
Information Sciences 179 (2009) 2948–2963
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
k-Anonymous data collection

Sheng Zhong a,*, Zhiqiang Yang b, Tingting Chen a

a Department of Computer Science and Engineering, State University of New York, Buffalo, Amherst, NY 14260, USA
b Imagine Software, Inc., 233 Broadway, 17th floor, Newyork, NY 10279, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 12 October 2007
Received in revised form 6 April 2009
Accepted 2 May 2009

Keywords:
Privacy
k-Anonymity
Data collection
0020-0255/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.ins.2009.05.004

* Corresponding author. Tel.: +1 716 645 3180x1
E-mail address: szhong@cse.buffalo.edu (S. Zhon
To protect individual privacy in data mining, when a miner collects data from respondents,
the respondents should remain anonymous. The existing technique of Anonymity-Preserv-
ing Data Collection partially solves this problem, but it assumes that the data do not con-
tain any identifying information about the corresponding respondents. On the other hand,
the existing technique of Privacy-Enhancing k-Anonymization can make the collected data
anonymous by eliminating the identifying information. However, it assumes that each
respondent submits her data through an unidentified communication channel. In this
paper, we propose k-Anonymous Data Collection, which has the advantages of both Ano-
nymity-Preserving Data Collection and Privacy-Enhancing k-Anonymization but does not
rely on their assumptions described above. We give rigorous proofs for the correctness
and privacy of our protocol, and experimental results for its efficiency. Furthermore, we
extend our solution to the fully malicious model, in which a dishonest participant can devi-
ate from the protocol and behave arbitrarily.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In this information age, huge amounts of data are collected and analyzed every day. Given the unprecedented conve-
nience of collecting and analyzing data, how to protect individual privacy has become a very challenging problem. Conse-
quently, the public have expressed deep concern about data privacy [26,42,43].

Data mining is a powerful tool for finding patterns and knowledge from large amounts of data [66–68]. Naturally, privacy
protection in data mining receives a lot of attention [3,10]. Since a considerable amount of data used in data mining is col-
lected over computer networks, it would be very beneficial if we could provide privacy protection at the stage of data col-
lection. In this paper, we consider a typical scenario of online data collection: the miner queries large sets of respondents,
each of whom responds with a piece of data. Our question is whether this procedure can be carried out without violating
any respondent’s privacy.

Specifically, we hope to carry out the data collection procedure in an anonymous manner. That is, the miner should be able
to collect data from the respondents, but should not be able to link any respondent’s data to the respondent. Therefore, each
respondent is ‘‘hidden” among a number of peers for privacy protection.

Imagine, for example, that a medical researcher is collecting data from respondents. The data he intends to collect may
include some privacy information, like the medical histories of the respondents. In order to guarantee that the respondents’
privacy is not violated, we would like to have the medical researcher collect the data in such a way that he (or anybody else)
cannot link any respondent to any collected private information. Hence, the miner may learn from the collected data that
‘‘some respondent” has had, e.g., a stroke, but he should have no idea which respondent has had it.
. All rights reserved.

07; fax: +1 716 645 3464.
g).

mailto:szhong@cse.buffalo.edu
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


S. Zhong et al. / Information Sciences 179 (2009) 2948–2963 2949
A partial solution to the above problem is Anonymity-Preserving Data Collection (APDC) [7,65]. However, APDC relies on
an assumption that the submitted data does not contain any identifying information. Nevertheless, this may not always be
the case in practice. Although identifiers of individuals (like social security number) can be easily excluded from the data
collection for privacy protection, it is often necessary to include other types of identifying information in the data collection.

In the example we have mentioned above, in the data collected by the medical researcher, there may be attributes of
respondents like gender, age, blood type, zip code, phone number, etc. Clearly, these attributes can be useful in identifying
an individual. For example, the data could show that a man aged 23 with zip code 11,000 has had a stroke. Although we do
not have the name of this man, there may be just one man at this age having this zip code among all respondents. Hence, the
privacy of this respondent has been violated.

Technically, the set of such attributes is called the quasi-identifier of an individual. The procedure of processing quasi-
identifiers to make the data anonymous is called k-anonymization; it has been studied extensively [5,12,18,40,47,50–
52,58]. The main idea of k-anonymization is to suppress or generalize the values of quasi-identifier such that each value
either appears for at least k times, or does not appear at all. In this way, each involved individual is hidden among at least
k peers. In particular, Privacy-Enhancing k-Anonymization (PEkA) [18] is a distributed protocol that allows a miner to k-
anonymize data from a number of respondents. However, PEkA assumes that each respondent uses an unidentified commu-
nication channel to submit data. In reality, we may not always have such unidentified channels available to all respondents.

In this paper, we study k-Anonymous Data Collection (kADC), which extends APDC to work with data that contains quasi-
identifiers. Unlike PEkA, it does not rely on unidentified communication channels. Thus it has the advantages of both APDC
and PEkA but does not depend on their assumptions described above. Our target is to build a protocol that collects data but
keeps all respondents k-anonymous, even if the data collected include quasi-identifiers.

Specifically, in the example we have considered above, we would like to see the medical researcher collect his data, which
may include attributes like gender, age, zip code etc. However, the medical researcher should still be unable to link any
respondent to any private information. This is achieved by having each respondent hidden among at least k peers. The med-
ical researcher may know that a man aged 23 with zip code 11,000 has had a stroke, but there are at least k men at this age
having this zip code among all respondents. Hence, the privacy of respondents is protected.
1.1. Related work

Privacy-preserving data mining has been studied extensively. There are a number of methods to perturb the respondents’
data for privacy protection [4,3,17,45,16,14,34,71,35]. The main advantage of this approach is its good efficiency, but it also
has the disadvantage: it generally has a tradeoff between the privacy of respondents and the accuracy of the data mining
result. If we want to guarantee more privacy for each respondent, then we have to add more noise to the data, which results
in less accuracy of the data mining result. In [11], Canfora et al. reported an empirical evaluation of this tradeoff. The privacy
problems of certain perturbation methods were further explored in [34,28].

Another class of techniques for privacy-preserving data mining are based on cryptography [38,32,54,61,2,63,64,70,49].
Unlike the perturbation-based solutions discussed above, some of the cryptographic solutions (e.g., [64]) can achieve full pri-
vacy plus full accuracy. Nevertheless, these cryptographic protocol are specifically designed for certain mining tasks. The
only known general-purpose cryptographic protocols are from secure multiparty computation (see [22] for a good summary
of the results), but these general-purpose solutions are prohibitively expensive and thus cannot be used in practice.

Recently, APDC [65] was proposed as an alternative to privacy-preserving data mining; it allows a miner to collect data
anonymously and thus provides protection of respondents’ privacy regardless of the mining task. This work has had some
impact on the research literature. For example, in [59], Williams and Barker proposed a hierarchy-based approach for pri-
vacy-preserving data collection in which data providers can divulge information at any chosen privacy level; in [72], Zhang
and Zhang presented a method to allow the respondents to use generalization to anonymously collect data in a client-ser-
vice-to-user model. However, as we have mentioned, APDC relies on the assumption that the data do not contain any iden-
tifying information about the respondents. So, one motivation of our work is to eliminate this assumption of APDC.
Technically, APDC is essentially an adaptation of anonymous communication techniques, in particular mix network tech-
niques, to the scenario of online data collection. Here, mix network is a topic that has been extensively studied in cryptog-
raphy [8,41,46,30,25]. Other ways to provide anonymous communication include dining cryptographer networks [9,57,24]
and k-anonymous message transmission [56]. (Systems like Crowds [44] and Hordes [37] also provide a form of anonymous
communication. But these systems have strong restrictions on the adversary, e.g., the adversary can only eavesdrop commu-
nication within one hop.)

Complementary to APDC, research on k-anonymization (e.g., [50,47,12,52,51,40,5,58,1,18,39,60,62,36,27], among others)
studies how to handle the data containing identifying information. In particular, the PEkA protocol [69] k-anonymizes the
data in the data collection procedure. However, as we have also mentioned, this protocol depends on the assumption that
each respondent has an unidentified communication channel. Consequently, it is another motivation of our work to elimi-
nate this assumption.

There are other types of work on privacy in data mining, for example how to measure privacy guarantee in data mining.
Various definitions were given based on confidence intervals [4], based on mutual information [3], based on priori and pos-
terior knowledge [16,13], and based on cryptographic notions of confidentiality [20,15].



2950 S. Zhong et al. / Information Sciences 179 (2009) 2948–2963
1.2. Our contributions

We briefly summarize our contributions as follows:

� We propose the approach of k-Anonymous Data Collection (kADC). This approach allows the miner to collect a k-anony-
mized version of the respondents’ data in such a way that the miner cannot figure out which respondent submits which
piece of sensitive data. Compared with APDC and PEkA, kADC does not rely on the assumption of no identifying informa-
tion in the submitted data or the availability of unidentifiable communication channels.

� We design a basic protocol of kADC and give rigorous proofs for its correctness and anonymity properties in the semi-hon-
est model, i.e., the model that every party follows the protocol but may attempt to find out the private information which
they are supposed not to learn. We discuss how to improve the efficiency of our protocol and provide experimental data to
measure the efficiency.

� We extend our basic protocol to the fully malicious model, in which a malicious party can deviate from the protocol and
behave arbitrarily. We use digital signatures and zero-knowledge proofs to prevent and detect malicious behaviors.

� Since our basic protocol suppresses a good amount of information in quasi-identifiers, we further develop an improved
protocol that significantly reduces the amount of suppressed information. This improved protocol is very useful for applica-
tions that can not afford much information loss in quasi-identifiers.

The target of this paper is to demonstrate the possibility of collecting data with good privacy protection and good efficiency,
and without unnecessary assumptions. We emphasize that even our improved protocol still suppresses more information
than the theoretically minimum amount of information suppressed by a k-anonymization algorithm. Combining our re-
search with that of minimizing suppressed information in k-anonymization is an interesting topic; but that is out of the
scope of our paper and thus we leave it to future research.

