
SCHEMES FOR SURVIVING ADVANCED PERSISTENT

THREATS

by

Ruchika Mehresh

August 2013

A dissertation submitted to the

Faculty of the Graduate School of

the University at Buffalo, State University of New York

in partial fulfilment of the requirements for the

degree of

Doctor of Philosophy

Department of Computer Science and Engineering

Copyright by

Ruchika Mehresh

2013

ii

The thesis of Ruchika Mehresh was reviewed by the following:

Shambhu J. Upadhyaya

Professor, Computer Science and Engineering department

Thesis Advisor, Chair of Committee

Murat Demirbas

Associate Professor, Computer Science and Engineering department

Committee Member

H. Raghav Rao

Professor, Management Science and Systems department

Committee Member

iii

Dedication

To my husband, who believed in me and always inspired me to be my best. To the
rest of my family, for their unconditional love and support.

iv

Acknowledgments

I would like to express my deepest gratitude to everyone who made this thesis pos-

sible. First and foremost, I would like to thank my research advisor Dr. Shambhu

J. Upadhyaya, who has been a continuous source of inspiration and encourage-

ment. I owe him a great deal of debt for providing me with the opportunity to

work with him and for his insightful critique and patient guidance at every step

of the way. Without his guidance and persistent help, this thesis would not have

been possible.

I would also like to thank my committee members, Professor Murat Demirbas

and Professor H. Raghav Rao for their feedback and efforts to keep my progress

on schedule. A grateful thanks to Kevin Kwiat for his generous help and guidance

that helped shape this thesis to what it is today. It was a great pleasure working

with him on the AFRL (Air Force Research Laboratory) projects.

Among people that contributed to this dissertation, I would like to thank Dr.

Ramkumar Chinchani and Krishnan Narayanan, whose research inspired many

components in my own. I would also like to thank the talented Masters students,

Jairaj J. Rao and Sulaksh Natarajan, who also co-authored a publication. They

took time off their busy schedules to help me with the research.

v

Many UB students and alumni helped me at the various stages of my graduate

life. I would like to thank Dr. Mohit Virendra and Dr. Vidyaraman Sankara-

narayanan who were also the teaching assistants for my first security course at

UB. Their zeal for their research inspired me and they guided me a great deal.

Thanks to Ameya Sanzgiri and to the rest of the research group for the very many

interesting discussions and brainstorming sessions.

A special thanks to Professor James Scandale with whom I worked as a teaching

assistant. He is a great person to know and to work with. I picked up many useful

lessons while assisting him that I am sure will help me through life.

Last but not least, I would like to thank God Almighty for His guidance and

my entire family for their love, support and encouragement- without this, I am

certain I would not have been able to complete this thesis.

vi

Table of Contents

Acknowledgments v

Chapter 1
Introduction 1
1.1 The Problem Area . 1
1.2 Motivation . 3
1.3 Problem Definition . 4
1.4 Solution Approach . 11
1.5 Brief Summary of Contributions . 13
1.6 Dissertation Outline . 14

Chapter 2
Related Work 17
2.1 Introduction . 17
2.2 Fault-tolerance . 17
2.3 Mission Survivability . 18
2.4 Advanced Persistent Threats . 21
2.5 Deception as Tool of Defense . 24
2.6 Conclusion . 26

Chapter 3
SWAT - Centralized Architecture 27
3.1 Attack Model . 27
3.2 Solution Design . 30

3.2.1 Requirements . 30
3.2.2 Assumptions . 32
3.2.3 Basic Design . 34
3.2.4 Checkpointing . 35

3.3 Performance Analysis . 37
3.3.1 Multi-step Evaluation . 38

vii

3.3.1.1 Simulation Preliminaries 43
3.3.1.2 Rationale for Using Multi-step Evaluation 44
3.3.1.3 Modeling System Using the Multi-step Approach . 45
3.3.1.4 Parameterization 47

3.3.2 Results . 48
3.4 Conclusion . 50

Chapter 4
Tamper-resistant Security Monitoring 52
4.1 Introduction . 52
4.2 Preliminaries . 56

4.2.1 Attacks on Security Monitors 56
4.2.1.1 Retroviruses . 57

4.2.2 Taxonomy of Tamper-resistant Monitoring Solutions 58
4.2.2.1 Stealth-based Defense Solutions 58
4.2.2.2 Replication-based Monitoring Solutions 58
4.2.2.3 Layered Monitoring Solutions 60
4.2.2.4 Kernel-based Solutions 61
4.2.2.5 Isolation-based Solutions Using Virtualization . . . 61

4.2.3 Limitations . 65
4.3 Formal Requirements . 65
4.4 Threat Modeling . 66

4.4.1 Adversary models . 66
4.4.2 Attack Strategies . 68
4.4.3 Attack Patterns . 68

4.5 Solution Design . 71
4.5.1 Topologies . 75

4.6 Implementation . 79
4.6.1 Monitoring . 79
4.6.2 Experimental Setup . 81
4.6.3 Efficacy Against Attacks . 83
4.6.4 System Overhead . 85

4.7 Discussion . 86

Chapter 5
Distributed Architecture for Survivability 89
5.1 Introduction . 89
5.2 Preliminaries . 92
5.3 Distributed Architecture for Survivability 95

5.3.1 Framework Requirements 95

viii

5.3.2 Framework Details . 95
5.3.3 Operational Details . 99

5.4 Evaluation . 101
5.4.1 System Modeling . 101
5.4.2 Simulation . 104

5.5 Conclusion . 109

Chapter 6
SWAT in Production Environment 113
6.1 Introduction . 113
6.2 Related Work . 114
6.3 SWAT Extension . 116

6.3.1 Extension Modeling . 116
6.3.2 Design Details . 121

6.4 Discussion and Conclusion . 124

Chapter 7
Discussion and Conclusion 126

Chapter 8
List of Abbreviations 133

ix

Abstract

Mission critical systems are prevalent in the military and industry which renders

them attractive as targets for security attacks. Their constantly increasing struc-

tural complexity contributes to benign faults and further facilitates malicious en-

tities. Over the years, these malicious entities in cyber-space have grown smarter

and extremely resourceful. Advanced persistent threat (APT) is a clear example of

this growing sophistication. APTs are characterized by extreme stealth, advanced

skill-set, vast resources and a markedly high success rate. In view of these circum-

stances, mission survivability has become an essential necessity for today’s mission

critical systems. Most existing survivability solutions are simple combinations of

traditional security measures such as network monitoring, firewalls, etc. These

solutions increase the cost of attacks but do not necessarily decrease the probabil-

ity of a compromise substantially. This calls for further advancement of current

mission survivability solutions.

The focus of this dissertation is the robust designing and efficient deployment

of an effective mission survivability solution. Such a solution must be capable of

withstanding APT, one of the hardest threats encountered in recent times. The

solution presented for this purpose relies upon the understanding of attacker intent,

x

objectives and strategies (AIOS). AIOS aids in the designing of better recovery and

adaptation procedures required for enhanced mission survivability.

This dissertation has four major parts. The first part describes the underlying

attack model of the various APT attacks witnessed thus far. This generic model

is then used to construct a basic centralized and hardware-supported version of

the solution. The hardware-support is provided via the use of unused test-logic of

the underlying processor and is used to hide and safeguard information from an

adversary. This solution is based on the principles of deception and node-to-node

verification.

Several attack vectors under APT are known to compromise security monitors

at their target systems. This leaves the systems completely unmonitored and

unprotected. The second part is a solution to ensure the tamper-resistance of such

critical security components. This solution is based on the principle of coveillance

and concepts derived from graph theory.

The third part combines solutions from the first two parts and redesigns a

solution suitable for adoption in a distributed environment. In addition, this part

explores the possible replacement of test-logic hardware with the trusted platform

module (TPM) that is integral to the hardware of modern desktops, laptops, servers

and other devices.

The fourth and final part presents an extension of our scheme that enables

it to effectively and efficiently detect zero-day attacks in a production environ-

ment. This is accomplished with a carefully planned deployment and real-time

customization of honeypots. In essence, this part deals with the deployment issues

of deception-based solutions.

xi

In summary, this dissertation attempts to develop a game-changing mission

survivability solution. Each design choice and the techniques employed are thor-

oughly tested and validated via simulation and experimentation. Strong security

and tamper-resistance properties, alongwith its efficiency, could make it a good

survivability strategy against APT for which no good solutions currently exist.

xii

Chapter 1

Introduction

1.1 The Problem Area

Mission critical systems are commonly employed for running essential operations

in numerous domains such as military, medicine and telecommunications. Some

important mission critical systems are traffic control, power, life-support systems,

nuclear reactor control, etc. Lives and livelihoods depend on the correct operation

of these systems. Today, critical systems have become complex, open and intercon-

nected. These characteristics render them highly vulnerable to security attacks.

Moreover, because these systems run important operations, they are often seen as

high-value targets. Thus, the need for mission survivability is more pressing than

ever [108].

Mission survivability “is the capability of a system to fulfill its mission in a

timely manner in the presence of attacks, failures, or accidents” [32]. It does not

differentiate between attacks, faults and accidents and may not even care about the

2

root cause of a malfunction. Its sole focus is mission survival and its completion;

features such as tracking the perpetrator and full-system recovery are secondary.

Prioritizing goals lends a strong advantage to survivability solutions as it is easier

to effectively address a limited set of requirements in a system design.

Most mission critical systems already provide a combination of fault-tolerance

and security. However, fault-tolerance via redundancy or replication is contradic-

tory to the notion of security that requires limiting the trusted computing base

(TCB). Thus, normal security techniques cannot be applied to fault-tolerant sys-

tems. As a result, security practitioners employ a three-layered security solution

for fault-tolerant systems. The three layers are fault/threat avoidance/prevention,

detection and recovery. The first layer is fault/threat avoidance/prevention which

consists of proactive measures to reduce the probability of any faults or attacks.

This is usually achieved via advanced design methodologies such as encryption,

firewalls and password protection. The second layer viz. fault/threat detection,

primarily consists of an intrusion detection system (IDS) that attempts to detect

faults or attacks that occur despite the prevention layer. The final layer is recov-

ery that focuses on recovering the system after a fault or an attack. Generally,

fault-tolerant systems rely on replication and redundancy for fault-masking and

system recovery. The additional three layers of security provide a strong defense

to fault-tolerant mission critical systems against malicious actors. Yet, if a deter-

mined adversary stages an attack on the recovery layer, it is quite possible that

the mission will fail due to lack of any further countermeasures.

Mission survivability builds upon security and fault-tolerance features of a sys-

tem. It is usually composed of four layers – prevention, detection, recovery and

adaptation/evolution [32]. Adaptation is the evolution of a system state after each

recovery. In other words, lessons learned from the observation of faults or attacks

3

Figure 1.1: Basic architecture of a mission critical system

are applied in real-time to strengthen a system’s defense.

Most existing survivability solutions simply employ an array of existing secu-

rity and fault-tolerance techniques. Consequently, they inherit the drawbacks and

loopholes of those techniques, along with their unreliability. Figure 1.1 explains

survivability in the context of mission critical systems. Mission assurance is a

generic term encompassing system engineering, risk management, quality manage-

ment, etc. Mission survivability is usually considered a subset of mission assurance.

1.2 Motivation

Hacking community has been gathering momentum with dedicated forums that not

only provide powerful and ready-to-use tools to script kiddies but also an excellent

communication channel for professionals. Well-orchestrated cyber attacks are not

uncommon in current cyber scenario. With the advent of APT, the seriousness of

situation has increased manifolds. APT is “a new breed of insidious threats that

use multiple attack techniques and vectors and that are conducted by stealth to

avoid detection so that hackers can retain control over target systems unnoticed

for long periods of time” [133]. APTs are usually characterized by extreme stealth,

4

advanced skill-set, vast resources and a markedly high success rate. Traditional

prevention, detection and recovery measures are often ineffective against them.

Their strength lies in their use of deceptive measures such as trail-hiding, detection

evasion, etc., along with a combination of diverse attack vectors.

Existing defense solutions, especially in a production environment, do not offer

any effective countermeasures against the use of deception by intruders. Although

solutions like shadow honeypots [4] provide good protection against zero-day and

stealth attacks but their cumbersome anomaly detection makes them unsuitable

for real-time use in production environments.

