, R., Narasayya, V.R.: On random sampling over joins. In:
SIGMOD Conference. pp. 263–274 (1999)

13. Chung, C.Y., Gertz, M., Levitt, K.: Demids: a misuse detection system for database
systems. In: Integrity and Internal Control Information Systems: Strategic Views
on the Need for Control, pp. 159–178. Kluwer Academic Publishers, Norwell, MA
(2000)

14. CSO Magazine, U.S. Secret Service, CERT, Microsoft: 2007 E-Crime Watch Survey
(2007), http://www.sei.cmu.edu/about/press/releases/2007ecrime.html

15. Fonseca, J., Vieira, M., Madeira, H.: Online detection of malicious data access
using dbms auditing. In: Proc. of the 2008 ACM symposium on Applied Computing
(SAC’08). pp. 1013–1020 (2008)

16. Haas, P.J., Hellerstein, J.M.: Ripple joins for online aggregation. In: SIGMOD
Conference. pp. 287–298 (1999)

17. Hu, Y., Panda, B.: Identification of malicious transactions in database systems. In:
Proc. of the 7th International Database Engineering and Applications Symposium.
pp. 329–335 (2003)

18. Kamra, A., Terzi, E., Bertino, E.: Detecting anomalous access patterns in relational
databases. The VLDB Journal 17(5), 1063–1077 (2008)



19. Kenthapadi, K., Mishra, N., Nissim, K.: Simulatable auditing. In: Proc. of the
ACM Symposium on Principles of Database Systems (PODS ’05). pp. 118–127
(2005)

20. Kruegel, C., Vigna, G.: Anomaly detection of web-based attacks. In: Proc. of the
10th ACM conference on Computers and Communications Security (CCS’03). pp.
251–261 (2003)

21. Lee, S.Y., Low, W.L., Wong, P.Y.: Learning fingerprints for a database intrusion
detection system. In: Proc. of the 7th European Symposium on Research in Com-
puter Security (ESORICS’02). pp. 264–280 (2002)

22. Lee, V.C., Stankovic, J., Son, S.H.: Intrusion detection in real-time database sys-
tems via time signatures. In: Proc. of the Sixth IEEE Real Time Technology and
Applications Symposium (RTAS’00). p. 124 (2000)

23. Liu, P.: Architectures for intrusion tolerant database systems. In: Proc. of the 18th
Annual Computer Security Applications Conference (ACSAC ’02). p. 311 (2002)

24. Maier, D., Ullman, J.D., Vardi, M.Y.: On the foundations of the universal relation
model. ACM Trans. on Database Syst. 9(2), 283–308 (1984)

25. Olken, F., Rotem, D.: Simple random sampling from relational databases. In:
VLDB. pp. 160–169 (1986)

26. Ramasubramanian, P., Kannan, A.: Intelligent multi-agent based database hybrid
intrusion prevention system. In: Proc. of the 8th East European Conference (AD-
BIS ’04) (2004)

27. Roichman, A., Gudes, E.: Diweda – detecting intrusions in web databases. In: Proc.
of the 22nd annual IFIP WG 11.3 working conference on Data and Applications
Security. pp. 313–329 (2008)

28. Sandhu, R., Ferraiolo, D., Kuhn, R.: The nist model for role based access control.
In: Proc. of the 5th ACM Workshop on Role Based Access Control (2000)

29. Schneier, B.: Secrets and Lies: Digital Security in a Networked World. John Wiley
and Sons, New York, NY (2000)

30. Schonlau, M., DuMouchel, W., Ju, W., Karr, A., Theus, M., Vardi, Y.: Computer
intrusion: Detecting masquerades. Statistical Science 16(1), 58–74 (2001)

31. Spalka, A., Lehnhardt, J.: A comprehensive approach to anomaly detection in
relational databases. In: DBSec. pp. 207–221 (2005)

32. Srivastava, A., Sural, S., Majumdar, A.K.: Database intrusion detection using
weighted sequence mining. Journal of Computers 1(4), 8–17 (2006)

33. Stonebraker, M.: Implementation of integrity constraints and views by query mod-
ification. In: SIGMOD Conference. pp. 65–78 (1975)

34. Valeur, F., Mutz, D., Vigna, G.: A learning-based approach to the detection of
sql attacks. In: Proc. of the Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA ’05). pp. 123–140 (2005)

35. Wenhui, S., Tan, D.: A novel intrusion detection system model for securing web-
based database systems. In: Proc. of the 25th International Computer Software
and Applications Conference on Invigorating Software Development (COMPSAC
’01). p. 249 (2001)

36. Yao, Q., An, A., Huang, X.: Finding and analyzing database user sessions. In:
Proc. of Database Systems for Advanced Applications. pp. 283–308 (2005)