1.3. Paper organization

The rest of this paper is organized as follows. In Section 2, we give a formal description of our problem and a formal def-
inition of anonymity. In Section 3, we present a basic solution in the semi-honest model. This section also includes proofs of
the correctness and anonymity properties, discussion on improving the efficiency, and experimental results of the efficiency.
In Section 4, we extend our protocol to protect respondents’ privacy against malicious behavior. In Section 5, we present our
improved protocol, which suppresses significantly less information than the basic protocol.

2. Technical preliminaries

The kADC problem can be modeled as follows: there are N respondents 1; . . . ;N; each respondent i has a piece of data di.
Each di consists of two parts: dþi ¼ ðd

1
i ; d

2
i ; . . . ; dm

i Þ, the quasi-identifier, which contains identifying information about respon-
dent i; d�i , other attributes, which does not contain any identifying information. Without loss of generality, we assume that all
dþi s and d�i s are of the same length. The objective of our protocol is that the miner should learn ððdH

pð1Þ; d
�
pð1ÞÞ; . . . ; ðdH

pðNÞ; d
�
pðNÞÞÞ,

where p is a random permutation of ð1; . . . ;NÞ and ðdH

1 ; . . . ; dH

N Þ is a k-anonymized version of ðdþ1 ; . . . ; dþNÞ. By saying ‘‘k-anony-
mized version”, we mean each dH

i ¼ ðd
H;1
i ; dH;2

i ; . . . ; dH;m
i Þ satisfies the following two requirements:

� Each dH;j
i is equal to either dj

i or a special symbol H (which denotes that dþi has been suppressed for privacy protection).1

� If a value appears in ðdH

1 ; . . . ; dH

N Þ, it must appear for at least k times.

Any kADC protocol satisfying the above requirements is said to be correct. Furthermore, for privacy protection, we re-
quire that the miner should not be able to find out which user submitted ðdH

pðiÞ; d
�
pðiÞÞ. Formally, we have the following

definition.

Definition 2.1. A kADC protocol is private against the miner in the semi-honest model if the protocol is correct and for all
ðd1; . . . ; dNÞ, for all i 2 f1; . . . ;Ng, there exists I # f1; . . . ;Ng such that i 2 IjIjP k, and that for all permutation r on I,
1 In t
paper.
fviewminerððdþ1 ;d
�
1 Þ; . . . ; ðdþN ; d

�
NÞÞg c

�
fviewminerððdþ1 ; d

�
rð1ÞÞ; . . . ; ðdþN ;d

�
rðNÞÞÞg;
where viewminerððdþ1 ; d
�
1 Þ; . . . ; ðdþN ; d

�
NÞÞ denotes the view of the miner when the original data is ðdþ1 ; d

�
1 Þ; . . . ; ðdþN ; d

�
NÞ; c� denotes

computational indistinguishability of probability ensembles; the computational complexities are measured in terms of a
security parameter j, which is the length of cryptographic key. Note that we are sloppy in the above equation, because r
is a permutation on I and we apply it to indices out of I; for all j R I, we have rðjÞ ¼ j.
his paper, we only consider the k-anonymization methods of suppression. There are other ways to k-anonymize data but they are out of scope of this



S. Zhong et al. / Information Sciences 179 (2009) 2948–2963 2951
To design a practical protocol, we introduce an additional participant and make an assumption of no collusion: we assume
that this new participant of data collection protocol does not collude with the miner. Note that this kind of assumptions (of
no collusion between certain participants) have been widely used in cryptography (e.g., in [31,48]) and in privacy-preserving
data mining (e.g., in [33,55]). The reason is that the involved participants belong to different organizations and have different
interests; thus, it is natural to assume they are unwilling to collude with each other to violate anybody’s privacy. (However,
since the involved participants all agree to participate in the protocol, they still cooperate with each other in the protocol. In
other words, no collusion between some participants does not mean no cooperation between them.)

Specifically, the additional participant we introduce in our problem is called the Data Collection Helper (DCH). We assume
that DCH is an independent participant of the data collection protocol and that it does not collude with the miner. In reality, a
DCH can be the representative of an external auditor or an external server who is paid to provide computing services. We do
not trust the DCH, just like we do not trust the miner. All we need is that the DCH does not collude with the miner. Naturally,
we also require that the DCH should not be able to find which user submitted which piece of data.

Definition 2.2. A kADC protocol is private against the DCH in the semi-honest model if the protocol is correct and for all
ðd1; . . . ; dNÞ, for all i 2 f1; . . . ;Ng there exists I # f1; . . . ;Ng such that i 2 IjIjP k, and that for all permutation r on I,
fviewDCHððdþ1 ; d
�
1 Þ; . . . ; ðdþN ;d

�
NÞÞg c

�
fviewDCHððdþ1 ;d

�
rð1ÞÞ; . . . ; ðdþN ; d

�
rðNÞÞÞg:
Note that the above definitions only apply to the semi-honest model. That is, they are sufficient for the purpose of privacy
protection if all parties follow the protocol. In contrast, in the fully malicious model, some protocol participant can deviate from
the protocol, and thus we need to have additional protection. We discuss privacy in the fully malicious model in Section 4.

Also note that the above definitions do not consider the possibility that some users might be dishonest. Nevertheless, we
can actually easily extend our definitions to cover this possibility; the only reason for not doing this is that such an extension
needs complicated notations and we want to keep our presentation simple and clear, focusing on technical ideas rather than
mathematical notations. Furthermore, our solutions can also be proved to satisfy the extended definitions.

3. Basic solution

In this section, we present a basic protocol for the kADC problem in the semi-honest model. Our solution in the malicious
model (in Section 4), and our improved solution (in Section 5) that suppresses less information in quasi-identifiers, are both
extended from this protocol.

3.1. Building blocks

Recall that the miner should obtain ððdH

pð1Þ; d
�
pð1ÞÞ; . . . ; ðdH

pðNÞd
�
pðNÞÞÞ without knowing p. To design our protocol, we use ElG-

amal encryption, which allows rerandomization operations. Below we briefly describe the ElGamal encryption scheme and
rerandomization operations.

Suppose that G is a cyclic group (in which the discrete logarithm is believed to be hard) and that jGj ¼ q, where q is a large
prime. Let g be a generator of G. The ElGamal encryption scheme is a public key cryptosystem. If x is a private key, then the
corresponding public key is y ¼ gxmodq. If we want to encrypt a message d using the public key y, we can compute
�d ¼ ðdyr
; grÞ;
where r is chosen uniformly at random from ½0; q� 1�. To make the presentation clear, hereafter we write the above encryp-
tion operation as �d ¼ Eðd; rÞ. If we want to decrypt the ciphertext �d using the private key x, we should compute
d ¼ �d½1�=�d½2�x;
where �d½1� and �d½2� denote the first and the second components of �d, respectively. It has been shown in [53] that (under a
standard cryptographic assumption) the ElGamal encryption scheme is semantically secure (see [23] for the definition of
semantic security).

Just like other probabilistic cryptosystems, the ElGamal encryption scheme maps each cleartext to many ciphertexts,
since the random number r can take many different values. ElGamal supports a rerandomization operation, which means
computing a different encryption of d from a given encryption of d (without knowing the private key). An advantage of
the rerandomization operation is that, if we rerandomize and permute a sequence of ciphertexts, then we get another se-
quence of ciphertexts corresponding to the same multiset of cleartexts but in a different order. Given these two sequences
of ciphertexts, the adversary cannot gain any knowledge about which new ciphertext corresponds to which old ciphertext.

An interesting property of the ElGamal encryption scheme is that it is homomorphic. Recall that each ElGamal ciphertext
has two components. If we multiply the corresponding components of two ElGmal ciphertexts, we get a new ciphertext
whose cleartext is the product of the two old ciphertexts. For simplicity, hereafter we often say multiplying an ElGamal
ciphertext by another ElGamal ciphertext; what we actually mean is to multiply the corresponding components. Similarly,
if we say dividing a ciphertext by another ciphertext, we actually mean dividing each component of the first ciphertext by
the corresponding component of the second ciphertext.



2952 S. Zhong et al. / Information Sciences 179 (2009) 2948–2963
3.2. Protocol

Our protocol for k-Anonymous data collection is shown in Protocol 1. It consists of four phases: data submission, the
miner’s randomization, the DCH’s randomization and decryption. Each phase is explained in more details below. For ease
of understanding, we also include an example in our explanation.

Algorithm 1. k-Anonymous Data Collection Protocol – The Basic Solution
Let the miner’s private key be x and his public key be y ¼ gx.
Let the DCH’s private key be u and his public key be v ¼ gu.

1. Phase 1: Data submission.
2. for each respondent i do
3. i picks rþi ; r

�
i uniformly and independently.

4. i encrypts her data using public key yv: dþi ¼ Eyvðdþi ; rþi Þ; d�i ¼ Eyv ðd�i ; r�i Þ.
5. i submits dþi d�i to the miner.
6. end for
7. Phase 2: Miner’s Randomization Operations.
8. for each pair ði; jÞ do
9. The miner computes qi;j ¼ ðd

þ
i =dþj Þ

ri;j , where each ri;j is chosen uniformly and independently.
10. end for
11. for each i do
12. The miner chooses a permutation hi on f1; . . . ;Ng uniformly at random.
13. for each j 2 f1;2; � � � ;Ng do
14. The miner computes q0i;j ¼ qi;hiðjÞ, q00i;j½1� ¼ q0i;j½1�=ðq0i;j½2�Þ

x and sets q00i;j½2� ¼ q0i;j½2�.
15. end for
16. end for
17. The miner sends the DCH: fdþi ; d

�
i gi¼1;...;N , fq00i;jgi¼1;...;N;j¼1;...;N .