1.3 Problem Definition

Consider a generic mission critical system responsible for continuously and reliably

providing a service such as space shuttle control, a sensor network for seismic event

monitoring, life support system or traffic control. This service consists of n critical

operations as shown in Fig. 1.2. Each critical operation and data storage module

is made fault-tolerant via replication. Securing this fault-tolerant system requires

the aforementioned three layers – prevention, detection and recovery. Methods and

techniques of prevention (e.g., cryptographic technologies, access control mecha-

nisms, firewalls, etc.) are chosen based on system requirements and capabilities.

Detection measures usually fall under two broad categories – signature-based de-

tectors and anomaly detectors [9]. Signature-based detectors (e.g., Tripwire [62])

work extremely well for known malware and attack patterns. Anomaly detectors

(e.g., IDES [83]) are required for intrusions where the attack signatures are not

known. They work relatively well for zero-day attacks and the attacks with chang-

ing patterns. However, poorly implemented anomaly detectors suffer from low

5

Figure 1.2: Sample mission critical system running n critical operations. Each
critical operation is made fault-tolerant with m replicas. All replicas are monitored
by an intrusion detection system that reports to the administrator.

accuracy and efficiency. All IDSes raise alerts on intrusion detection that are re-

ported to the administrator via an interface like logs or system pop-ups. Recovery

procedures can be either proactive or reactive in nature [127]. Their selection and

implementation are system dependent. Usually, recovery is initiated based on the

results from the detection layer.

Until this point, the presented mission critical system in equipped with security

and fault-tolerance. These features are extended to provide mission survivability.

Note that the terms system survivability and mission survivability are used in-

terchangeably throughout this dissertation because system survivability is almost

always reduced to mission survivability. System designers should choose a set of

6

critical services that constitute the mission and ensure their survivability.

Survivability can be either static or dynamic. Under static (proactive) surviv-

ability, redundancy is used to support mission critical services. Replicas can be

located in the same or different (more robust) locations. However, these static

replicas can be dynamically reconfigured based on evolving survivability needs.

Introducing spatial and time diversity in replicas further helps survivability. Dy-

namic (reactive) survivability focuses on resource management after the damage

via reallocation or preemption of resources. Park and Chandramohan [104] describe

the static, dynamic and hybrid survivability models for a distributed system.

As discussed previously, mission survivability adds another layer to the existing

three-layered security setup of mission critical systems. This new layer, adaptation

or evolution, is required so the system can survive repeated attacks of the same

kind.

Survivability should not only withstand anticipated attacks but should also be

able to respond to unanticipated events. Robust systems should be able to survive

in all kinds of new and open environments. Thus, this dissertation especially

focuses on recovery and adaptation because they help a system survive in a hostile

environment against advanced and unknown attacks.

Advanced and persistent attacks use a combination of attack vectors as well

as stealth. For effective APT detection, the IDS needs to monitor and correlate

isolated events. This information aids in the understanding of the attacker intent,

objectives and strategies (AIOS). AIOS further aids the designing (customizing)

of effective recovery procedures. Recoveries are usually of two types – generic

or targeted. Generic recoveries are based on approximate damage assessments.

For example, if an auxiliary service is deemed compromised, a generic recovery

procedure will simply switch it off. If multiple intrusions are detected, a generic

7

recovery procedure may just restart the entire system and load the last stored

checkpoint. Note that this will restore the system to the same state that was earlier

compromised and is usually time-consuming. Moreover, simultaneous malfunction

of multiple services may or may not be isolated events. Another drawback of a

generic recovery procedure is that although it does not guarantee an intruder-free

system but the intruder is made aware of the detection. Under APT, adversaries

are smart enough to switch their attack strategies (or AIOS). Initiating a recovery

provides the adversary with feedback that helps him better understand the system’s

defense and adjust his strategies accordingly. Such events strengthen the attacker

and weaken the mission. On the other hand, a targeted recovery takes the approach

of wait-and-watch. It gathers data about the possible footholds of an attacker

within the system and his AIOS. Using this information, it is not only possible

to clear intrusions all at once (completely blocking out the adversary) but predict

any repercussions in case the recovery is not as effective as expected. Targeted

recoveries can be extremely effective when combined with game theory in order to

strengthen system survivability.

Following is a step-by-step construction of possible scenarios that threaten the

survivability of the system described in Fig. 1.2:

• Non-replicated critical services: Designers must accurately identify all critical

services and provide them with effective fault-tolerance (replication or redun-

dancy). Replication not only provides effective prevention against faults and

accidents but makes it somewhat harder for an attacker to compromise the

mission.

• Replicated services with ineffective monitoring

– Byzantine fault-tolerance: It involves state machine replication of criti-

8

cal services and works well for benign faults. However, in case of mali-

cious attacks, an adversary who can compromise one replica can com-

promise the rest of them just as easily. If the attack is automated, then

the mission survivability depends solely on the access control mechanism

of each replica [24].

– Byzantine fault-tolerance with proactive recovery: Under proactive re-

covery, all replicas of a critical service are rejuvenated periodically even

if there is no reason to suspect any damage. Such recoveries can usually

tolerate the existence of f faulty replicas between scheduled recoveries.

If the number of damaged replicas increases beyond f, effective recovery

of all replicas cannot be guaranteed. In absence of diversity, it is not

difficult for an adversary to compromise more than f replicas (within

the recovery window) if he has compromised one already and has ac-

cess to others. Moreover, compromised replicas can be used to disrupt

system’s normal operations to an attacker’s advantage. For instance,

compromised replicas can generate extra traffic to clog the network and

delay the next round of recovery. This gains the adversary more time

to compromise f+1 replicas [127]. This is a classic case of attacking the

recovery phase.

The longer an intruder stays inside the system, the more information he

gains about the system. All attempts, successes or failures, provides him

with valuable insights. Thus, the probability of a successful compromise

is higher for stealthy attackers in long-running missions.

– Byzantine fault-tolerance with proactive-reactive recovery: Proactive re-

coveries burden the system and add substantial overhead if scheduled

9

too frequently. Lower frequency leaves the system vulnerable for longer

periods of time. As a result, reactive recoveries were introduced. They

are initiated on-demand when IDSes suspect any activity or event. How-

ever, almost all IDSes suffer from false negatives. Moreover, arbitrary

faults are very difficult to detect. Hence, reactive recoveries alone cannot

solve the problem [48]. Usually, reactive recoveries are used in conjunc-

tion with less frequent proactive recoveries for light-weight and effective

fault-tolerance. Proactive-reactive recoveries solve several major prob-

lems except that if the compromised node is restored to the same state

that was previously attacked, the attacker can compromise it again in

no time [127]. Another major concern of employing reactive recover-

ies (even as a part of proactive-reactive recoveries) is the possibility of

denial-of-service (DoS) attacks. An attacker, not capable of executing

an actual attack, may still be able to invoke numerous reactive recoveries

exhausting system resources.

– Proactive-reactive recovery with diversity: Introducing spatial diversity

to replicas provides relatively better security. It can be difficult and

more time-consuming for the adversary to compromise f+1 diverse repli-

cas. However, it is possible to compromise all of them eventually, es-

pecially in case of stealth attacks on long-running missions. However,

most existing systems are not spatially diverse and upgrading them to

possess spatial diversity is usually expensive. Note that even with spa-

tial diversity, there is still the issue that the system is restored back to

the same vulnerable state.

Time diversity has been suggested to complement spatial diversity. It

10

involves changing the system state after each recovery so that it is al-

most impossible to predict the current system state [18]. It is highly

complex to implement time diversity as a workable solution because of

the on-the-fly compatibility issues. Furthermore, updating replicas and

other communication protocols after each recovery consumes consider-

able time and resources. A decent workable solution employing space

diversity still needs a lot of work [13]. Employing efficient time diversity

is a step planned too far ahead in the future.

• Vulnerabilities in IDSes: This is the classic problem of ‘Who watches the

watcher.’ Several retroviruses and attack vectors under APT are known to

target security monitors first, leaving the system undefended against any

future attacks. Many solutions have been proposed to provide tamper-

resistance to security monitors. However, many of these solutions are cum-

bersome, complex and even insecure. Taxonomy of these solutions is included

in Chapter 4.

• Vulnerable intrusion reporting interface: All IDSes rely on some kind of

interface to report intrusions. These interfaces can be log files, desktop pop-

ups, emails, etc. and need to be secured in order for an IDS to be truly

effective. For instance, an attacker can delete the log files generated by

an IDS so the intrusions are detected but never reported. A good reporting

interface should either be tamper-proof or be able hide detection information

from unauthorized users.

• The physical access threat: Sometimes, system nodes are deployed in an

environment where physical access to them is a highly probable threat. For

instance, wireless sensor network nodes are highly susceptible to physical

11

capture. To prevent such attacks, any changes in the physical environment

of a node must be reported. A reasonable solution may involve attaching

motion sensors to each node. Readings from these sensors can be used to

detect an unauthorized physical access.

From the above discussion, it can be concluded that a good survivability solution

must be provided with byzantine fault-tolerance and a three-layered security (viz.

prevention, detection and recovery). However, existing intrusion detection tech-

niques and recovery procedures are ineffective at large against APTs that rely on

stealth. There is also a strong need to tamper-proof all critical components of a

good survivability solution.

1.4 Solution Approach

Based on the discussion above, this dissertation will focus on the following areas:

• Strengthening mission survivability with focus on recovery and adaptation

phases.

• Designing an effective solution to withstand APT, one of the hardest attack

models. Any such solution must consider that advanced attackers are capable

of switching strategies based on the observed information. Therefore, any

defensive action that divulges new information should consider all possible

repercussions.

• Designing the solution to counter APT’s deception (stealth).

• Designing the solution to stay tamper-free throughout the mission lifetime.

12

• Designing the solution to work effectively for long running missions. Long

running missions consume a lot of time and resources and have a lot to lose

if a mission is disrupted in the later stages. Additionally, stealthy attackers

have more time to hide, observe and design advanced attacks for the mission.

• Effectively evaluating the solution.

• Designing the solution to work well in all environments, centralized and dis-

tributed.

• Designing the solution to be efficiently deployable in a soft real-time produc-

tion environment.

The presented solution framework is referred to as Survivable framework for

cyber Warfare against Advanced Threats (SWAT) in the rest of this dissertation.

Based on the focus areas specified above, the design approach to SWAT has three

legs:

• Tamper-proofing security monitors at each host: All critical components are

monitored by IDSes at all times. However, advanced attacks are capable of

compromising or reducing the effectiveness of these security monitors [50, 62].

Therefore, it is essential to ensure that all security monitors and critical

services stay tamper-free at all times.

• Surreptitious and tamper-proof intrusion reporting: A good survivability so-

lution against APT should consider all repercussions before taking any action

that reveals new system information. A half-baked reaction-plan can tip-off

the attacker about the detection and trigger a change in the attack strat-

egy. In this regard, all intrusion reporting should be kept surreptitious and

tamper-free until the system figures out an appropriate reaction strategy.

13

• Deception-based recovery customization: Stealth attackers progress slowly to

evade detection while devising advanced attacks. They also randomize their

traces and patterns so a correlation is not apparent. Deception techniques,

such as honeypots, have been used for a long time to expedite attack profile

development via the generation of AIOS. Deception forces certain choices on

the suspected users. These choices indicate patterns that reveal the inten-

tions and capabilities of the attacker sooner than a regular system. AIOS

information is used in the customization of targeted recovery procedures.

Moreover, surreptitious reporting of intrusions provides the system with the

choice to hide detection information from the attacker for as long as it wants.

This data-hiding and stealth buys SWAT the time to decide on an appropri-

ate defense strategy.

Numerous design choices in SWAT helps keep it lightweight, efficient and effective

for long-running missions. The design process starts off with a centralized and

simplified version of SWAT, which is later modified and extended for adoption in

a distributed environment. This dissertation also presents a deployment strategy

for increasing the effectiveness of SWAT against zero-day attacks.

1.5 Brief Summary of Contributions

• Identified the shortcomings in current survivability solutions that make them

ineffective against APT.