18. Phase 3: DCH’s Randomization Operations.
19. The DCH computes q0i;j ¼ q00i;j½1�=ðq00i;j½2�Þ

u, for each pair ði; jÞ.
20. for each i do
21. The DCH counts ci = jfj : q0i;j ¼ 1gj.
22. if ci < k� 1 then
23. The DCH sets d0i to an encryption of ðH;H; . . . ;HÞ under public key yv.
24. else
25. the DCH sets d0i ¼ dþi .
26. end if
27. end for
28. if 1 6 jfi : ci < k� 1gj < k then
29. The DCH lets C be the smallest ci that is greater than k� 1.
30. For all i s.t. ci ¼ C, the DCH sets d00i to an encryption of ðH;H; . . . ;HÞ under public key yv; for all other i, the DCH sets

d00i ¼ d0i.
31. end if
32. if jfi : ci < k� 1gjP k or jfi : ci < k� 1gj ¼ 0 then
33. The DCH defines d00i ¼ d0i.
34. end if
35. for each i do
36. The DCH computes d000i ½1� ¼ d00i ½1�=ðd

00
i ½2�Þ

u and d]i ½1� ¼ d�i ½1�=ðd
�
i ½2�Þ

u.
37. The DCH defines,d000i ½2� ¼ d00i ½2� and d]i ½2� ¼ d�i ½2�.
38. The DCH chooses a permuation p on f1; . . . ;Ng uniformly at random and computes d

0000

i ¼ d0pðiÞ and di
� ¼ dpðiÞ

].
39. end for
40. The DCH sends d

0000

i and di
� to the miner for all i.

41. Phase 4: Decryption.
42. for each i do
43. The miner decrypts d

0000

i and di
� using his own private key x, where the decryption of d

0000

i is the part of data containing
identifying information; the decryption of di

� is the part of data without identifying information.
44. end for
45. If the data needs to be published, the miner must publish it in a randomized order.
� Data submission
In the data submission phase, each respondent computes the product of the miner’s public key and the DCH’s public key,

and encrypts her own data using the product. (Note the data needs to be properly encoded before encryption, because



S. Zhong et al. / Information Sciences 179 (2009) 2948–2963 2953
cryptosystems like ElGamal only deal with numbers.) Then she sends the encryptions to the miner.For example, suppose
there are three respondents 1, 2, and 3, having data ðM;23; strokeÞðF;24; fluÞðM;23; allergyÞ, respectively, where the first
two fields of each piece of data are the quasi-identifier. After proper encoding, respondent 1’s data becomes (123, 55),
respondent 2’s data becomes (224, 38), and respondent 3’s data becomes (123, 49), where the quasi-identifiers are
123, 224, and 123, respectively. Then the miner receives an encryption of 123 and an encryption of 55 from respondent
1; the public key used to encrypt them is the product of the miner’s public key and the DCH’s public key. Similarly, the
miner receives an encryption of 224 and an encryption of 38 from respondent 2, and an encryption of 123 and an encryp-
tion of 49 from respondent 3.

� Miner’s randomization operations
In this phase, the miner first computes the quotient of each pair of quasi-identifier encryptions that he has received
from the respondents; the result is an encryption of the quotient of the corresponding pair. Then, the miner raises
each encrypted quotient to a random power – note that this generates an encryption of 1 if the quotient is 1, and
a random encryption otherwise. Next, the miner permutes the encrypted powers of quotients related to each respon-
dent, and decrypts all of them using his own private key. (The miner’s decryption operations do not generate the
cleartexts; they only generate partially decrypted ciphertexts. The DCH can decrypt these partially decrypted cipher-
texts to get the cleartexts.) At the end of this phase, the miner sends the DCH the partially decrypted powers as well
as all the encrypted data he has received from respondents.
In the example we have considered, this phase should be as follows. The miner computes, for respondent 1, encryp-
tions of 123/123, 123/224 and 123/123, respectively; he computes, for respondent 2, encryptions of 224/123, 224/224,
and 224/123, respectively; he computes, for respondent 3, encryptions of 123/123, 123/224 and 123/123, respectively.
Then the miner computes a random power of the each of the above encryptions. Hence, for respondent 1, the miner
has got an encryption of 1, a random encryption, and encryption of 1; for respondent 2, the miner has got a random
encryption, an encryption of 1, and a random encryption; for respondent 3, the miner has got an encryption of 1, a
random encryption and an encryption of 1. He permutes them for each respondent and partially decrypts them and
sends them to the DCH, together with the data he has received. So the DCH receives the follows from the miner:
for respondent 1, two partially decrypted encryptions of 1, a partially decrypted random encryption, and encryptions
of 123 and 55; for respondent 2, a partially decrypted random encryption of 1, two partially decrypted random
encryptions, and encryptions of 224 and 38; for respondent 3, a partially decrypted random encryption and two par-
tially decrypted encryptions of 1, and encryptions of 123 and 49.

� DCH’s radomization operations
First the DCH decrypts the powers using his own private key. If the result is 1, it means that the corresponding pair
of quasi-identifiers are equal. So, for each respondent, the DCH counts the 1 s that he obtains. If it is less than k� 1,
i.e., there are less than k� 1 other respondents having the same quasi-identifiers, then the DCH suppresses the
quasi-identifier. After this round of suppression, if there are fewer than K encrypted ðH;H; . . . ;HÞ, then the DCH also
suppresses the least frequently appeared quasi-identifiers that has not been suppressed, so that there are at least K
encrypted ðH;H; . . . ;HÞ. After all rounds of suppression, the DCH decrypts the unsuppressed quasi-identifiers as well
as other attributes, using his own private key. Note that this does not generate cleartexts; it only generates partially
decrypted ciphertexts, which can be decrypted to cleartexts by the miner. The DCH permutes the decryptions and
sends the results to the miner.
In the example we have considered, this phase should be as follows. The DCH further decrypts the partially decrypted
encryptions, and get the cleartexts of the powers. So, for respondent 1, the DCH has got two 1s and a random number;
for respondent 2, the DCH has got a 1 and two random numbers; for respondent 3, the DCH has got a random number
and two 1 s. Note that, with high probability, these random numbers are not equal to 1. So the DCH counts the number
of 1 s for each respondent and get 2 for respondent 1, 1 for respondent 2, and 2 for respondent 3. He uses these numbers
to do suppression, in order to k-anonymize the data. Suppose, for simplicity, that k ¼ 1, so that no supression is really
needed. Next, the DCH decrypts all the data using his own private key, so that these data become partially decrypted.
The miner receives the follows from the DCH: partially decrypted encryptions of 123 and 55, partially decrypted encryp-
tions of 224 and 38, partially decrypted encryptions of 123 and 49. Note that these are sent in a random order, so that the
miner has no idea which respondent corresponds to which pieces of partially decrypted data.

� Decryption
In this phase, the miner decrypts the data received from the DCH. The result is k-anonymous cleartext data.In the example
we have considered, the miner simply decrypts all the partially decrypted encryptions he has received, and the result is a
random permutation of ((123,55), (224, 38), (123, 49)).

In summary, kADC illustrated in Protocol 1 allows the miner to collect a k-anonymized version of the respondents’ data in
such a way that the miner cannot figure out which respondent submits which piece of sensitive data. In this procedure, we
use the suppression method to achieve k-anonymity. We note that there are other ways to k-anonymize data, e.g., general-
ization. However, it will be much more challenging to build the kADC protocol using k-anonymization methods like gener-
alization. The reason is that the operations involved in generalization is much more complicated than those involved in
supression. When we use suppression to anonymize data, the main job is to count the number of occurrences of each distinct
quasi-identifier; as we have seen, it is not very hard to make this operation privacy-preserving. In contrast, the generaliza-



2954 S. Zhong et al. / Information Sciences 179 (2009) 2948–2963
tion method involves operations like choosing generalized identifiers and using them to replace the original ones; these
operations are so complicated that it is really hard to design a privacy-preserving protocol that performs them very
efficiently. Hence, we leave this widely open problem to future work.

3.3. Protocol analysis

In this subsection, we analyze our protocol in terms of correctness and privacy against the miner and the DCH. In order to
formalize our analysis of k-anonymity, we first define the k-anonymous subset of each respondent as follows:

� If jfi : jfj : dþj ¼ dþi ; j 2 f1; . . . ;NggjP k; i 2 f1; . . . ;Nggj ¼ N or jfi : jfj : dþj ¼ dþi ; j 2 f1; . . . ;NggjP k; i 2 f1; . . . ;Nggj 6
N � k, then
–For all i such that jfj : dþj ¼ dþi ; j 2 f1; . . . ;NggjP kKðiÞ ¼ fj : dþj ¼ dþi ; j 2 f1; . . . ;Ngg.
–For all i such that jfj : dþj ¼ dþi ; j 2 f1; . . . ;Nggj < kKðiÞ ¼ fi0 : jfj : dþj ¼ dþi0 ; j 2 f1; . . . ;Nggj < k; i0 2 f1; . . . ;Ngg.

� If N � k < jfi : jfj : dþj ¼ dþi ; j 2 f1; . . . ;NggjP k; i 2 f1; . . . ;Nggj < N then

–For all i such that jfj : dþj ¼ dþi ; j 2 f1; . . . ;Nggj > minjfj:dþj ¼dþ

i0 ;j2f1;...;NggjPkjfj : dþj ¼ dþi0 ; j 2 f1; . . . ;NggjKðiÞ ¼
fj : dþj ¼ dþi ; j 2 f1; . . . ;Ngg.
–For all the remaining iKðiÞ is the set of such i.

Denote by d
0000

i and d�i the decryptions of d
0000

i and d�i , respectively.

Theorem 3.1 (Correctness). If all parties follow the protocol, then with high probability the output satisfies that 8i,
d0i ¼
dþpðiÞ if8j 2 KðpðiÞÞ; dþj ¼ dþpðiÞ;
ðH;H; . . . ;HÞ otherwise;

�

and that 8id�i ¼ d�pðiÞ.