• Proposed a centralized survivability framework (called SWAT) that surrep-

titiously detects and reports intrusions via the use of hardware. SWAT uses

deception to customize effective recovery and adaptation procedures in real-

14

time.

• Proposed a light-weight solution for tamper-resistant functioning of security

monitors (and other critical components) in SWAT.

• Extended the centralized SWAT framework to work efficiently in a dis-

tributed environment.

• Proposed a multi-step evaluation procedure to quickly and effectively evalu-

ate complex systems such as SWAT.

• Proposed a scheme for effective deployment of SWAT in production environ-

ment and to increase its effectiveness against zero-day attacks.

1.6 Dissertation Outline

Chapter 2 surveys the relevant literature for the problem area defined in Section

1.1. This survey primarily targets three crucial domains. First, it describes the

major works in the field of mission survivability. Second, it presents an account of

the recent major instances of cyber attacks that can be categorized under APT.

This is essential in deriving a generic attack model based on APT in Chapter 3.

Third, it discusses the role that deception has been traditionally playing as a tool

of defense. This discussion is required in order to understand why some aspects of

SWAT are rooted in deception.

Chapter 3 begins with describing a generic attack model based on APT. The

challenges posed by this attack model influences the set of requirements laid down

for designing SWAT. This chapter then continues to describe a centralized version

of SWAT which is made fault-tolerant via replication. In this version, all replicas

15

run in lockstep and submit their checkpoints and final results to a central authority

that uses voting to identify faulty/compromised submissions. IDS running at each

replica is altered to lock a signature in the test-logic hardware if suspicious activ-

ity is detected. The signature stored in the hardware is invisible to the adversary.

This form of information hiding is based on the principle of deception discussed

in Chapter 2. Deception is required in the design of SWAT because APTs employ

stealth to hide inside the system that gains them an unfair advantage. Moreover,

they use system’s reactions to fine-tune their strategies in order to model more

effective and targeted attacks. Therefore, any myopic defensive strategy may act

as a feedback benefiting the adversary. An intelligent defense should first gather

enough information about the attacks in order to understand the AIOS and then

devise appropriate defense strategies in real-time. The signature hidden in the

hardware is securely transmitted to the central authority which is responsible for

designing such strategies. Evaluating the system described in this chapter becomes

complex due to the presence of both hardware and software components. Thus, a

multi-step evaluation approach is employed. It combines simulation, implementa-

tion and theoretical analysis to evaluate a complex system and produce realistic

results for long-running missions. This approach to evaluate SWAT is described

in detail.

Chapter 4 presents a solution to the problem of ensuring that all critical compo-

nents of SWAT stay tamper-resistant throughout the mission. It proposes a cyclic

watchdog solution based on the principle of coveillance. Light-weight processes are

arranged in a cycle and monitor each other so that it is not possible to kill anyone

without alerting some other process. Any of these processes can monitor other

crucial components. Various topologies of this solution are suggested for increased

security or performance. Evaluations are carried out via solution implementation

16

in an AMD SimNow simulated multi-core environment.

Chapter 5 extends SWAT for adoption in a distributed environment. As for the

centralized solution presented in Chapter 3, the solution in this chapter leverages

concepts of deception (hiding) in a hardware-based security setup. In addition,

it explores the possible adoption of trusted platform module (TPM) in place of

test-logic circuitry. TPM provides additional processing capabilities that make it

more suitable for SWAT. However, it is not present in all commercial-of-the-shelf

(COTS) systems. Evaluations are conducted using multi-step evaluation approach

as described in Chapter 3.

Chapter 6 discusses the tendency of APT to frequently exploit zero-day vulner-

abilities. This chapter presents an architecture that employs deception at the end

systems in order to defend against zero-day exploits. In addition, it addresses the

problems related to deploying deception-based survivability solutions in a produc-

tion environment. This is an important because most traditional uses of deception

are cumbersome and complex. As before, this solution also involves on-the-fly de-

signing of AIOS-based targeted recovery procedures. Each design choice in this

architecture is supported by evidence and a detailed review of related literature.

Chapter 7 concludes the discussion by reviewing the important features of

SWAT and discussing the challenges involved in developing and deploying a full-

scale SWAT-based system.

Chapter 2

Related Work

2.1 Introduction

In the previous chapter, Survivable framework for cyber Warfare against Advanced

Threats (SWAT) was introduced as a solution for enhanced mission survivability.

This chapter surveys the literature related to the design of SWAT. Domains such as

fault-tolerance, mission survivability and deception are broadly explored in order

to understand the current cyber scenario pertaining to the problem of mission

survivability. This chapter also discusses the recent and major events of advanced

persistent attacks (APT) in order to make a strong case for their consideration.

2.2 Fault-tolerance

Fault-tolerant solutions in the existing literature employ redundancy, replication

and consensus protocols. Most such solutions can tolerate up to f replica fail-

ures/compromises. Given enough time and resources, it is possible for a skilled

adversary to compromise more than f replicas and subvert the entire system. Thus,

18

a combination of reactive and proactive recovery approaches is used to keep the

number of compromised replicas under f at all times [127]. As attacks get more

advanced and stealthy, it gets harder to detect faulty or malicious behavior [137].

Furthermore, after compromising one replica, the adversary can easily compro-

mise other similar replicas fairly quickly. To counter this problem, researchers

have proposed spatial diversity in software. Spatial diversity can slow down an

adversary but eventually compromising all diverse replicas is possible. Therefore,

it was further proposed to introduce time diversity in addition to spatial diversity.

Time diversity modifies the expected state of a recovered system such as its OS

access passwords, open ports or authentication methods. This is to ensure that an

attacker is unable to exploit the same vulnerabilities that he had exploited before

[18].

Chapter 1 had discussed these measures and their shortcomings in detail.

2.3 Mission Survivability

Terms such as dependability, fault-tolerance, reliability, security and survivability

are often confused with each other and have several overlapping characteristics.

Their ambiguous definitions present a myriad of problems for the researchers who

work in related fields. Al-kuwaiti et al. [3] presented a comparative analysis of

these terms to better understand their similarities and differences. Based on this

analysis, a survivable system is required to resist threats such as intentional/hostile

attacks, malicious activities, random failures and accidents. The constituent at-

tributes of survivability are reliability/availability, fault-tolerance, performance,

safety and security (availability, authenticity, confidentiality, integrity). Surviv-

able systems achieve these attributes by identifying critical services and providing

19

them with fault-tolerance and four layers of protection, viz. prevention, detection,

recovery and adaptation.

Traditional prevention, detection and recovery measures are often ineffective

against APT. Thus, security researchers recommend a combination of several tech-

niques to counter APT [29]. For instance, Tankard recommended monitoring the

outgoing traffic in combination with other traditional measures (e.g., keeping the

system up-to-date, using firewall, data encryption, security audits, etc.) [133].

Good security practices and awareness are always recommended [126]. However,

multiple solutions when combined can become heavyweight and harm a system’s

performance, delay a mission or become non-scalable. They are not even guaran-

teed to be effective.

As discussed previously, recovery layer is considered the key to mission survival

in a hostile environment. Paputungan et al. [103] presented a recovery-based model

for mission survivability that focuses on system reconfiguration after an incident.

The work proposed a reconfiguration algorithm that assigns redundant resources

to critical services and pre-empts resources from non-critical services. Resource

reallocation is based on factors such as the time and cost of reconfiguration and

the number of pre-empted non-critical service resources. Many other researchers

have proposed work on recovery-based survivability. For example, ERAS [139] and

cluster recovery [7]. There are solutions that model systems for better survivability

analysis quantitatively [93, 78, 81, 147, 124].

Park and Chandramohan [104] described the static, dynamic and hybrid sur-

vivability models for a distributed system. Carvalho [22] focused on strengthening

mission survivability by intelligent allocation and replication of tasks across a net-

work. Threat assessment is used to proactively move resources that are at higher

risk. On similar lines, Carvalho et al. [23] proposed a biologically inspired approach

20

to mission survivability for cloud computing environments.

Zuo and Panda [148] proposed a logical framework for survivability in a dynamic

and real-time environment. This framework focuses on the use of strategies and

tactics to thwart malicious attacks. Strategies refer to the overall plan of action

designed for mission survivability while tactics focus on lower-level procedures and

techniques required to implement a strategy. These concepts are illustrated via

a military command and control example in this work. It also mentions four

principles that should be used to decide the appropriate survivability strategies:

• Multiple-rule principle: Multiple survivability strategies can be used collab-

oratively. Each strategy should focus on a different aspect.

• Efficiency principle: Efficiency and effectiveness of each strategy should be

derived from a cost-benefit analysis.

• Least side-affect principle: Survivability actions should have a minimum im-

pact on other system operations.

• Worst scenario principle: Survivability strategies should be prepared for the

worst-case scenarios.

Literature on mission survivability is vast and difficult to review completely. This

section describes a few important solutions that directly or indirectly contribute

to the design of SWAT. Several other works on mission survivability are cited

(wherever relevant) throughout this dissertation.

21

2.4 Advanced Persistent Threats

Usually, advanced defense strategies are derivations of the lessons learned after

the attacks on a system. However, in order to develop state-of-the-art security

solutions, the need is to proactively observe and understand the direction in which

current threats are heading. This section describes the latest trends and instances

of attacks on critical systems.

Today’s market forces and easy access to high-end technology have influenced

the attack landscape considerably. As reported by Washington Post [98], malicious

sleeper code is known to be left behind in the U.S. critical infrastructure by state-

sponsored attackers. This sleeper code can be activated anytime to alter or destroy

information. Similar stealth and evasion methodologies are also employed during

the multi-stage delivery of malware discussed in [84] and the botnet’s stealthy

command and control execution model in [60]. A rising trend of stealthy and

advanced malware can already be seen all around [59].

A recently published report by McAfee surveyed 200 IT executives from critical

infrastructure enterprises in 14 countries [12]. The report documents cyber-security

experts expressing concern about the surveillance of U.S. critical infrastructure

by other nation-states. There is a stable and high number of probing reports

(thousands/month) and perceived network attacks by domestic utility networks.

Quoting [12], “our survey data lend support to anecdotal reporting that military in

several countries have done reconnaissance and planning for cyber-attacks on other

nation’s power grids, mapping the underlying network infrastructure and locating

vulnerabilities for future attack.” The rapid adoption of technology such as smart

grid (that automatically monitors and controls the electricity flow) adds to the

problem of protecting these critical systems. Such systems have become highly

22

vulnerable due to automation and remote access but majority of their operators

are not as concerned about the security. The survey acknowledges the need for

critical infrastructure to focus its attention on more sophisticated threats such

as stealthy infiltration and cyber-extortions. This need is further heightened by

the emergence of APT, the critical infrastructure’s slow response to the rapidly

changing threat scenario and the fact that it is a high-value target.

APT is probably the most serious threat faced by critical systems today. Daly

describes APT as sophisticated cyber-attacks by hostile organizations that aim

to gain access, maintain a foothold and modify data at their target systems [30].

The term ‘advanced’ refers to the high-quality of skill set involved in designing

these attacks. The term ‘persistent’ is used to indicate the long presence of an

attacker inside the system (for completing a mission or prolonged data collection).

Advanced attackers usually adapt their strategies based on observations. These

changing strategies are executed via command and control (C&C) architectures.

The attacks are targeted and multi-shot. Generally, the first step is to gather

intelligence such as the anti-viruses (AV) running on the system. This information

helps exploit weaknesses in the defense while avoiding detection. Attackers also

maintain multiple malware installations and footholds in the system. Even if

a system recovers from some malware installations, there is no guarantee that

the system is attacker-free. Weak forms of such guarantees may come from a

complete reboot/reload of important system files. However, such measures violate

the timeliness property of a mission and may restore the system to the same

vulnerable state that was initially compromised.

Gh0stNet is an intelligence gathering operation (an APT) that uses a Trojan

horse named Gh0st Rat [30]. Some of its features are key logging, remote termi-

nal shell, tracking videos remotely, voice monitoring, session management, hiding

23

traces by clearing up the systems logs, etc. It has been known to compromise at

least 1,295 computers.