Proof. First, we observe that
q0i;j ¼ q00i;j½1�=ðq00i;j½2�Þ
u

¼
q0i;j½1�=ðq0i;j½2�Þ

x

ðq0i;j½2�Þ
u

¼
qi;hiðjÞ½1�

ðqi;hiðjÞ½2�Þ
xþu

¼
ðdþi ½1�=dþhiðjÞ½1�Þ

ri;hi ðjÞ

ðdþi ½2�=dþhiðjÞ½2�Þ
ðxþuÞri;hiðjÞ

¼ ðdþi =dþhiðjÞÞ
ri;hi ðjÞ :
With high probability, we have
di ¼ dhiðjÞ () q0i;j ¼ 1:
Therefore, with high probability, ci ¼ jj : dþj ¼ dþi ; j 2 f1; . . . ;Ngj. Consequently, it is easy to see that, if 8j 2 KðiÞ; dþj ¼ dþi , then
d00i ¼ dþi ; otherwise, d00i is an encryption of ðH;H; . . . ;HÞ.

On the other hand, for any i, clearly we have
d
0000

i ¼ d
0000

i ½1�=ðd
0000

i ½2�Þ
x

¼ d000pðiÞ½1�=ðd
000
pðiÞ½2�Þ

x

¼
d00pðiÞ½1�=ðd

00
pðiÞ½2�Þ

u

ðd00pðiÞ½2�Þ
x

¼
d00pðiÞ½1�

ðd00pðiÞ½2�Þ
xþu

:

If 8j 2 KðpðiÞÞ; dþj ¼ dþpðiÞ, then we have
d
0000

i ¼
dþpðiÞ½1�

ðdþpðiÞ½2�Þ
xþu

¼ dþpðiÞ:
Otherwise, we have d
0000

i ¼ ðH;H; . . . ;HÞ.



S. Zhong et al. / Information Sciences 179 (2009) 2948–2963 2955
For any i, we always have
d�i ¼ d�i ½1�=ðd
�

i ½2�Þ
x

¼ d]pðiÞ½1�=ðd
]

pðiÞ½2�Þ
x

¼
d�pðiÞ½1�=ðd

�
pðiÞ½2�Þ

u

ðd�pðiÞ½2�Þ
x

¼
d�pðiÞ½1�

ðd�pðiÞ½2�Þ
xþu

¼ d�pðiÞ:
This concludes the proof. h

Theorem 3.2 (Privacy against miner). The basic solution is k-anonymous against the miner in the semi-honest model.

Proof. We prove this by contradiction. Assume that this protocol is not k-anonymous against the miner. Based on this pro-
tocol, we give a probabilistic polynomial-time algorithm for the miner that distinguishes the ElGamal encryptions of two
different cleartexts under public key yv, which contradicts the semantic security of ElGamal encryption [53].

The above assumption of the protocol being not k-anonymous against the miner means that there exist ðd1; . . . ; dNÞ and
i 2 f1; . . . ;Ng such that for all I # f1; . . . ;Ngði 2 IjIjP kÞ, there exist a permutation r on I, a probabilistic polynomial-time
distinguisher X, and a polynomial f ðÞ such that for infinitely many j,
Pr½Xðviewminerððdþ1 ;d
�
1 Þ; . . . ; ðdþN ; d

�
NÞÞÞ ¼ 1� � Pr½Xðviewminerððdþ1 ;d

�
rð1ÞÞ; . . . ; ðdþN ;d

�
rðNÞÞÞÞ ¼ 1� > 1=f ðjÞ:
Note that X implicitly takes all the public parameters and the miner’s private key as input. Using the hybrid argument [21],
we can easily show that the above implies that there exist ðd1; . . . ; dNÞ and i 2 f1; . . . ;Ng such that for all
I # f1; . . . ;Ngði 2 IjIjP kÞ, there exist a permutation r0 on I that only switches two indices a and bða; b 2 IÞ, a probabilistic
polynomial-time distinguisher X, and a polynomial f ðÞ such that for infinitely many j,
Pr½Xðviewminerððdþ1 ;d
�
1 Þ; . . . ; ðdþN ; d

�
NÞÞÞ ¼ 1� � Pr½Xðviewminerððdþ1 ;d

�
r0ð1ÞÞ; . . . ; ðdþN ;d

�
r0ðNÞÞÞÞ ¼ 1� > 1=f ðjÞ: ð3:1Þ
We fix I as the KðiÞ of ðd1; . . . ; dNÞ. Then, ðdþ1 d�r0ð1ÞÞ,. . ., ðdþN , d�r0ðNÞÞ has the same KðiÞ. Furthermore, for all
j 2 f1; . . . ;Ngðd1; . . . ; dNÞ and ðdþ1 , d�r0ð1ÞÞ,. . ., ðdþN d�r0ðNÞÞ have the same KðjÞ. So in the sequel, we will refer to KðiÞ and KðjÞ with-
out mentioning the corresponding cleartext data. Note that KðiÞ and KðjÞ can be easily computed.

Below we give a probabilistic polynomial-time algorithm A that distinguishes an ElGamal encryption of d�a under public
key yv from an ElGamal encryption of d�b under public key yv.

On input ciphertext e;A first computes, using the homomorphic property of ElGamal, another ciphertext e0 such that the
product of the cleartexts of e and e0 is equal to d�a � d

�
b : A computes a random encryption of d�a � d

�
b and then divides it by e.

Then A rerandomizes e0 to get e00. Next, A simulates two executions of our protocol; A extracts the view of the adversary
generated in each simulated execution and applies X to it. The simulation is detailed as follows.

In Phase 1 of the protocol, for all j except a and bA simulates respondent j using a process with input ðdþj ; d
�
j Þ; the process

works exactly as described in the protocol. A simulates respondents a and b with two processes that have a mixture of
cleartext and ciphertext inputs; these two processes do not encrypt their ciphertext inputs as described in the protocol but
directly send out their ciphertext inputs to the simulated miner together with encryptions of their cleartext inputs. In both of
the simulated executions, respondent a receives cleartext input dþa and respondent b receives cleartext input dþb . During the
first simulated execution, the simulated respondent a starts with ciphertext e and the simulated respondent b starts with e00;
during the second execution, the simulated respondent a starts with ciphertext e00 and the simulated respondent b starts
with e.

In Phase 2, A simulates the miner’s operations as described in the protocol. Phase 3 is performed by the DCH. The only
thing in the miner’s view is the messages sent at the end of this phase. We include the simulation of these messages in the
simulation of Phase 4.

In Phase 4, A chooses a random permutation q on f1; . . . ;Ng. For each jA defines d�j as d�qðjÞ. If for all j0 2 KðjÞ; dþqðj0Þ ¼ dþqðjÞA
defines d

0000

j ¼ dþqðjÞ; otherwise, A defines d
0000

j ¼ ðH;H; . . . ;HÞ. A defines the final output of the entire simulated protocol as
ððd

0000

1 ; d
�

1 Þ; . . . ; ðd
0000

N ; d
�

NÞÞ. (Note that we get exactly the same distribution of simulated output if A defines d�j as d�qðr0ðjÞÞ, because
a; b 2 KðiÞ and thus d

0000

a ¼ d
0000

b .) Then, A can simulate the messages sent at the end of Phase 3 using random encryptions of
these cleartexts under public key y. The coin flips in this phase can be easily computed from the simulated final output and
the simulated messages at the end of Phase 3.

Applying X to the views of the adversary generated in the simulated executions, A can compute
o1 ¼ Xðviewminerððdþ1 ; d
�
1 Þ; . . . ; ðdþa�1;d

�
a�1Þ; ðd

þ
a ;DðeÞÞ; ðd

þ
aþ1;d

�
aþ1Þ; . . . ; ðdþb�1;d

�
b�1ÞÞ; ðd

þ
b ;Dðe00ÞÞ; ðd

þ
bþ1;d

�
bþ1Þ; . . . ; ðdþN ;d

�
NÞÞÞ;



2956 S. Zhong et al. / Information Sciences 179 (2009) 2948–2963
and
o2 ¼ Xðviewminerððdþ1 ; d
�
1 Þ; . . . ; ðdþa�1;d

�
a�1Þ; ðd

þ
a ;Dðe00ÞÞ; ðd

þ
aþ1; d

�
aþ1Þ; . . . ; ðdþb�1;d

�
b�1ÞÞ; ðd

þ
b ;DðeÞÞ; ðd

þ
bþ1;d

�
bþ1Þ; . . . ; ðdþN ;d

�
NÞÞÞ;
where DðeÞ denotes the decryption of e. If o1 ¼ 1 and o2 ¼ 0A outputs 1; if o1 ¼ 0 and o2 ¼ 1A outputs 0; otherwise A outputs
a uniformly random bit.

Now we analyze the probabilities of outputing 1 with input ciphertext of d�a or d�b . For convenience, let
p1 ¼ Pr½Xðviewminerððdþ1 ; d
�
1 Þ; . . . ; ðdþN ;d

�
NÞÞÞ ¼ 1�;
and
p2 ¼ Pr½Xðviewminerððdþ1 ; d
�
r0ð1ÞÞ; . . . ; ðdþN ;d

�
r0ðNÞÞÞÞ ¼ 1�:
When the input ciphertext is an encryption of d�a , the probability that we have output equals 1 is
Pr½Aðd�a Þ ¼ 1� ¼ p1ð1� p2Þ þ p1p2=2þ ð1� p1Þð1� p2Þ=2:
When the input ciphertext is an encryption of d�b , the probability that we have output equals 1 is
Pr½Aðd�b Þ ¼ 1� ¼ p2ð1� p1Þ þ p2p1=2þ ð1� p2Þð1� p1Þ=2:
Combining the above two equations, we have
Pr½Aðd�a Þ ¼ 1� � Pr½Aðd�b Þ ¼ 1� ¼ p1ð1� p2Þ þ p1p2=2þ ð1� p1Þð1� p2Þ=2� ðp2ð1� p1Þ þ p2p1=2þ ð1� p2Þð1� p1Þ=2Þ

¼ p1 � p2 >
1

f ðjÞ :
The last inequality is due to Eq. (3.1). However, this contradicts the semantic security of ElGamal. h

Theorem 3.3 (Privacy against DCH). The basic solution is k-anonymous against the DCH in the semi-honest model.