Another well-publicized APT, Operation Aurora, targeted 35 organizations in-

cluding Yahoo, Symantec and Morgan Stanley and stole intellectual property. Au-

rora’s multi-shot attack started with advanced social engineering and targeted

emails that hosted malicious Javascript code. It mostly exploited zero-day vul-

nerabilities in Internet Explorer and established backdoor communication with its

C&C centers via TCP port 443. It used encryption for stealth in order to avoid

traditional detection systems. Since then, many similar advanced attacks have

been reported on organizations like Sony, Barracuda Networks and RSA security

[133]. A report by McAfee [68] described details about Aurora and the preven-

tive measures that companies can take to protect their critical assets from similar

attacks in the future.

A major example of APT is the famous malware, Stuxnet [36]. It came to light

in 2010 when it targeted Iran’s nuclear facilities. Its variants are one of the most

serious malware threats to supervisory control and data acquisition (SCADA) sys-

tems such as power plants and gas pipelines [86]. It has the capability to reprogram

programmable logic controllers (PLCs) to work to an attacker’s advantage and it

maintains stealth. Stuxnet sniffs for a specific configuration and remains inactive

if it does not find it. Another risk-minimizing feature is its limited replication (one

to three) and a specific date on which it erases itself. Once a highly advanced

malware is designed to damage the military systems, its spread for industrial es-

pionage cannot be contained. “Stuxnet is the new face of 21st-century warfare:

invisible, anonymous, and devastating” [47].

Malware Flame outperformed Stuxnet in sophistication and capabilities. It

installs itself on endpoints and sniffs information. This information is transmitted

24

back to the C&C center. Based on the information received, the center decides its

attack strategy. Flame has limited spread and hides its traces to ensure that it can

get valuable information without raising red flags. It has the capability to monitor

nearly every activity on an endpoint, including conversations utilizing Bluetooth

technology. Flame’s operators are highly skilled, stealthy, focused and adapt their

attacks to each target [96].

Stealth is usually an underlying feature in APT. It is essential due to the long

process involved in compromising a highly secured system. In essence, stealth buys

attackers time to slowly progress towards their goal by reducing the risk of detec-

tion. For instance, some malware delay their activation so a pattern-recognition

AV cannot associate them with their source. Another example is a compromised

system contacting its C&C center by embedding information (e.g., keystrokes)

in domain name system (DNS) packets [30]. Stealth in malware distribution is

generally achieved via junk insertion, code recording and packing [45].

2.5 Deception as Tool of Defense

Cyber warfare is not limited to military domain anymore. Knapp and Boulton

[64] reviewed the information warfare literature from 1990 to mid-2005 and made

a strong case for how cyber warfare has extended to other domains such as e-

commerce, telecommunications, etc. Baskerville [16] discussed the asymmetric

warfare theory in context of information warfare. According to the asymmetric

warfare theory, attackers have the advantage of time and stealth over the defending

systems. Thus, in order to counter this imbalance, defense needs to be “agile and

adaptive.” Deception can be an effective tool to even out this asymmetry in the

design of mission survivable systems. Defensive deception is an act of intentional

25

misrepresentation of facts to influence an attacker’s actions in favor of the system

[31].

Deception itself in warfare is not new [135, 28]. However, deception has several

associated legal and moral issues with its usage in today’s society. The discussion

of morality and legality in integral to the use of deception for defense and it is never

ending. Cohen [28], the author of deception toolkit [27] discussed the moral issues

associated with the use of deception throughout his work. Lakhani [69] discussed

the possible legal issues involved in the use of honeypots.

The static nature of today’s networks presents a sitting target and the network

defense needs to grow smarter. Patch development time for most exploits is much

higher than the exploit development time. Repik [116] documented a summary of

internal discussions held by Air Force Cyber Command staff in 2008. His work

made a strong argument in favor of using deception as a tool for degrading attack-

ers’ effectiveness. He argued why planned actions taken to mislead hackers have

merit as a strategy and should be pursued further. Until recently, the focus has

been mainly on the use of deception by hackers or the honeypot systems but lit-

tle has been done to systematically model and examine deception-based computer

security operations.

Deception theory is well documented in social and behavioral sciences. Cohen

et al. [28] pointed out that there are only two ways of defending against a powerful

adversary. One is to be stronger than him, and the other is to manipulate him into

reduced effectiveness (by way of deception). Deception aims to influence adversary

observables by concealing or not concealing as needed. Thus, as mentioned in [28],

deception consists of – 1) determining what the adversary should and should not

observe, 2) creating simulations to induce desired observations and control the

focus of attention, and 3) using concealment to inhibit undesired observations.

26

Murphy [97] talked about the use of cyber deception to address the issue of ever

increasing threats in today’s cyber space. She discussed the techniques of deception

such as fingerprint scrubbing and obfuscation. Her work is based on the principle of

holding back important information from the attacker to render the attack weak. In

cyber space, knowledge is everything, its impreciseness or incompleteness reduces

the quality of resulting attacks. Fowler and Nesbit [38] argued for the integration

of deception with regular operations as an effective warfare tactic. There is vast

literature and taxonomies on the use of deception to secure computer systems and

information in general [28, 117, 116].

2.6 Conclusion

This chapter surveyed the literature relevant to SWAT and highlighted the prob-

lems of mission survivable systems by describing the latest instances of APT.

Because the relevant body of literature is extremely vast, only the major relevant

works are included in the survey. Deception is an important part of SWAT design,

therefore, the importance and use of deception as a defense technique has also been

discussed.

In the next chapter, a generic APT-based attack model is described and a

centralized version of SWAT is presented.

Chapter 3

SWAT - Centralized Architecture

This chapter describes a centralized version of SWAT (Survivable framework for

cyber Warfare against Advanced Threats). But prior to that, an attack model is

presented that will serve as the basis for its design.

3.1 Attack Model

Chapter 2 described the current attack landscape for cyber systems and presented

several instances of advanced persistent threats (APT). This section builds upon

it to present a generic attack model representative of APT. Mandiant corporation

[85] considers the attacks under APT to have the following lifecycle:

• Initial compromise: Social engineering, phishing, zero-day viruses, etc.

• Establish foothold: Install backdoors, Trojan horses, etc.

• Escalate privileges: Gain administrative privileges using exploits, password

cracking, etc.

• Internal reconnaissance: Collect confidential infrastructure information.

28

• Move laterally: Compromise more internal systems.

• Maintain presence: Ensure continued control over channels and credentials

without raising red flags.

• Complete mission: Steal data or subvert the mission at an appropriate time.

This dissertation works with an attack model presented in Fig. 3.1. This at-

tack model is an extension of the models presented by Repik [116] and Gragido

[46]. The attack starts with intelligence gathering, followed by initial planning

and development. Techniques such as social engineering and phishing are used by

the attacker to observe and learn more about the system. Based on the informa-

tion gathered, the attacker decides whether he wants to proceed with the attack.

This decision depends on a variety of factors ranging from available resources to

cost-benefit analysis of the attack. If the attacker decides to go ahead, he could

attempt to establish multiple footholds inside the system by installing backdoors

or Trojan horses and may attempt privilege escalation. Meanwhile, the attacker

also performs internal reconnaissance to ensure that stealth is maintained at all

times. This is because APTs involve high-stakes (state-funded or corporate espi-

onage) and stealth becomes inevitable in these cases. Moreover, because of the

massive amount of resources and time involved, each failed attack will likely be a

huge loss to the attacker. Another reason why stealth is so important is because

APTs need to be able to choose the time of attack to maximize its impact and

minimize risk. For instance, if the attacker intends to advance a system clock by a

few seconds everyday, it may be a good idea to do it at a time when there is no live

monitoring. After accomplishing all sub-tasks, the attacker needs to wait until it is

time to execute the final attack. Meanwhile, if the attack is detected, the attacker

will most likely alter his strategy as part of the contingency plan. Contingency

29

Figure 3.1: APT-based attack model

plans usually include actions such as deleting traces and system files or advancing

attack timeline and crashing the system. Such events are rarely good news for the

defender.

The longer an advanced attacker stays inside the system, the stronger he be-

comes. Sometimes the only way left is a system-wide sanitation which is very

likely to disrupt the mission. Such drastic measures can cause huge financial loss

30

to the system, especially if the mission has been running for a long time. Thus,

it is necessary that stealthy attackers are made to manifest an easily detectable

pattern at an early stage.

3.2 Solution Design

The attack model described in Section 3.1 is formally presented in Fig. 3.2. Let

φ be the set of exploitable vulnerabilities for a system with state s(t), where t is

time. For each vulnerability ν in φ, the amount of resources required to exploit it

is represented by r[ν]. Total resources available to an attacker is r̂. Risk associated

with exploiting each vulnerability ν is ρ[ν]. Maximum risk that the attacker can

afford is ρ̂.

3.2.1 Requirements

Based on the attack model presented above, the following is the set of requirements

that a good survivability solution should satisfy:

• Must fulfill all requirements of mission survivability. It should be lightweight

to conserve mission’s timeliness property. However, predictable delays are

allowed if accounted for in the original mission timeline.

• Should be platform-independent and support the commercial-off-the-shelf

(COTS) paradigm.

• Should resist APTs effectively. Defensive actions should be taken after due

consideration of their repercussions. Consequently, all intrusions must be

reported in a surreptitious and tamper-free manner.

31

1: while TRUE do
2: while φ = NULL AND ∀ν,ρ[ν]≥ ρ̂ do
3: Gather intelligence
4: Develop exploits
5: Perform network reconnaissance
6: Update vulnerability set φ
7: end while
8: if ∃ν, (r[ν]≤ r̂ AND ρ[ν]≤ ρ̂) then
9: Install backdoors; Update r̂
10: while s(t) 6= ATTACK DISCOVERED do
11: if s(t) 6= CRUCIAL STAGE then
12: WAIT
13: else if ∃ν, (r[ν]≤ r̂ AND ρ[ν]≤ ρ̂) then
14: Attack and exploit ν; Update r̂; Assess damage
15: if s(t)=COMPROMISED then
16: Operation successful and Exit
17: end if
18: else
19: Terminate operation
20: end if
21: end while
22: if Contingency plan exists then
23: Execute contingency plan
24: else
25: Terminate operation
26: end if
27: else
28: Terminate operation
29: end if
30: end while

Figure 3.2: Pseudocode - Operational details of APT-based attacks

• Should be able to counter the advantage gained by advanced attackers that

employ stealth. This can be achieved by forcing or manipulating the intruders

into leaving discernible traces.

The SWAT version presented here is novel, centralized, recovery-focused and

mission survivable. It explores the potential of utilizing a processor’s test-logic for

32

secure and surreptitious storage of intrusion detection information. This choice

lends cost efficiency and deception capabilities to the design. An attacker has no

way of knowing that his presence has been detected until the system responds to the

detection or the attacker has access to the intrusion reporting channel. Because

intrusion reporting is made surreptitious in SWAT, the system can deceive the

attacker into believing that he has not been detected. This false belief can be

exploited by the system to strengthen its defense. For better understanding of this

architecture, a proof-of-concept mission critical system is studied and evaluated.

Finally, the security, usability and performance overheads of SWAT are analyzed

using a multi-step evaluation approach.

3.2.2 Assumptions

For the sake of simplicity, proof-of-concept mission critical system assumes no

spatial or time diversity. SWAT is diversity-independent and should work well

with systems that are either spatially or time diverse.

It is assumed that the network can lose, duplicate or reorder messages but

is immune to partitioning. The coordinator (central authority, also the trusted

computing base (TCB)) is responsible for periodically checkpointing all the critical

components in order to maintain a consistent global state. A stable storage at

the coordinator holds recovery data through all the tolerated failures and their

corresponding recoveries. Sequential and equidistant checkpointing is assumed

[33].

Replicas are assumed to be running on identical hardware platforms. Each

node has advanced central processing unit (CPU) and memory subsystems along

with the test-logic hardware (in form of design for testability (DFT) and built-in

33

Figure 3.3: Hardware used by SWAT for secure and surreptitious storage

self-test (BIST)) that is generally used for manufacture test. All chips comply

with the IEEE 1149.1 JTAG (Joint Test Action Group) standard [2]. Figure 3.3

elaborates the test-logic and boundary scan cells corresponding to the assumed

hardware.