Proof. Again, we show this by contradiction. Assume that this protocol is not k-anonymous against the DCH. Based on this
protocol, we can construct a probabilistic polynomial-time algorithm for the DCH that distinguishes the ElGamal encryptions
of two different cleartexts under public key yv.

The above assumption of the protocol being not k-anonymous against the DCH means that there exist ðd1; . . . ; dNÞ and
i 2 f1; . . . ;Ng such that for all I # f1; . . . ;Ngði 2 IjIjP kÞ, there exist a permutation r on I, a probabilistic polynomial-time
distinguisher X, and a polynomial f ðÞ such that for infinitely many j,
Pr½XðviewDCHððdþ1 ;d
�
1 Þ; . . . ; ðdþN ; d

�
NÞÞÞ ¼ 1� � Pr½XðviewDCHððdþ1 ;d

�
rð1ÞÞ; . . . ; ðdþN ; d

�
rðNÞÞÞÞ ¼ 1� > 1=f ðjÞ:
In the above, X implicitly takes all the public parameters and the DCH’s private key as input. Using the hybrid argument, we
can easily show that the above implies that there exist ðd1; . . . ; dNÞ and i 2 f1; . . . ;Ng such that for all
I # f1; . . . ;Ngði 2 IjIjP kÞ, there exist a permutation r0 on I that only switches two indices a and bða; b 2 IÞ, a probabilistic
polynomial-time distinguisher X, and a polynomial f ðÞ such that for infinitely many j,
Pr½XðviewDCHððdþ1 ;d
�
1 Þ; . . . ; ðdþN ; d

�
NÞÞÞ ¼ 1� � Pr½XðviewDCHððdþ1 ;d

�
r0ð1ÞÞ; . . . ; ðdþN ;d

�
r0ðNÞÞÞÞ ¼ 1� > 1=f ðjÞ: ð3:2Þ
Below we give a probabilistic polynomial-time algorithm A that distinguishes an ElGamal encryption of d�a under public key
yv from an ElGamal encryption of d�b under public key yv.

On input ciphertext e;A first computes, using the homomorphic property of ElGamal, another ciphertext e0 such that the
product of the cleartexts of e and e0 is equal to d�a � d

�
b and then rerandomizes e0 to get e00. Next, A simulates two executions of

our protocol; A extracts the view of the adversary generated in each simulated execution and applies X to it. The simulation is
detailed as follows.

In both simulated executions, the dþ1 ; . . . ; dþN the DCH receives is simulated by random encryptions of dþ1 ; . . . ; dþN ; for each
j–a; b, the d�j the DCH receives is simulated by a random encryption of d�j ;

In the first simulated execution, the d�a ; d
�
b the DCH receives is simulated by e; e00. In the second simulated execution, the

d�a ; d
�
b the DCH receives is simulated by e00; e.

In both simulated executions, for each j, the q00j;1; . . . ; q00j;N the DCH receives is simulated by jfj0 : dþj0 ¼ dþj ; j
0 2 f1; . . . ;Nggj

random encryptions of 1 under public key u and N � jfj0 : dþj0 ¼ dþj ; j
0 2 f1; . . . ;Nggj random ciphertexts, all in a random order.

Then A simulates the protocol execution as described in the Phase 2 of the protocol. This is enough to obtain the view of
DCH.

Applying X to the views of the adversary generated in the simulated executions, A can compute
o1 ¼ XðviewDCHððdþ1 ; d
�
1 Þ; . . . ; ðdþa�1;d

�
a�1Þ; ðd

þ
a ;DðeÞÞ; ðd

þ
aþ1;d

�
aþ1Þ; . . . ; ðdþb�1;d

�
b�1ÞÞ; ðd

þ
b ;Dðe00ÞÞ; ðd

þ
bþ1;d

�
bþ1Þ; . . . ; ðdþN ;d

�
NÞÞÞ;



S. Zhong et al. / Information Sciences 179 (2009) 2948–2963 2957
and
o2 ¼ XðviewDCHððdþ1 ;d
�
1 Þ; . . . ; ðdþa�1;d

�
a�1Þ; ðd

þ
a ;Dðe00ÞÞ; ðd

þ
aþ1; d

�
aþ1Þ; . . . ; ðdþb�1; d

�
b�1ÞÞ; ðd

þ
b ;DðeÞÞ; ðd

þ
bþ1;d

�
bþ1Þ; . . . ; ðdþN ;d

�
NÞÞÞ;
If o1 ¼ 1 and o2 ¼ 0A outputs 1; if o1 ¼ 0 and o2 ¼ 1, A outputs 0; otherwise A outputs a uniformly random bit.
The remaining probability analysis is identical to that in the proof of Theorem 3.2. h

Remark 3.4. Theorems 3.2 and 3.3 guarantees k-anonymity of our basic solution. We note that the k-anonymity achieved
here is not optimal. Compared with a (good) centralized algorithm for k-anonymization, our solution needs to suppress more
information in the quasi-identifier attributes. In Section 5, we present an improved protocol that suppresses less
information.

Remark 3.5. In terms of privacy, it is worth noting that even if our kADC protocol is used, the privacy of respondents may
still be violated by some attacks on k-anonymity. For example, k-anonymity may not protect respondents’ privacy when
there is little diversity in the data, or when some background knowledge is available (see, e.g., [39]). However, we emphasize
that these are the privacy weaknesses of k-anonymity in general, not the privacy weaknesses of our kADC protocol. What we
can guarantee is that kADC provides the maximum amount of privacy protection that can be provided by any protocol based
on k-anonymity. We believe this is a practical approach because k-anonymity is simple and widely used, although the weak-
nesses of k-anonymity have been found. Hence, we focus on k-anonymous data collection in this paper. In the future, we may
be able to extend our data collection approach to stronger privacy concepts (such as l-diversity).
3.4. Practical efficiency analysis

Before we start our efficiency analysis, it is important that we revisit our definition of N. In the above, we have stated that N
is the number of respondents in the protocol. In practice, it is nearly impossible to have all respondents online simultaneously;
thus N is not the total number of respondents, but the number of respondents involved in one execution of the kADC protocol.
Hereafter we call the users involved in one execution of the protocol a user group. Therefore, N is the size of a user group.

In our kADC protocol, each respondent has the advantage of ‘‘submit-and-go”: once they submit their encrypted data,
they can leave this protocol without waiting for the finish of the protocol. Each respondent’s overhead is just two ElGamal
encryptions which can be efficiently computed. The miner’s overhead comes from the second and four phases. It is domi-
nated by 3N2 þ 2N modular exponentiations. The DCH’s overhead comes from the third phase. It is dominated by
N2 þ 2N � N2 þ 4N modular exponentiations. Here, we can see that the miner and the DCH carry out most computational
tasks in this protocol. This is reasonable in the reality because the miner and the DCH are usually professionals who have
more powerful computers than the users.

To measure the efficiency, we implement this basic protocol using the OpenSSL library. We test our implementation in a
machine running NetBSD with 512 MB memory and 2 GHZ AMD CPU. In our implementation, we use 512-bit cryptographic
key. For different combinations of k and N, we test the computational overheads of each respondent, of the miner, and of the
DCH, respectively.

Fig. 1 shows each respondent’s computational overhead. It is approximately 5:5� 10�3 s regardless of N and k. Figs. 2 and
3 show the miner’s and DCH’s computational overheads, respectively. We can see they are quadratic in the number of
2
6

10
14

18 20

20
100

180
260

340
400

4

4.5

5

5.5

6

x 10−3

K

Respondent Computational Time

The Size of Respondent Group

C
om

pu
ta

tio
na

l T
im

e 
(S

ec
)

Fig. 1. Respondent’s computation time.



0
6

10
14

18 20

20
100

180
260

340
400

0

200

400

600

800

K

Miner Computational Time

The Size of Respondent Group

C
om

pu
ta

tio
na

l T
im

e 
(S

ec
)

Fig. 2. Miner’s computation time.

2
6

10
14

18 20

20
100

180
260

340
400

0

50

100

150

200

250

300

K

DCH Computational Time

The Size of Respondent Group

C
om

pu
ta

tio
na

l T
im

e 
(S

ec
)

Fig. 3. DCH’s computation time.

2958 S. Zhong et al. / Information Sciences 179 (2009) 2948–2963
respondents; the effect of different k on the overheads is very small and thus can hardly be observed. For N ¼ 400, the miner
needs about 800 s while the DCH needs about 250 s. We stress that such overheads are acceptable because the respondents
do not need to wait for the miner and the DCH to complete these computations. We can also see that, for all combinations of
N and k, the miner’s overhead is about 3.2 times as the DCH’s.

To reduce the miner’s overhead, we can optimize our protocol using precomputation of some intermediate results. Recall
that, to rerandomize an ElGamal encryption, first the miner needs to compute some intermediate results by raising g and the
public key to a random number. In practice, the miner can precompute these intermediate results because these computa-
tions do not depend on the user data. Fig. 4 shows the miner’s computational overhead after using optimization. We can see
that the miner’s computational time is reduced to about 30% of the original.