This chapter focuses on using test-logic for secure storage. Though, trusted

platform module (TPM) [134] can achieve all the same objectives but many COTS

processors are not TPM-equipped.

A software tripwire is running at each replica and detects a variety of anoma-

lies. By instrumenting the openly available tripwire source code [52], an intrusion

alert/alarm (called integrity-signature in the sequel) can be directed to a set of sys-

tem registers using low-level coding. The triggered and latched integrity-signature

34

is read out by taking a snapshot of system registers using the scan-out mode of the

observation logic associated with the DFT hardware. The bit pattern is brought

out to the CPU ports using the IEEE 1149.1 JTAG instruction set in a tamper-

resistant manner. Once it is brought out of the chip, it can be securely sent to

the coordinator for verification and further action. This way, the system is able to

surreptitiously diagnose an adversary’s actions.

3.2.3 Basic Design

SWAT relies on deception-based recovery to ensure that the attacker is not alerted

of detection until the system is ready to respond effectively. Concurrently, the

system gathers more knowledge about the attacker’s presence inside the system

and the AIOS (attacker intent, objectives and strategies). At some later point,

when the attacker launches the final attack, it fails because the corrupted replicas

(although kept operational) have been identified and isolated by the system. Thus,

the mission no longer depends on these replicas. SWAT requires at least two

correctly working replicas to provide a duplex system for the mission to succeed.

In the worst case, when all replicas are compromised, the system will not deliver

a result instead of delivering a wrong one. This is a necessary condition for many

safety-critical applications. Alternatively, if the system has gathered extensive

knowledge about the intruder’s footholds inside the system, it can design and

initiate a recovery procedure. Such a customized recovery is more effective in

blocking the attacker out of the system by recovering all the footholds at once.

Recoveries based on incomplete information may only recover a few footholds and

alert the attacker. This can lead the attacker to switch strategies and weaken the

system’s defense.

35

In an attempt to hide detection information from the adversary, it is required

that the intrusion reporting channel be made inaccessible to him. However, if

an adversary compromises a replica by gaining root privilege to user-space com-

ponents, one should note that any solution developed in user-space cannot be

expected to remain hidden and tamper-resistant. Therefore, SWAT achieves de-

tection of node compromise through a verification scheme implementable in low-

level hardware. Software or hardware-driven tripwires are used to help detect any

ongoing suspicious activity and trigger a hardware signature that indicates the

integrity status of a replica. This integrity-signature is generated without affect-

ing the application layer and hence the attacker remains oblivious of this activity.

Additionally, an advanced attacker is not likely to monitor the system thoroughly

as that may lead to his own detection.

3.2.4 Checkpointing

In the proof-of-concept prototype for SWAT, the checkpointing module that affil-

iates to the coordinator establishes a consistent global checkpoint. It also carries

out voting procedures that lead to anomaly detection due to faults, attacks or

both.

The coordinator starts checkpointing/voting process by broadcasting a request

message to all the replicas and asking them to record checkpoints. It also initiates

a local timer that runs out if it does not receive expected number of replies within

a specific time frame. On receiving the request message, all replicas pause their

respective executions and take a checkpoint. These checkpoints are then submitted

to the coordinator (over the network) through a secured channel using encryption.

On receiving the expected number of checkpoints, the coordinator compares them

36

for consistency. If all checkpoints are consistent, it broadcasts a commit message

that completes the two-phase checkpoint protocol. After receiving the commit

message, all replicas resume their respective executions. This is how all the repli-

cas run in lockstep. In case that the timer runs out before the expected number of

checkpoints is received at the coordinator, it sends out another request message.

All replicas send their last locally stored checkpoints as a reply to this repeated

request. In this application, the allowed number of repeated requests caused by a

non-replying replica is limited to a maximum of three. If a replica fails to submit

the checkpoint three times consecutively, it is assumed dead. A commit message

is then sent by the coordinator to the rest of the replicas if their checkpoints are

consistent. In case that checkpoints are not consistent, the coordinator replies with

a rollback message to all the replicas. This rollback message includes the last con-

sistent checkpoint that was stored in the coordinator’s stable storage. All replicas

return to the previous state of execution as specified by the rollback message. If

a certain replica fails to deliver consistent checkpoint and causes more than three

consecutive rollbacks, the fault is considered permanent and the replica is excluded

from the system.

The integrity signature generated at each replica piggybacks the periodic check-

points that are being sent to the coordinator. This signature quantifies the integrity

status of a replica since its last successful checkpoint. For simplicity, the values

used are – all-0s (for an uncompromised replica) and all-1s (for a compromised

replica). If the coordinator finds any integrity-signature to be all-1s, then the

corresponding replica is blacklisted and any future results/checkpoints from it are

ignored at the coordinator. However, the coordinator continues normal communi-

cation with the blacklisted replicas in order to keep the attacker unaware of the

detection.

37

Finally, all results from each of the non-blacklisted replicas are voted upon by

the coordinator for generating the final result.

3.3 Performance Analysis

It was concluded earlier that APTs are the most potent in case of long-running

missions. Therefore, for the performance analysis of SWAT, the focus is especially

on missions that run for a long time.

SWAT employs built-in hardware for security and the integrity-signatures pig-

gyback the checkpoints. Thus, the security comes nearly free for systems that

already employ checkpointing for fault-tolerance. However, many legacy systems

that do not use any checkpointing will need to employ checkpointing before they

can benefit from this scheme. In such cases, cost of checkpointing is included in

the cost of employing SWAT. The following three cases represent all the possible

scenarios of adopting SWAT for existing systems:

• Case 1: Includes all the mission critical legacy systems that do not employ

any checkpointing or security protocols.

• Case 2: Includes all the mission critical systems that already employ check-

pointing. This case assumes the absence of any failures or attacks. Note that

it is the worst case scenario when a system jumps from being a Case 1 to be-

ing a Case 2. Such a system will employ checkpointing in the absence of any

faults/attacks. Hence, they end up paying the price without any benefits.

However, if a system is already a Case 2, SWAT adoption comes for free.

• Case 3: Includes all the mission critical systems that employ checkpointing

and SWAT, both. This case assumes the presence of failures and attacks.

38

Figure 3.4: Overall system design

Figure 3.4 shows a mission critical application with n replicas. Replicas are

identical copies of the workload executing in parallel in lockstep. This application

is assumed to be running SWAT. Thus, the coordinator is the core of this central-

ized and replicated system and is responsible for performing voting operations on

intermediate results, integrity-signatures and checkpoints obtained from the repli-

cas. The heartbeat manager broadcasts periodic ping messages to determine if the

nodes are alive.

Since SWAT is composed of hardware and software subsystems, one standard

simulation engine cannot suffice. Therefore, results obtained from individually

simulating the software and hardware components are combined using the multi-

step evaluation approach.

3.3.1 Multi-step Evaluation

Multi-step approach is required for the evaluation of SWAT (as mentioned in the

previous section) because there are no existing benchmarks for such complex sys-

tems. Multi-step evaluation provides a combination of theoretical analysis, pilot

39

system implementation and simulation in order to deliver more realistic and sta-

tistically accurate results. This mix of evaluation techniques can be optimized to

obtain an evaluation procedure that minimizes the development effort and cost

(resources and time) while maximizing the accuracy and efficiency of the evalua-

tion.

As new techniques of fault-tolerance and security emerge, so does the need for

suitable tools to evaluate them. Usually, system security is verified via logical

test cases but the performance of security algorithms needs to be quantitatively

measured. The diversity of systems makes it difficult for researchers to decide on a

standard, affordable and openly available simulation tool, evaluation framework or

experimental test-bed. All evaluation approaches have certain merits and several

drawbacks. For instance, evaluation using a system prototype has higher accuracy

but it is not as scalable as the simulation. Many times, it is inefficient to evaluate

a new system using any of the available tools. However, to modify the existing

tools involves a lot of effort. Researchers may also choose to develop their own

tools (theoretical models, simulations, etc.) but a wrong approach can adversely

affect the cost of development and accuracy of results. For instance, the validity

of simulation results cannot be established unless the system model is thoroughly

validated and verified.

This section presents the multi-step evaluation approach for mission survivable

systems. The system is modeled based on a divide-and-conquer approach that

allows the use of different evaluation tools at different levels of granularity. The

multi-step approach tries to strike a balance between efficiency, effort, cost and

accuracy of an evaluation procedure.

Researchers usually choose from one of the three methods to evaluate a system

based on its current state of development. The first method is continuous time

40

markov chains (CTMC), which is used when the system architecture has not been

established yet [43]. When system architecture is available, the second method viz.

simulation can be used to model its functional behavior. The third method involves

conducting experimentation on a real-world system prototype. Relying solely on

each of these methods has both advantages as well as disadvantages. Based on

the system type and its current state, choosing a wrong tool may increase the

complexity and cost of evaluation and decrease the accuracy. For instance, if a

system prototype is developed for evaluation, results will be more accurate and

representative of the real-world conditions such as hardware faults and network

conditions. However, system prototypes are usually not very scalable. They may

be expensive or even impossible to develop. In such cases, simulation is preferred

because it is easier to develop and scales well. Simulation enables the study of

feasibility, behavior and performance without the need of an actual system. It

can also run at any speed compared to the real-world and thus can be used to

test a wide range of scenarios in a short period of time. However, accuracy is a

major issue in simulated system models. Designing a highly accurate and valid

simulation model is not only difficult but sometimes costly in terms of time and

resources.

Multi-step approach is a combination of three concepts – Modular decompo-

sition, modular composability and parameterization [90]. Modular decomposition

consists of breaking down a problem into smaller elements. Modular composition

involves production of elements that can be freely combined with each other to

provide new functionality. Parameterization is the process of defining the neces-

sary parameters for evaluation. A modular functional model of the system can be

developed by using these three concepts. Such a model is hierarchical in terms

of the level of detail/granularity. It starts at the highest level of abstraction and

41

works downwards toward a more detailed level/finer granularity. Each level is

recursively decomposed whenever possible. When the maximum level of decom-

position is reached, this level is then replaced with a black-box. This black-boxed

level is too complex to model (or further decompose) but it can be easily described

using stochastic variables (fault rate, bandwidth, etc.) derived statistically from

experimentation. This level can also use theoretical analysis such as queuing the-

ory.

The basis of multi-step approach is the observation that a simulation model

develops down the levels of granularity of detail (becomes finer) and the develop-

ment of system prototype/theoretical analysis goes up the levels of granularity of

detail. They meet in the middle where the accuracy, simplicity and efficiency of

this approach can be maximized. Refer to Fig 3.5. Since the higher levels of this

model are simpler to design, they are less prone to design errors. Hence, simulation

modeling starts from the highest level of abstraction and develops downwards to

finer levels of granularity, adding more complexity and detail to the design. Sys-

tem prototype or theoretical analysis is easier to handle at the lowermost levels of

detail. For instance, a prototype can easily deliver data about the network traffic

but modeling the factors that affect traffic flow is very difficult. Hence, the pro-

totype development moves upwards towards a coarser level of granularity. Adding

more functionality to a prototype (in moving upwards) increases the cost. Thus,

a designer can concurrently make these two progressions to meet in the middle

where the accuracy, simplicity and efficiency of the evaluation can be maximized.

Refer to Fig. 3.5.

Multi-step evaluation of SWAT has three components – Java implementation

based on Chameleon [58], Arena simulation [8] and Cadence simulation. Arena

is a discrete event simulator and is used at the highest level of abstraction. This

42

Figure 3.5: Development process of simulation model using multi-step approach

choice is also beneficial in working with long-running missions because conducting

real-time experiments for long-running missions is not efficient. The lower levels of

abstraction that become too complex to model are black-boxed and parameterized

using a Java-based system prototype. Note that this Java prototype does not

implement all system functionalities. It only implements the functionalities that

generate data required to parameterize the black boxes. The Java prototype uses

socket programming across a network of 100 Mbps bandwidth. Experiments are

conducted on a Windows platform with an Intel Core Duo 2 GHz processor and

2 GB RAM. Cadence simulation is primarily used for the feasibility study of the

proposed hardware scheme. To verify the precision of the employed simulators,

test cases were developed and deployed for the known cases of operation.