4. Extension to the fully malicious model

As we have mentioned, our basic solution works only in the semi-honest model. However, we can use (digital signatures
and) zero-knowledge proofs to extend the basic solution to the fully malicious model. In this section, we describe how to
prevent the malicious behavior of the miner and the DCH, respectively. For easiness of presentation, we give all our
zero-knowledge proofs in the interactive form. Note that we can make all these proofs non-interactive using the Fiat–Shamir
heuristics [19].



0
6

10
14

18 20

20
100

180
260

340
400

0

50

100

150

200

250

300

K

Miner Computational Time

The Size of Respondent Group

C
om

pu
ta

tio
na

l T
im

e 
(S

ec
)

Fig. 4. Miner’s computation time with optimization.

S. Zhong et al. / Information Sciences 179 (2009) 2948–2963 2959
4.1. Building blocks

To prevent the miner and the DCH from deviating from the protocol, we need to use two building blocks for multiple
times: zero-knowledge proof of permuted decryption and zero-knowledge proof of permuted rerandomization. Before we
describe our extension of the basic solution, we first give a brief explanation of these two building blocks.

4.1.1. Proof of permuted decryption
Suppose that there are a prover and a verifier. Let v and w be the prover’s private key and public key, respectively. The

prover needs to show that ðx1; . . . ;xnÞ is a permuted decryption of ðx1; . . . ;xnÞ under her own private key. That is, the prover
needs to show that ðx1; . . . ;xnÞ is a permutation of the cleartexts of ðx1; . . . ;xnÞ.

To achieve this goal, the prover chooses a permutation n on f1; . . . ;ng; for i ¼ 1; . . . ;n, she sets x0i to a rerandomization of
xnðiÞ. The prover sends ðx01; . . . ;x0nÞ to the verifier. The verifier sends back a uniformly random bit to the prover as the first-
round challenge.

If the first-round challenge is 0, the prover sends n to the verifier, together with the random numbers she used to reran-
domize all xi. The verifier checks that each x0i is indeed a rerandomization of xnðiÞ.

If the first-round challenge is 1, the prover does the follows. Since ðx1; . . . ;xnÞ is a permuted decryption of ðx1; . . . ;xnÞ
under private key v, there exists a permutation n0 on f1; . . . ;ng such that each xi is the decryption of xn0 ðiÞ under private key
v. So the prover sends ðn0Þ�1n to the verifier. In addition, for each i, the prover chooses a random exponent ci and computes
ki;0 ¼ gci ;

ki;1 ¼ x0i½2�
ci :
The prover sends ki;0; ki;1 to the verifier.
For each i, the verifier chooses a random number ki;2. The verifier sends these random numbers back as the second-round

challenge. The prover computes
ki;3 ¼ ci þ ki;2v:
Then, the prover sends k1;3; . . . ; kn;3 to the verifier. The verifier checks that, for each i,
gki;3 ¼ ki;0w
ki;2 ;

x0i½2�
ki;3 ¼ ki;1

x0i½1�
xðn0Þ�1nðiÞ

 !ki;2

:

To minimize the probability of cheating, the above procedure should be repeated for a number of times. The probability of
successful cheating decreases exponentially in the number of times the above procedure is repeated.

4.1.2. Proof of permuted rerandomization
Again, suppose that there are a prover and a verifier. The prover needs to show that ðx01; . . . ;x0nÞ is a permuted rerandom-

ization of ðx1; . . . ;xnÞ under the public key w. That is, the prover needs to show that ðx01; . . . ;x0nÞ is a permutation of the
rerandomizations of ðx1; . . . ;xnÞ.



2960 S. Zhong et al. / Information Sciences 179 (2009) 2948–2963
To achieve this goal, the prover chooses a permutation n on f1; . . . ;ng; for i ¼ 1; . . . ;n, she sets x00i to a rerandomization of
xnðiÞ under the public key w. The prover sends ðx001; . . . ;x00nÞ to the verifier. The verifier sends back a uniformly random bit to
the prover as the first-round challenge.

If the first-round challenge is 0, the prover sends n to the verifier, together with the random numbers she used to reran-
domize each xnðiÞ to get x00i . The verifier checks that each x00i is indeed a rerandomization of xnðiÞ.

If the first-round challenge is 1, the prover does the follows. Since ðx01; . . . ;x0nÞ is a permuted rerandomization
of ðx1; . . . ;xnÞ, there exists a permutation n0 on f1; . . . ;ng such that each x0i is a rerandomization of xn0 ðiÞ under public
key w. So the prover sends ðn0Þ�1n to the verifier. In addition, for each i, the prover chooses a random exponent ci and
computes
ki;0 ¼ gci ;

ki;1 ¼ wci :
The prover sends ki;0; ki;1 to the verifier.
For each i, the verifier chooses a random number ki;2. The verifier sends these random numbers back as the second-round

challenge. Suppose ui is the discrete logarithm of
x0
ðn0 Þ�1nðiÞ

½2�

x00
i
½2�

with respect to base g. Note that ui can be easily computed from

the random numbers the prover uses in rerandomizations. The prover computes
ki;3 ¼ ci þ ki;2ui:
Then, the prover sends k1;3; . . . ; kn;3 to the verifier. The verifier checks that, for each i,
gki;3 ¼ ki;0

x0
ðn0 Þ�1nðiÞ

½2�

x00i ½2�

 !ki;2

;

wki;3 ¼ ki;1

x0
ðn0 Þ�1nðiÞ

½1�

x00i ½1�

 !ki;2

:

To minimize the probability of cheating, the above procedure should also be repeated for a number of times.

4.2. Preventing the miner’s malicious behavior

Given the building blocks, now we can prevent the miner’s malicious behavior.
In Phase 2, we need to make sure: (1) the miner forwards each dþi ; d

�
i from respondent i without tampering; (2) for each i,

the miner computes q00i;1; . . . ; q00i;N properly.
To ensure that the miner forwards each dþi ; d

�
i without tampering, we only needs to add the following operations to our

protocol. At the end of Phase 1, each respondent should sign her message. At the end of Phase 2, the miner should forward
the respondents’ signatures together with dþi ; d

�
i , so that the DCH can verify these signatures.

To ensure that the miner computes q00i;1; . . . ; q00i;N properly, we first make a minor change to Phase 2: Instead of
having q0i;j ¼ qi;hiðjÞ, the miner should set q0i;j to a rerandomization of qi;hiðjÞ. Then the miner should prove that he properly com-
putes each qi;j from dþi and dþj , that he properly computes ðq0i;1; . . . ; q0i;NÞ from ðqi;1; . . . ; qi;NÞ, and that he properly computes each
q00i;j from q0i;j. The first proof can be done using a standard proof of knowledge of discrete logarithm [46]. The second proof can be
done using the technique given in 4.1.2. The third proof can be done using a standard proof of ElGamal decryption [29].

In Phase 4, the miner only needs to prove that the output consists of a permuted decryption of ðd
0000

1 ; . . . ; d
0000

N Þ and a per-
muted decryption of ðd�1 ; . . . ; d�NÞ. This can be done using the technique given in Section 4.1.1.

4.3. Preventing the DCH’s malicious behavior

Before we show how to prevent the DCH’s malicious behavior, we make minor changes to Phase 3 for computing d00i , d000i d]i ,
d
0000

i , and d�i .
If 1 6 jfi : ci < k� 1gj < k, then the DCH does the follows: Recall C be the smallest ci that is greater than k� 1. For all i

such that ci ¼ C, the DCH still sets d00i to an encryption of ðH;H; . . . ;HÞ under public key yv; but for all other i, the DCH sets
d00i to a rerandomization of d0i. If jfi : ci < k� 1gjP k or jfi : ci < k� 1gj ¼ 0, then the DCH similarly defines d00i as a rerandom-
ization of d0i for all i.

For each i, the DCH chooses a permutation p on f1; . . . ;Ng uniformly at random. The DCH sets each d000i to a rerandomiza-

tion of d00pðiÞ and each d]i to a rerandomization of d�pðiÞ. Then, the DCH computes d
0000

i ½1� ¼ d000i ½1�=ðd
000
i ½2�Þ

u and d�i ½1� ¼ d]i ½1�=ðd
]

i ½2�Þ
u.

The DCH defines, for all i, d
0000

i ½2� ¼ d000i ½2� and d�i ½2� ¼ d]i ½2�.
Given the above modification to Phase 3, the DCH gives his zero knowledge proofs as follows. First, the DCH proves, using

standard techniques [6], that each d00i is either a rerandomization of dþi or an encryption of ðH;H; . . . ;HÞ, and that the cleartext



S. Zhong et al. / Information Sciences 179 (2009) 2948–2963 2961
of each d00i appears at least k times.2 Then, the DCH proves that he computes d0001 ; . . . ;d000N properly from d001; . . . ; d00N using the tech-

nique given in Section 4.1.2. Similarly, the DCH proves that he computes d]1; . . . ;d]N properly from d�1 ; . . . ;d�N using the technique

given in Section 4.1.2. Next, the DCH proves that he computes d
0000

1 ; . . . ;d
0000

N properly from d0001 ; . . . ;d000N using the technique given in

Section 4.1.1. Similarly, the DCH proves that he computes d�1 ; . . . ;d�N properly from d]1; . . . ;d]N using the technique given in
Section 4.1.1.

4.4. Computational overhead analysis

Now we give a brief analysis of our extended protocol for the malicious model. Since our theoretical analysis of the basic
protocol’s computational overheads is consistent with the experimental results, for the extended protocol we only provide a
theoretical analysis of overheads. Interested readers can compare it with our results for the basic protocol to estimate the
amounts of time needed in practice.

In the extended protocol, for each respondent, the additional computational overhead (compared with the basic protocol)
is just the signing of one single message. For the miner, the additional computational overhead consists of N2 rerandomiza-
tion operations and 4 zero-knowledge proofs. Each rerandomization is dominated by 2 modular exponentiations. The com-
putation cost of the zero-knowledge proofs in 4.11 and 4.12 are both dominated by by OðNÞ modular exponentiations; the
computation cost of the proofs in [29] and [46] are both dominated by OðN2Þ modular exponentiations. Therefore, the total
additional overhead of the miner is about OðN2Þ modular exponentiations. For the DCH, the overhead consists of 2N � 4N
rerandomizations and 6 zero-knowledge proofs in which the proof described in [6] is also dominated by OðNÞ modular
exponentiations. So the total additional overhead of the DCH is about OðNÞ modular exponentiations.