The Java prototype accepts workloads and executes them in a fault-tolerant

environment as shown in Fig. 3.4. Java SciMark 2.0 workloads used in these

experiments are – fast fourier transform (FFT), jacobi successive over-relaxation

(SOR), sparse matrix multiplication (Sparse) and dense LU matrix factorization

(LU). These are the standard large data sets [91]. Data is collected from the

prototype runs and fitted probability distributions are generated using Arena’s

43

input data analyzer. These distributions define the stochastic parameters for the

black-boxes of the model. Once the model is complete, it is simulated in Arena.

Feasibility of the hardware component of SWAT is examined as follows – The

integrity-signature at a replica is stored in the flip flops of the boundary scan chain

around a processor. This part of the simulation is centered on a boundary scan

inserted DLX processor [106]. Verilog code for the boundary scan inserted DLX

processor is elaborated in Cadence RTL compiler. To load the integrity-signature

into these scan cells, a multiplexer is inserted before each cell. This multiplexer has

one of the inputs as test data input (TDI) and the other from the 32-bit signature

vector. Depending on the select line, either the test data or the integrity-signature

is latched into the flip flops of the scan cells. To read the integrity-signature out,

bits are serially shifted from the flip flops onto the output bus.

3.3.1.1 Simulation Preliminaries

Most of the feasibility, behavior and performance studies for fault-tolerant systems

use theoretical analysis, actual system implementations or simulations. One of the

earliest attempts to develop fault-tolerant systems called software implemented

fault-tolerance (SIFT) was completely software-based and used loose synchroniza-

tion of processors and memory [143]. Since then, many tools and frameworks such

as Chameleon [58], Globus [37], etc. have been proposed to develop and evaluate

fault-tolerant systems. Apache Hadoop [70] is a Java software framework that can

be used to develop data-intensive, fault-tolerant and distributed applications.

Many simulation tools and languages also exist for developing and analyzing

fault-tolerant system models. CSIM [122] is a process-oriented and discrete-event

simulation language that enables quick construction of concise system models.

OMNeT++ [109] is a C++ simulation library and framework. Mobius [1] is a

44

software tool used for modeling the behavior of complex systems. GridSim [115]

is a grid simulation toolkit for resource modeling and application scheduling for

parallel and distributed computing.

DEPEND [44] provides an integrated design and fault-injection environment for

system level dependability analysis. Fault-injection can be defined as a stochastic

process in DEPEND so it emulates a real world scenario.

3.3.1.2 Rationale for Using Multi-step Evaluation

Simulation can only approximate the behavior of a real system. In a real system,

the components (memory, processor speed, network bandwidth, etc.) have com-

plex inputs, interconnections and dependencies that are not always easy to model.

Furthermore, two similar components such as two processors can have different

behaviors even if they are modeled the same for the purpose of simulation. These

factors introduce disparity between the results obtained from simulation and from

experimentation. There exist several general-purpose simulators that allow the

designing of stochastic system models. Stochastic parameters/variables can take

into account the unpredictability of real-world. However, this approach presents

the challenge of specifying the stochastic system parameters and variables such

as probability distributions and seeds. Most such values for defining system pa-

rameters and variables are taken from prior projects, sometimes without proper

justification or verification or are simply assumed.

The differences between simulation and experimentation results can be ignored

if only approximate comparisons are required; for instance, observing a linear or

exponential relationship between the input and output quantities. However, if

the objective is to obtain the results as close to real-world as possible, then the

simulation model needs to be realistically parameterized.

45

Most researchers validate their simulation models by comparing the simulation

results with the real-world. However, the actual system may or may not exist.

Thus, there is a need to simplify the simulation model so it can be easily verified

for logical validity. Adding excessive details to a model makes it complex to un-

derstand and highly prone to design errors. For instance, in designing a network

application, an attempt to design the various time-variant factors that affect net-

work performance is extremely difficult and will most likely lead to design errors.

Therefore, simulation designers usually make simplifying assumptions such as the

availability of a 100Mbps network bandwidth at all times. However, the applica-

tion rarely gets to use the entire bandwidth. So the time performance obtained by

using such a network simulation is always optimistic than in real-world. Designers

generally go to a specific level of granularity in simulation design and then make

assumptions beyond that level. Multi-step approach tries to realistically estimate

these assumed values. This provides more statistically accurate results along with

a simpler simulation model that is less prone to design errors.

Another reason for proposing multi-step approach is to deal with the long or

unbounded execution times. In many cases, there is a system prototype available

where the runtime is directly proportional to some parameter/variable such as the

workload size. Such experiments can run for days and are very inefficient.

3.3.1.3 Modeling System Using the Multi-step Approach

In multi-step evaluation of SWAT, the prototype is developed in Java. The simu-

lation is discrete-event which is generally of three types – event-oriented, activity-

oriented and process-oriented. Since the functional model of SWAT (to be used for

simulation) contains modules that undergo processing and pass on the processing

control to other modules, process-oriented simulation seemed to be the most intu-

46

itive choice. Though, event and activity oriented simulations could also be used

for this purpose but the authors chose process-oriented simulation due to the sim-

plicity of its adoption for SWAT. Workload is defined as an entity with attributes

such as size, arrival time and checkpoint rate. The various stages of processing

such as network, replica execution and heartbeat management are modeled as sep-

arate processes. There are a variety of tools (for instance, CSIM, JavaSim and

ARENA) that can be used to execute this simulation model. However, Arena is

chosen because of its user-friendly drag-and-drop interface [8].

At an abstract level the system is simple but as the granularity increases,

complexities arise. The system model is created piece-by-piece and where it gets

too complicated or unpredictable, that level of detail is black-boxed. This black-

box is then parameterized using the experimentation with Java prototype. Note

that there is no need to develop the entire system for these parameters/values.

Figure 3.6 shows the simulation model. Three main modules exist at the highest

level of abstraction – network, coordinator and replica. Each module is inspected

to see if it can be further decomposed into sub-modules. To verify if a new level

of hierarchy can be defined, the potential sub-modules are investigated for the

following two properties:

• Composability: The functionalities of the candidate set of sub-modules can

be combined to provide the functionalities of its parent module.

• Sufficiency: The functionalities of the candidate set of sub-modules collec-

tively describe the entire set of functionalities of its parent module.

The first module ‘coordinator’ can have three sub-modules by design – heart-

beat manager, checkpoint manager and majority voter. These three sub-modules

collectively describe the entire set of functionalities provided by the coordinator.

47

Figure 3.6: System model using the multi-step approach

Therefore, they are composedly sufficient to describe the coordinator. Hence, one

additional level of the hierarchy is added for the coordinator module. The second

module represents the network that is unpredictable and is complicated to decom-

pose further. In the end, the system is modeled as a tree of height 4 is with the

lowest level that cannot be further decomposed.

3.3.1.4 Parameterization

For parameterizing this simulation, the Java prototype is run several times. Data

recorded from these runs is converted into probability distributions via data anal-

ysis tools (in this case, Arena Input Analyzer). It generates the best possible

probability distribution for the data. Tests such as Chi-square are conducted to

find out how well the selected distribution fits the data. These distributions then

parameterize the black-boxed components in the simulation model.

48

Figure 3.7: Execution times for Scimark workloads across three cases on a loga-
rithmic scale

3.3.2 Results

To evaluate the performance of SWAT in the worst-case scenario, checkpointing

overhead should be maximum. Hence, sequential checkpointing is chosen [33].

For the following analysis (unless otherwise mentioned), checkpoint interval is

assumed to be 1 hour. Table 3.1 presents the execution times for the four Scimark

workloads. The values from Table 3.1 are plotted in Fig. 3.7 on a logarithmic

scale. It can be observed that the execution time overhead increases a little when

the system shifts from Case 1 to Case 2 (i.e., employing the proposed scheme

as a preventive measure as described in Section 3.3). However, the execution

time overhead increases rapidly when the system moves from Case 2 and Case

3. The execution overhead will only increase substantially if there are too many

faults/attacks present, in which case it is worth the fault-tolerance and security

that comes along. As can be seen from the values in Table 3.1, an application that

runs for 13.6562 hours for Case 1 incurs an execution time overhead of only 13.49

minutes in moving to Case 2.

49

Table 3.1: Execution Times (in hours) for the Scimark workloads across three cases

FFT LU SOR Sparse

Case 1 3421.09 222.69 13.6562 23.9479
Case 2 3477.46 226.36 13.8811 24.3426

Case 3 M=10) 3824.63 249.08 15.2026 26.7313
Case 3 (M=25) 3593.39 233.83 13.8811 24.3426

Figure 3.8: Percentage execution time overheads incurred by the Scimark work-
loads when shifting between cases

Figure 3.8 shows the percentage increase in execution times of various workloads

when the system upgrades from a lower to a higher case. It is assumed that

these executions do not have any interactions with external environments. The

percentage increase in execution time is only around 1.6% for all the workloads

when system upgrades from Case 1 to Case 2. The overhead for an upgrade

from Case 1 to Case 3 (with mean time to fault, M = 10) is around 9%. These

percentages indicate acceptable overheads.

As shown in Table 3.1, for a checkpoint interval of 1 hour and M = 10, the

workload LU executes for approximately 10 days. Figure 3.9 shows the effect of

increasing checkpoint interval for workload LU for different values of M ranging

50

Figure 3.9: Effect of checkpoint interval on workload execution times at different
values of M

Table 3.2: Approximate optimal checkpoint interval values and their corresponding
workload execution times for LU (Case 3) at different values of M

M=5 M=10 M=15 M=25

Optimal Checkpoint Interval (hours) 0.3 0.5 0.65 0.95
Execution Times (hours) 248.97 241.57 238.16 235.06

from 5 to 25. The optimal checkpoint intervals (and the corresponding execution

times) for the graph plotted in Fig. 3.9 are provided in Table 3.2.

Note that these results do not just represent the data trends but are also close to

the statistically expected real-world values.

3.4 Conclusion

This chapter has described an attack model rooted in APT. It has also presented a

centralized version of SWAT capable of surviving such an attack model. Central-

ized SWAT uses test-logic hardware for tamper-proof and surreptitious intrusion

reporting. Combined with principles of deception, this helps in strengthening re-

covery for enhanced survivability. SWAT is lightweight and does not have any

51

application-specific dependencies. Thus, its implementation has the potential to

be application transparent.

Performance evaluation employs multi-step approach. The cost analysis de-

scribed various deployment scenarios for SWAT (including its application to legacy

systems with no existing fault-tolerance). The evaluation shows promising results.

Execution time overheads are observed to be small when faults are absent. As the

fault-rate increases, the overhead increases as well. However, this additional over-

head comes with strong fault-tolerance and security. Overall, SWAT is believed to

provide strong survivability at low cost for mission critical applications.

Two aspects that need further exploration in this design are –

• How to ensure that security monitors trusted to report integrity-signatures

stay tamper-resistant at all times? A solution for this is presented in Chapter

4.

• Test-logic circuitry can only be used for storage and not processing. Node-

to-node verification requires the communication to be encrypted. How to

encrypt this communication and how to ensure that the component that han-

dles encryption stays tamper-resistant at all times? Use of TPM [134] is

explored in Chapter 5 for this purpose.

In the next chapter, we explore ways to provide tamper-resistance to security

monitors and other crucial services. In effect, we work towards solving the problem

of ‘Who watches the watcher.’

Chapter 4

Tamper-resistant Security

Monitoring

4.1 Introduction

Chapter 3 presented an advanced persistent threat (APT)-based attack model and

a centralized version of SWAT (Survivable framework for cyber Warfare against

Advanced Threats) to withstand it. In the concluding discussion, the issue of

providing tamper-resistance to security monitors was discussed. In this regard, a

lightweight solution is presented in this chapter that can provide tamper-resistance

to the critical components (such as the security monitors) employed by SWAT.

Most widely deployed security solutions are written as software. This trend is

encouraged by factors like convenience of use, expenses associated with updating

hardware, etc. Software-based security solutions often have complex design and a

large code base that renders them difficult to be tested thoroughly and completely.

Consequently, they have a high probability of containing exploitable software bugs.

In addition, software now-a-days is expected to satisfy a plethora of requirements,

53

encouraging trends such as outsourcing, off-shoring and reusing open-source soft-

ware. This leads to serious security loopholes in the resulting software [79, 61].

Many studies document this growing software unreliability and an increasing mal-

ware sophistication that can exploit them [15, 123, 66, 19, 73]. In general, the

software industry is dominated by a few vendors (for instance, Microsoft, Apple,

Oracle, Linux, Mozilla, Red Hat and Google). Even the security solutions mar-

ket is mostly owned by a few leaders such as Avast, Avira, Symantec, AVG and

McAfee [102]. This population homogeneity makes the popular security solutions

high-value targets for security attacks [56, 123]. Any exploit developed for them

can render a large user population defenseless, which is highly rewarding for the

attacker(s). Furthermore, exploiting security solutions generally grants higher-

level privileges, which is a prerequisite for many advanced attacks. While a lot

of attention is paid to the detection accuracy and efficiency of security solutions,

their own infallibility is generally assumed. This delusive confidence in security

solution’s integrity can lead to catastrophic failures and compromises. Therefore,

tamper-resistance or attack resilience is a very crucial factor in determining the

efficacy of a security solution [6, 94].

Recent years have witnessed an increase in malware, often a part of APT at-

tack vectors that are known to incapacitate security monitors first off, leaving the

system unprotected. For instance, many incidents of malware attacking host-based

intrusion detection systems (IDS) have already been reported [101]. Ensuring the

reliability of security monitors in hostile environments is extremely challenging [20].

The kind of malware used to kill anti-virus applications is known as a retrovirus.

Section 4.2 takes a detailed look at the recent instances of retroviruses.

The problem of lack of tamper-resistance in security monitors has not gone

unnoticed. Many solutions have been proposed to counter it. They vary from weak

54

preventive measures such as stealth-based defense to strong privilege separation

models based on virtualization. These solutions are discussed under Section 4.2

where their strengths and shortfalls are analyzed as well. This analysis aids the

design of the solution presented in this chapter.

The solution described in this chapter is a watchdog setup based on the principle

of coveillance. Coveillance involves regular entities watching over their neighbors

(for instance, a neighborhood-watch program), unlike surveillance where a central

authority watches over other regular entities. Note that most security solutions

are based on surveillance. An underlying problem of surveillance-based solutions is

the difficulty of ensuring that the central authority stays uncorrupted at all times.

This gives rise to the classic problem of ‘who watches the watcher.’

The basic architecture of the presented solution consists of a cyclic monitoring

topology. Loop architectures and concepts from graph theory have been long

used to make architectures robust and some of these are borrowed here in this

design [49]. Each participating entity in this solution (referred to as a ‘security

monitor’ in the sequel) is designed to be lightweight. Security monitors perform

simple conditional checks on their neighboring security monitors or processes that

they are responsible for monitoring. Closed and directed cycles between security

monitors ensure that no security monitor remains unmonitored at any time, which

makes the monitoring tamper-resistant. This scheme has several benefits such as

reducing the size of Trusted Computing Base (TCB), active monitoring and better

performance.

In a previous work by Chinchani et al. [26], the effectiveness of a similar scheme

in uni-core environment has already been tested out. However, with the widespread

adoption of multi-core technology, it becomes necessary to investigate its adoption

in multi-core environments as well [42]. Working with multi-cores presents new

55

design and security challenges [95, 74]. Therefore, the solution design for uni-

core environment is restructured for its adoption in the multi-core environment

[26, 77]. The security strength of the multi-core solution is analyzed against an

extensive threat model in an AMD SimNow simulated multi-core environment.

Evaluations suggest that the memory overhead incurred by an 8-node (highly-

secure) topology is only 0.8%. Furthermore, the time overhead is also a mere 0.3

ns, clearly indicating the efficiency of this solution.

To summarize, this chapter makes the following contributions to the disserta-

tion:

• Focuses on the problem of ‘Who watches the watcher?’ and describes in

detail the existing solutions for this problem.

• Builds upon the lessons learnt from the analysis of existing solutions and

outlines the requirements for an improved solution.

• Describes an extensive threat model encompassing relevant attacks.

• Proposes a solution to ensure tamper-resistance of security monitors in gen-

eral.

• Evaluates the performance and security strength of the proposed solution in

a multi-core environment.

The rest of this chapter is organized as follows – Section 4.2 presents some

preliminaries and taxonomy of existing solutions. Section 4.3 lays down the formal

requirements for developing an effective solution. Section 4.4 discusses the threat

model followed by details of the solution design in Section 4.5. Section 4.6 describes

the evaluation and its results. Section 4.7 concludes this chapter with a discussion.

56

4.2 Preliminaries

This section presents a few preliminaries in order to understand the problem being

targeted in this chapter. Existing solutions have been presented as taxonomy for

the purpose of better clarity.

4.2.1 Attacks on Security Monitors

In the recent years, numerous malware and attacks have been discovered that

primarily target security monitors. Monitors can be subverted either by evasion or

by compromise. If successful, an attacker can gain advantages such as unlimited

time inside the system and higher system privileges. This enables him to execute

more advanced attacks. As mentioned previously, homogeneity in security monitor

population results in the popular ones becoming high-value targets.

In a security monitor’s design, there is often a trade-off between visibility and

isolation. The closer a monitor is to the monitored entity, the more it can observe

but the lesser it is shielded from any attacks on the monitored entity. This defines

a major difference between host-based and network-based IDSes. Network-based

IDS is well isolated from the system that it monitors but cannot watch as closely as

a host-based IDS. Thus, host-based monitors are inescapable because they provide

a nonpareil view of services running on a host. However, they need to be protected.

One of the first major attacks on host-based security monitors came to light

when Phrack published an article on bypassing Tripwire and other integrity check-

ing systems [50]. Tripwire [62] is a tool that monitors files systems for unauthorized

or unexpected changes. It maintains a database of signatures/digests of important

files (assumed tamper-free). This database is used as baseline for periodically

checking the file system for signs of intrusion. The Phrack exploit modified this

57

baseline database to evade Tripwire’s monitoring mechanism.

Security monitors can be compromised by either attacking their integrity, confi-

dentiality or availability. Attacking a monitor’s integrity involves methods to make

it misreport events. This can be achieved by either subverting its data collection

(the agent), detection (the director) or alert generation (the notifier) mechanisms.

Confidentiality attacks on security monitors are not popular because they usually

do not lead to subversion of the entire system. Availability attacks (for instance,

switching off the monitor via denial-of-service (DoS) attack) are considered the

most effective. Such attacks are well described in the literature [94].

4.2.1.1 Retroviruses

Several sophisticated retroviruses are known to exist and be effective. For instance,

Trojan.FakeAV misrepresents the security status of a system. Sometimes it inter-

rupts normal system operations until the user pays for the security fix, downloads

and installs it [132]. CoreGuard Antivirus 2009 belongs to the same family and

uses social engineering to trick users into uninstalling their security products be-

fore installing malware. It achieves this by reporting false security threats [131].

Thinkpoint is a variant of Trojan.FakeAV in circulation since 2010. Websense

security lab reported a trojan that installs itself as a Windows input method ed-

itor and kills any running antivirus processes [142]. The list goes on [101]. What

makes security monitors vulnerable is the vastly diversified set of applications and

files that they deal with. This variety leads to the existence of bad code under

unpacking and decompression modules [35].

58

4.2.2 Taxonomy of Tamper-resistant Monitoring Solutions

4.2.2.1 Stealth-based Defense Solutions

Security monitors such as IDS, anti-viruses, etc. typically operate at user level.

User-space services are quite vulnerable if attacker gains privileged access to the

system [50, 5]. Some systems attempt to hide their security monitors from the

attackers. This technique is inspired by the notion of stealth-based defense, ‘What

the attacker cannot see, he cannot attack.’ For instance, an IDS can be hidden

by modifying kernel structures and their presence can be masked using encryption

[144]. However, such schemes are easily defeated if the attacker is aware of the

stealth mechanism employed [41]. Any solution that relies on the assumption that

the attacker has limited knowledge of the system cannot provide strong security

guarantees.

4.2.2.2 Replication-based Monitoring Solutions

Surveillance is the generally acceptable paradigm for security monitoring. It is

strengthened by employing decentralization of decision-making process, as shown

in Fig. 4.1. Replication-based solutions are based on the assumption that com-

promise of multiple monitors is a lower probability event than compromise of a

single monitor. Hence, a majority voting among replicated monitors ensures that

the compromised minority is identified and defeated each time. This architecture

primarily belongs to the fault-tolerance domain. It can be homogeneous (similar

monitors) or heterogeneous (spatially or temporally diverse monitors). Systems

such as MAFTIA [111] and Chameleon project [57] use this architecture to make

their systems intrusion-tolerant. Replicated architectures provide better security

strength than their non-replicated versions. However, if a replicated architecture

59

Figure 4.1: Replication-based surveillance solution

is homogeneous and the attacker has compromised one security monitor, it is not

unreasonable to assume that the remaining monitors are corruptible as well (es-

pecially by automated attacks). Heterogeneous architectures undoubtedly provide

better tamper-resistance by introducing diversity to security monitoring replicas.

But given enough time and resources, there is a high probability that an attacker

can compromise the majority. Thus, replication may be a good security solution for

weak adversary model because it depends on assuming that an attacker has limited

time, resources or knowledge. However, it may not be as effective against a strong

adversary (for instance, insiders) making it a weak security solution. The notion

of weak and strong adversary models is discussed in greater details in Section 4.4.

60

4.2.2.3 Layered Monitoring Solutions

Another popular alternative to replicated architectures is the layered or onion-peel

architecture. This architecture involves a chain of security monitors (usually at

separate privilege levels) wherein each monitor monitors its predecessor. Refer

to Fig. 4.2. This, however, starts a race between the malicious actors to gain

the higher privilege. For instance, National Security Agency (NSA) worked with

Secure Computing Corporation (SCC) to propose SELinux in 2001 as an attempt

to enforce mandatory access control and isolation policies into the Linux operating

system [82]. SELinux worked towards facilitating isolated privilege levels across the

system. This was a big step towards an effective implementation of the onion-peel

architecture. However, the operating system remained susceptible to attacks by

the most powerful user on the system. SELinux though provided a good direction

for isolating privilege levels but it failed to provide sufficient isolation for co-located

processes. The main problem remained that whenever a higher privileged layer is

introduced, how to provide protection for this new layer. Solving this problem can

lead to infinitely long chains. Another instance of this architecture is IBM’s secure

hypervisor where a TPM monitors the hypervisor [119]. This TPM can further

be monitored by another TPM or hypervisor for strengthened security and so on.

The security status of each monitor is transitively propagated to the root.

As before, a heterogeneous variant is more secure than the homogeneous one. It

presents several interesting challenges for an attacker. Firstly, the attacker must be

able to compromise the various monitors successfully. Secondly, he needs to either

shut them down synchronously or in the descending order starting from the root.

These attacks require the attacker to have enough time and information (about

the order of monitors in the chain and their types). Although this architecture

61

Figure 4.2: Layered or Onion-peel model

provides strong security for a weak adversary model, it falls short of withstanding

a strong adversary.

4.2.2.4 Kernel-based Solutions

Realizing the vulnerability of user-space security monitors, security practitioners

attempted to deploy security monitors at kernel level [53, 72, 65]. This choice led

to an increase in the size of system’s TCB which made the system more vulnerable

[130].

4.2.2.5 Isolation-based Solutions Using Virtualization

Molina and Cukier [94] favored increasing the level of isolation between user-space

security monitors and the monitored entities for better security. One of the popular

approaches to achieve this isolation is to move security monitors to a separate vir-

tual machine (VM). This provides security monitors with better threat resistance

while maintaining good system visibility [41, 40]. Security monitors in separate

VMs benefit from the following three properties:

• Isolation: Monitoring entity is isolated from the monitored entity.

• Inspection: Monitoring entity can transparently collect data about the mon-

itored entity.

62

• Interposition: Monitoring entity can intercept system calls made by the mon-

itored entity.