5. Improved solution

In Section 3, we have presented a basic protocol for kADC. However, the basic protocol suppresses a considerable amount
of information in the quasi-identifiers, because its k-anonymization is very coarse-grained: it either does not change a quasi-
identifier, or completely suppresses it. In practice, suppressing too much information is often undesirable. Consequently, we
now present an improved protocol that suppresses significantly less information.

5.1. Improved protocol

Just as in the basic protocol, each respondent i encrypts her data using public key yv:
2 In t
is a pos
version
allow th
dþi ¼ Eyvðdþi ; rþi Þ;
d�i ¼ Eyvðd�i ; r�i Þ;
Each respondent i submits dþi d�i to the miner.
First, the miner and the DCH execute a subprotocol AnonySet() for m times to anonymize each individual attribute in the

quasi-identifier: AnonySet({1}), AnonySet({2}), . . ., AnonySet({m}). (See Section 5.2 for the details of this subprotocol.)
Then, for L ¼ 1;2; . . . ; blog mc, the miner and the DCH do the follows: the miner chooses bm

2Lc random attribute subsets of
the quasi-identifier such that each subset has a size of 2L. For each random subset M, the miner and the DCH execute the
subprotocol AnonySet(M) to anonymize M.

Finally, the miner and the DCH execute AnonySet (f1; . . . ;mg) and do the follows to decrypt the data: the miner first sends

all the data to the DCH. Then, for each i, the DCH decrypts dþi and d�i using his own private key u; let the results be fdþi and fd�i .

The DCH sends them back to the miner. The miner uses his own private key x to decrypt ðfdþi ; dþi ½2�Þ and ðfd�i ; d�i ½2�Þ. The new

results are the k-anonymized version of the collected data. Again, if the data needs to be published, the miner must publish it
in a randomized order.

5.2. Subprotocol for anonymizing attribute subset M:anonyset(M)

In the previous section, we have presented our improved protocol using a subprotocol AnonySet(). Now we explain how
this subprotocol works.

The input MðM # f1; . . . ;mgÞ of this subprotocol is a subset of quasi-identifier attributes. Denote by dM
i the attribute val-

ues of dþi in the set M. The subprotocol goes as follows.

� Miner’s randomization operations.

–For each pair ði; jÞ, the miner computes qi;j ¼ ðd

M
i =dM

j Þ
ri;j , where each ri;j is chosen uniformly and independently.
his step, in stead of proving that he is following the protocol precisely, the DCH actually proves that he is performing k-anonymization. Therefore, there
sibility that the DCH deviates from the protocol without being detected. However, in that case, the output of the protocol is still a k-anonymization
of the submitted data and nobody’s privacy is violated. Since the target of this work is to protect privacy (rather than ‘‘security” in the broad sense), we
is type of ‘‘benign” cheating. In reality, the DCH typically does not want to cheat in this way since it does not give the DCH any advantage.



2962 S. Zhong et al. / Information Sciences 179 (2009) 2948–2963
–For each i, the miner chooses a permutation hi on f1; . . . ;Ng uniformly at random and computes, for each j, q0i;j ¼ qi;hiðjÞ.
–The miner computes q00i;j½1� ¼ q0i;j½1�=ðq0i;j½2�Þ

x and sets q00i;j½2� ¼ q0i;j½2�.

–The miner sends the DCH: fdM
i gi¼1;...;Nfq00i;jgi¼1;...;N;j¼1;...;N .

� DCH’s randomization operations.

–For each pair ði; jÞ, the DCH computes q0i;j ¼ q00i;j½1�=ðq00i;j½2�Þ

u.
–For each i, the DCH counts the number of j such that q0i;j ¼ 1. Let this number be ci. If ci < k� 1, then the DCH sets d0i to
an encryption of ðH;H; . . . ;HÞ under public key yv; otherwise, the DCH sets d0i ¼ dM

i .
–If 1 6 jfi : ci < k� 1gj < k, then the DCH does the follows: Let C be the minimum value of ci such that it is greater than
k� 1. For all i such that ci ¼ C, the DCH sets d00i to an encryption of ðH;H; . . . ;HÞ under public key yv; for all other i, the
DCH sets d00i ¼ d0i. If jfi : ci < k� 1gjP k or jfi : ci < k� 1gj ¼ 0, then the DCH defines d00i ¼ d0i for all i.
–For each i, the DCH sends d00i to the miner.

� The miner replaces dM
i with d00i .

5.3. Computational overhead analysis

In the improved protocol, each respondent has the same computational overhead as in the basic protocol. The additional
computational overheads for both the miner and the DCH in the improved protocol include the execution of AnonySet and
the decryption at the end. The decryption at the end is dominated by 2N modular exponentiations. The computational over-
head for the miner for each execution of AnonySet is dominated by 2N2 modular exponentiations while the computational
overhead for the DCH for each execution of AnonySet is dominated by N2 modular exponentiations. Throughout the protocol,
AnonySet is run for mþ

Pblog mc
L¼1 bm

2Lcð¼ 2m� 1Þ times, for both the miner and the DCH. Therefore, the total additional over-
heads for the miner and the DCH are dominated by 2ð2m� 1ÞN2 þ 2N and ð2m� 1ÞN2 þ 2N modular exponentiations,
respectively.
6. Conclusion

In this paper, we study the kADC, a cryptographic technique for online data collection by which respondents can submit
data anonymously, even if the data contains identifying information and no unidentified communication channel is avail-
able. We give a basic protocol working in the semi-honest model, an extension of the basic protocol working in the fully
malicious model, and then an improved protocol that suppresses less information in quasi-identifiers. Theoretical analysis
and experimental study are presented for the correctness, privacy, and efficiency of the protocol.

We notice that the k-anonymization procedure our improved protocol performs on the data is still not optimal in the
amount of suppressed information. Therefore, a good future research topic is to further improve our protocol so that it sup-
presses even less information. Before the further improved protocol is available, if our kADC protocol suppresses too much
information in an application, then we recommend falling back to APDC for data collection in that application.

References

[1] Gagan Aggarwal, Tomas Feder, Krishnaram Kenthapadi, Rajeev Motwani, Rina Panigrahy, Dilys Thomas, An Zhu, Approximation algorithms for k-
anonymity, Journal of Privacy Technology, Paper Number: 20051120001, 2005.

[2] G. Aggarwal, N. Mishra, B. Pinkas, Secure computation of the kth-ranked element, in: EUROCRYPT, 2004, pp. 40–55.
[3] D. Agrawal, C. Aggarwal, On the design and quantification of privacy preserving data mining algorithms, in: Proceedings of the 20th ACM PODS, 2001,

pp. 247–255.
[4] R. Agrawal, R. Srikant, Privacy-preserving data mining, in: Proceedings of the ACM SIGMOD, 2000, pp. 439–450.
[5] R. Bayardo, R. Agrawal, Data privacy through optimal k-anonymization, in: Proceedings of the 21st ICDE, 2005.
[6] Emmanuel Bresson, Jacques Stern, Proofs of knowledge for non-monotone discrete-log formulae and applications, in: Proceedings of the ISC, 2002, pp.

272–288.
[7] Justin Brickell, Vitaly Shmatikov, Efficient anonymity-preserving data collection, in: Proceedings of the ACM SIGKDD, 2006, pp. 76–85.
[8] D. Chaum, Untraceable electronic mail, return address and digital pseudonyms, Communications of the ACM 24 (2) (1981) 84–88.
[9] D. Chaum, The dining cryptographers problem: unconditional sender and recipient untraceability, Journal of Cryptology 1 (1) (1988) 65–75.

[10] C. Clifton, D. Marks, Security and privacy implications of data mining, in: Proceedings of the ACM SIGMOD Workshop on Research Issues on Data
Mining and Knowledge Discovery, 1996, pp 15–19.

[11] G. Canfora, C.A. Visaggio, Tuning anonymity level for assuring high data quality: an empirical study, in: First International Symposium on Empirical
Software Engineering and Measurement (ESEM 2007), 2007, pp. 91–98.

[12] T. Dalenius, Finding a needle in a haystack or identifying anonymous census records, Journal of Official Statistics 2 (3) (1986) 329–336.
[13] I. Dinur, K. Nissim, Revealing information while preserving privacy, in: Proceedings of the 22nd ACM PODS, 2003, pp. 202–210.
[14] W. Du, Z. Zhan, Using randomized response techniques for privacy-preserving data mining, in: Proceedings of the Ninth ACM SIGKDD, 2003, pp. 505–

510.
[15] C. Dwork, K. Nissim, Privacy-preserving datamining on vertically partitioned databases, in: CRYPTO 2003, 2004.
[16] A. Evfimievski, J. Gehrke, R. Srikant, Limiting privacy breaches in privacy preserving data mining, in: Proceedings 22nd ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, 2003, pp. 211–222.
[17] A. Evfimievski, R. Srikant, R. Agrawal, J. Gehrke, Privacy preserving mining of association rules, in: Proceedings of the Eighth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2002, pp. 217–228.
[18] B. Fung, K. Wang, P.S. Yu, Top-down specialization for information and privacy preservation, in: Proceedings of the 21st International Conference on

Data Engineering, Tokyo, Japan, April 2005.



S. Zhong et al. / Information Sciences 179 (2009) 2948–2963 2963
[19] A. Fiat, A. Shamir, How to prove yourself: practical solutions to identification and signature problems, in: Advances in Cryptology – Crypto’86, 1986, pp.
186–194.

[20] B. Gilburd, A. Schuster, R. Wolff, k-TTP: a new privacy model for large-scale distributed environments, in: Proceedings of the 2004 ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ACM Press, 2004, pp. 563–568.

[21] O. Goldreich, Foundations of Cryptography, vol. 1, Cambridge University Press, 2001.
[22] O. Goldreich, Foundations of Cryptography, vol. 2, Cambridge University Press, 2003.
[23] S. Goldwasser, S. Micali, Probabilistic encryption, Journal of Computer and System Sciences 28 (1984) 270–299.
[24] P. Golle, A. Juels, Dining cryptographers revisited, in: Advances in Cryptology – EUROCRYPT, 2004, pp. 456–473.
[25] P. Golle, S. Zhong, D. Boneh, M. Jakobsson, A. Juels, Optimistic mixing for exit-polls, in: Advances in Cryptology – ASIACRYPT 2002, Springer-Verlag,

2002, pp. 451–465.
[26] HIPAA, The health insurance portability and accountability act of 1996, October 1998. <www.cms.hhs.gov/hipaa>.
[27] C. Hsu, Y. Chuang, A novel user identification scheme with key distribution preserving user anonymity for distributed computer networks, Information

Sciences 179 (4) (2009) 422–429.
[28] Z. Huang, W. Du, B. Chen, Deriving private information from randomized data, in: Proceedings of the ACM SIGMOD Conference, 2005.
[29] M. Jakobsson, A practical mix, in: Proceedings of the Eurocrypt 98, 1998, pp. 448–461.
[30] M. Jakobsson, Flash mixing, in: Proceedings of the Eighteenth PODC, 1999, pp. 83–89.
[31] Qinglin Jiang, Douglas S. Reeves, Peng Ning, Improving robustness of pgp keyrings by conflict detection, in: Topics in Cryptology CT-RSA, 2004, pp.

194–207.
[32] M. Kantarcioglu, C. Clifton, Privacy-preserving distributed mining of association rules on horizontally partitioned data, in: DMKD’02, 2002, pp. 24–31.
[33] M. Kantarcioglu, J. Vaidya, An architecture for privacy-preserving mining of client information, in: Proceedings of the IEEE ICDM Workshop on Privacy,

Security and Data Mining. Maebashi City, Japan, December 2002, pp. 37–42.
[34] H. Kargupta, S. Datta, Q. Wang, K. Sivakumar, On the privacy preserving properties of random data perturbation techniques. in: The Third ICDM, 2003.
[35] S. Kim, S. Park, J. Won, S. Kim, Privacy preserving data mining of sequential patterns for network traffic data, Information Sciences 178 (3) (2008) 694–

713.
[36] Kristen LeFevre, David J. DeWitt, Raghu Ramakrishnan, Workload-aware anonymization, in: Proceedings of the ACM SIGKDD, 2006, pp. 277–286.
[37] B.N. Levine, C. Shields, Hordes – a multicast based protocol for anonymity, Journal of Computer Security 10 (3) (2002) 213–240.
[38] Y. Lindell, B. Pinkas, Privacy preserving data mining, Journal of Cryptology 15 (3) (2002) 177–206.
[39] A. Machanavajjhala, J. Gehrke, D. Kifer, M. Venkitasubramaniam, l-Diversity: privacy beyond k-anonymity, in: Proceedings of the 22nd ICDE, 2006.
[40] A. Meyerson, R. Williams, On the complexity of optimal k-anonymity, in: Proceedings of the 22nd ACM PODS, June 2004.
[41] C. Park, K. Itoh, K. Kurosawa, Efficient anonymous channel and all/nothing election scheme, in: EUROCRYPT 93, 1993, pp. 248–259.
[42] European Parliament, Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the protection of individuals with

regard to the processing of personal data and on the free movement of such data, Official Journal of the European Communities, 1995, p. 31.
[43] European Parliament, Directive 97/66/EC of the European Parliament and of the Council of 15 December 1997 concering the processing of personal

data and the protection of privacy in the telecommunications sector, Official Journal of the European Communities, 1998, pp. 1–8.
[44] M.K. Reiter, A.D. Rubin, Crowds: anonymity for web transactions, ACM Transactions on Information and System Security 1 (1) (1998) 66–92.
[45] S. Rizvi, J. Haritsa, Maintaining data privacy in association rule mining, in: Proceedings of the 28th VLDB Conference, 2002.
[46] K. Sako, J. Kilian, Receipt-free Mix-type voting schemes – a practical solution to the implementation of a voting booth, in: Proceedings of the

EUROCRYPT 95, 1995, pp. 393–403.
[47] P. Samarati, L. Sweeney, Generalizing data to provide anonymity when disclosing information (abstract), in: Proceedings of the 17th PODS, 1998, p.

188.
[48] C. Su, K. Sakurai, Secure computation over distributed databases, IPSJ Journal (2005).
[49] D. Shah, S. Zhong, Two methods for privacy preserving data mining with malicious participants, Information Sciences 177 (23) (2007) 5468–5483.
[50] L. Sweeney, Guaranteeing anonymity when sharing medical data, the datafly system, in: Proceedings of Journal of the American Medical Informatics

Association, 1997.
[51] L. Sweeney, Achieving k-anonymity privacy protection using generalization and suppression, International Journal of Uncertainity Fuzziness

Knowledge-Based Systems 10 (5) (2002) 571–588.
[52] L. Sweeney, k-anonymity: a model for protecting privacy, International Journal of Uncertainity Fuzziness Knowledge-Based Systems 10 (5) (2002) 557–

570.
[53] Y. Tsiounis, M. Yung, On the security of ElGamal-based encryption, in: Public Key Cryptography’98, 1998, pp. 117–134.
[54] J. Vaidya, C. Clifton, Privacy-preserving k-means clustering over vertically partitioned data, in: Proceedings of the Ninth ACM SIGKDD, 2003, pp. 206–

215.
[55] J. Vaidya, C. Clifton, Privacy-preserving outlier detection, in: Proceedings of the IEEE ICDM, 2004.
[56] L. von Ahn, A. Bortz, N.J. Hopper, k-anonymous message transmission, in: Proceedings of the ACM CCS, 2003, pp. 122–130.
[57] M. Waidner, Unconditional sender and recipient untraceability in spite of active attacks, in: EUROCRYPT’89, 1989, pp. 302–319.
[58] K. Wang, P.S. Yu, S. Chakraborty, Bottom-up generalization: a data mining solution to privacy protection, in: The Fourth ICDM, 2004, pp. 249–256.
[59] A. Williams, K. Barker, Controlling inference: avoiding p-level reduction during analysis, in: Proceedings of the Fifth Australian Symposium on ACSW

Frontiers, 2007.
[60] Raymond Chi-Wing Wong, Jiuyong Li, Ada Wai-Chee Fu, Ke Wang, (alpha, k)-anonymity: an enhanced k-anonymity model for privacy preserving data

publishing, in: Proceedings of the ACM SIGKDD, 2006, pp. 754–759.
[61] R.N. Wright, Z. Yang, Privacy-preserving Bayesian network structure computation on distributed heterogeneous data, in: Proceedings of the 10th ACM

SIGKDD, 2004, pp. 713–718.
[62] Jian Xu, Wei Wang, Jian Pei, Xiaoyuan Wang, Baile Shi, Ada Wai-Chee Fu, Utility-based anonymization using local recoding, in: Proceedings of the ACM

SIGKDD, 2006, pp. 785–790.
[63] Z. Yang, R.N. Wright, Improved privacy-preserving Bayesian network parameter learning on vertically partitioned data, in: Proceedings of the

International Workshop on Privacy Data Management, 2005.
[64] Z. Yang, S. Zhong, R.N. Wright, Privacy-preserving classification of customer data without loss of accuracy, in: Proceedings of SIAM International

Conference on Data Mining, 2005.
[65] Z. Yang, S. Zhong, R.N. Wright, Anonymity-preserving data collection, in: Proceedings of the 11th ACM SIGKDD, 2005.
[66] Michael M. Yin, Jason T.L. Wang, GeneScout: a data mining system for predicting vertebrate genes in genomic DNA sequences, Information Sciences

163 (1–3) (2004) 201–218.
[67] J.X. Yu, Z. Chong, H. Lu, Z. Zhang, A. Zhou, A false negative approach to mining frequent itemsets from high speed transactional data streams,

Information Sciences 176 (16) (2006) 1986–2015.
[68] L. Zhang, B. Zhang, Fuzzy reasoning model under quotient space structure, Information Sciences 176 (4) (2005) 353–364.
[69] S. Zhong, Z. Yang, R.N. Wright, Privacy-enhancing k-anonymization of customer data, in: Proceedings of the 24th ACM PODS, 2005.
[70] S. Zhong, Privacy-preserving algorithms for distributed mining of frequent itemsets, Information Sciences 177 (2) (2007) 490–503.
[71] S. Zhong, Z. Yang, Guided perturbation: towards private and accurate mining, VLDB Journal 17 (5) (2008) 1165–1177.
[72] L. Zhang, W. Zhang, Generalization-based privacy-preserving data collection, in: Proceedings of the 10th International Conference on Data

Warehousing and Knowledge Discovery, DaWak, 2008.

http://www.cms.hhs.gov/hipaa

	k-Anonymous data collection
	Introduction
	Related work
	Our contributions
	Paper organization

	Technical preliminaries
	Basic solution
	Building blocks
	Protocol
	Protocol analysis
	Practical efficiency analysis

	Extension to the fully malicious model
	Building blocks
	Proof of permuted decryption
	Proof of permuted rerandomization

	Preventing the miner’s malicious behavior
	Preventing the DCH’s malicious behavior
	Computational overhead analysis

	Improved solution
	Improved protocol
	Subprotocol for anonymizing attribute subset M:anonyset(M)
	Computational overhead analysis

	Conclusion
	References