Solutions such as Terra [40] and sHype (by IBM) [119] marked the beginning of

tool development based on this concept. Terra provides a programming model for

running secure and isolated applications with different security requirements side-

by-side. This is made possible with the use of a trusted VM monitor that partitions

a tamper-resistant hardware into separate VMs. sHype is a hypervisor security

architecture for stronger isolation guarantee between the VMs. Laureano et al. [71]

proposed a virtual machine monitoring architecture that separates the execution

space making the monitor invisible and inaccessible to all the guests/intruders. A

data collection module transparently collects system data and sends it to the VM

running the monitor. An alert is generated when an intrusion is detected. This

alert can take preventive measures such as blocking system calls by the suspected

guest user.

Another important host-based monitoring system is application-level firewall.

It is responsible for tracking network traffic back to their source processes and

comparing it to the existing access policies to sieve out illegitimate traffic. Network

and host level firewalls do coarse-grain filtering by relying on port and IP address

based access policies only. Therefore, for better visibility, these firewalls need to

be able to collect operating system level information about the processes. VMWall

[129] is such a Xen-based solution that implements a firewall to detect bots, worms,

backdoors, etc. It correlates network traffic with the information gathered via VM

introspection. Introspection is the process of inspecting software inside one virtual

machine from another virtual machine. VMWall runs on a trusted VM (dom0)

and singles out the processes in the monitored VM associated with any suspicious

63

traffic flows. Data structures necessary for VMwall are secured with existing kernel

integrity protection mechanisms. VMwall can also successfully block backdoors,

bots and worm traffic emanating from a protected system.

All introspection-based tools have a common drawback, viz. passive monitor-

ing. Passive monitoring is when security tools monitor via external scanning and

polling and as a result, cannot guarantee interposition of events. Active monitor-

ing, on the other hand, places a hook inside the system being monitored. When

execution reaches the hook, the control is passed on to the security tool.

File-system integrity tools are effective but do not monitor files in real-time.

This opens the possibility of time-of-check-to-time-of-use (TOCTOU)-like attack

which is elaborated in Section 4.4. XenFIT [114, 14] was proposed as a real-time

alternative based on Xen virtual machines. XenFIT did away with the require-

ment of creating and updating the baseline database which has always been the

Achilles’ heel of file-system integrity tools. XenFIT claims to be tamper-resistant

and stealthy even if an attacker gains privileged access to the VM. It performs

real-time monitoring by strategically placing hooks/breakpoints in the kernel code

of Xen (active monitoring). When these breakpoints are hit, control is transferred

to XenFIT which then collects all the required activity related data at that point

in time. It basically works like a kernel debugger. Because it runs in the user-space

of Dom0, it is invisible and inaccessible to the processes running in DomU. This

feature provides it with good tamper-resistance. It is easy to deploy and collects

far richer information than traditional file-system integrity tools.

Lares [107] provides secure active monitoring using platform virtualization. It

places hooks inside the untrusted VM so introspection of events can be guaran-

teed. The monitored VM contains trampoline code that communicates with Lares

in Dom0. Trampoline helps Lares implement memory access policies in the guest

64

VM. The trampoline functionality is self-contained (does not depend on kernel

functions), non-persistent (does not require data which was generated during pre-

vious hook activations) and atomic. Hooks are secured with a memory protection

mechanism. When a guest VM requires a write change in a certain memory page,

the hypervisor checks whether the requested memory address is write-protected.

If so, the change is not allowed and the required change from the guest VM is not

propagated into the actual physical memory. A list of protected memory regions

is stored and maintained by a Lares component.

Flicker [87] uses hardware-supported late launch and attestation for integrity

measurement. It is vulnerable to scrubbing attacks since the monitored system is

responsible for invoking Flickers integrity measurement capability. HyperGuard

[145] is the first system management mode (SMM)-based framework that at-

tempted to provide tamper-resistant integrity measurement of hypervisors. It uti-

lizes a hardware timer to periodically trigger system management interrupt (SMI).

Once triggered, the SMM code checks the hash of the most privileged software

running in the protected mode. HyperCheck [140] uses a peripheral component

interconnect (PCI) network card to periodically trigger SMI. This is to ensure

that unlike in HyperGuard, SMI cannot be triggered by the adversary. Both

these tools are vulnerable to scrubbing attacks since they cannot invoke integrity

measurement without alerting the monitored hypervisor. As in the cases of Hyper-

guard and HyperCheck, HyperSentry [10] also utilizes SMM to monitor integrity

of hypervisors. It uses intelligent platform interface and baseboard management

controller of servers to trigger SMI periodically. Wang et al. [138] demonstrated

a new class of attacks that can defeat all SMM-based periodic integrity checking

mechanisms.

65

4.2.3 Limitations

As researchers try to design better tamper-resistant security monitors, they add

more complexity to existing solutions leading to further exploits. Any increase in

security usually comes with increased overhead and new hardware dependencies.

Note that scalability of security solutions is very important as well. Employing

virtualization-based solutions for an expanding system can quickly add to the

overall overhead. Use of hypervisors and SMMs may also make a system vulnerable

by providing hiding places for rootkits. Many researchers have talked about such

hypervisor and SMM-based rootkits [67, 63, 34].

4.3 Formal Requirements

In addition to providing tamper-resistant monitoring to security solutions, an ideal

solution must satisfy the following additional requirements (derived from the dis-

cussions in Section 4.2):

• Easy verifiability: Any solution should aim to avoid unnecessary complexity

as it further leads to security issues. Simplicity in design and implementation

is the key to designing a good tamper-resistant solution. If the solution is

simple, it can be easily verified to be free of any loopholes.

• Low time and performance overhead: An effective solution should incur a low

time and performance overhead. Low time overhead is especially important

for mission-survivable systems. Low performance overhead is good for the

scalability and performance of the overall system.

• Address the threat model: It is essential that the solution attempts to address

as many threats as described in Section 4.4.

66

• Absence of window of vulnerability (WoV): A WoV (a delay between an event

and its notification) can jeopardize the integrity of a security monitor or the

entire system. For instance, TOCTOU attacks. A good solution should avoid

their creation especially in the design and deployment phases.

• Size of trusted computing base (TCB): It is easy to assume that a security

solution (or at least some part of it) belongs to the TCB. This makes the

job easier for solution designers. However, the TCB size should always be

kept small for easy verifiability. When TCB becomes large or its components

are updated often, it becomes impossible to ensure its integrity. This further

leads to serious security issues.

• Strong security guarantees: A good solution should provide strong security

and tamper-resistance guarantees; meaning that the solution should work

well for strong adversary model (described in Section 4.4). Attackers should

not be assumed to have permanent limitations such as lack of knowledge

about the system or limited time or resources.

4.4 Threat Modeling

4.4.1 Adversary models

The amount of damage that an adversary can inflict on a system depends upon the

time spent, resources employed and his knowledge of the system. It is impossible

to model a case-by-case adversary behavior based on these factors. Therefore, two

models that mark the upper and lower boundary cases of attackers’ capabilities

are considered here [26].

67

• Weak Adversary Model: This model describes adversaries with limited time,

resources and knowledge about the target system. Advanced targeted attacks

on a system usually require abundance of at least one of these. Therefore,

this model generally covers non-targeted attacks and closely resembles the

behavior of script kiddies, generic viruses, worms, etc. In fact, the most

commonly occurring attacks on the Internet can be classified under this cat-

egory. Whether such attacks are successful or not, is probabilistic from an

adversarial point of view. Existing system vulnerabilities play a major role in

defining their success. Thus, the actual probability of compromise by a weak

adversary depends on the attacker’s capabilities along with several other fac-

tors such as the number of vulnerabilities per 1000 lines of code, frequency

with which patches are applied and other security hardening measures at

the system’s side. Any security solution developed for this adversary model

provides weak security guarantees.

• Strong Adversary Model: This model describes powerful and persistent ad-

versaries with significant time, resources and knowledge about the target.

Knowledge can be pre-existent or can be gathered by means such as multi-

stage reconnaissance attacks or social engineering. Adversaries under this

category usually employ advanced attack strategies and stealth. Thus, they

are capable of executing targeted attacks. For instance, consider the insiders

who can use their familiarity and proximity to the mainframe infrastructure

to launch potentially devastating attacks. Any security model developed

based on this adversary model provides strong security guarantees.

68

4.4.2 Attack Strategies

Attack strategies described below are useful for both (weak and strong) adversary

models. However, the success probability of an attack depends on the adversary

type and techniques.

• Exploiting population homogeneity: Attacking a widely popular security mon-

itor can be extremely rewarding for an attacker. Attackers have easy access

to such monitors for experimentation and one exploit is enough to affect a

large user population. Such attacks usually require lesser resources and time

than targeted attacks. Hence, this attack strategy is usually categorized

under the weak adversary model. Its possible categorization under strong

adversary model depends on the attack vectors and goals [17, 6, 35].

• Multi-shot attacks and target modeling: This attack strategy involves several

stages such as reconnaissance, decision-making and planning. These stages

are aimed at thoroughly understanding a target. Because such an attack re-

quires ample resources and time, this strategy is more suited for classification

under strong adversary model. Stealth is generally an important aspect of

such attacks.

4.4.3 Attack Patterns

Following are some specific attack patterns and instances that threaten the in-

tegrity of security monitors:

• Planting false data: This is a passive attack that waits for security monitor to

read-in malicious or malformed input from the infected machine or process.

For instance, Microsoft’s security feature in 2001 (based on StackGuard) was

69

designed to safeguard gcc compilers against buffer overflow attacks. Ironi-

cally, it in itself contained a buffer overflow vulnerability that could be ex-

ploited by supplying malformed input [51, 21]. An effective solution to this

problem is to extensively stress test security monitors before release. Moni-

tors should not trust the monitored system/process to provide clean input.

Consequently, any input coming from a monitored system/process must be

strictly validated.

• Fake alerts: Generating fake alerts on a system can comprise a social engi-

neering attack. Alerts can prompt administrators to perform tasks beneficial

to an attacker. For instance, Trojan.FakeAV, Thinkpoint, etc. A solution is

to provide an authenticated interface between alert generation module and

the recipient such as access controlled log files. If the administrator sees an

alert, he can check the log file to confirm the alert’s authenticity.

• Attacks on checking and comparison algorithms: This attack involves com-

promising components of a security monitor that are generally assumed un-

compromisable. This assumption is generally made because of a high priv-

ilege requirement or because security monitors are assumed to be tamper-

resistant. If executed successfully, such attacks can take down the entire

monitoring mechanism. In this chapter, we move past the assumption that se-

curity monitors are tamper-resistant. Therefore, this attack pattern, though

ignored by many, is dealt with by our solution.

• Exploit: An exploit occurs when an adversary is able to attack the target

and take complete control of it (typically in terms of a root-shell). Worse

still, he may be able to install a root-kit to replace the security monitor with

a fake one that serves his own purpose.

70

• Crash attacks: Crash attacks are the most common attack patterns and

are relatively simpler to create. Usually, system crashes are considered an

acceptable alternative by system administrators when compared to a system

hijack. However, crashing security monitors is a serious issue as it may

eventually lead to system hijack. Crash attacks are generally considered to

be easily detectable. But crashing a security monitor or replacing it with

a fake one (an exploit) may not be easily noticeable. Crash attacks can

be executed in any number of ways such as planting false data, DoS attack

via system overload or social engineering. The solution presented in this

chapter deals with such attacks by monitoring all security monitors for their

continuous operation.

• TOCTOU attacks: Such attacks occur when a security system is fooled into

thinking that there is no security violation during the check on an object but

the violation actually occurs during the use of the object. A monitor gathers

information via a sensor or probe. Typically there is a lag between the time

that the information is gathered and the time it is processed to potentially

raise an alert. Attacks happen during this lag. Refer to Fig. 4.3.

Imagine an event notification system that has a delay between event occur-

rence and its notification. During this window, an attacker can compromise

the security monitor and disable the notification. The administrator will

never be alerted even if the monitor or the entire system has been compro-

mised.

TOCTOU attacks are especially relevant to multi-core architectures. They

stem from attacks such as memory hogging. Memory hogging is a kind of

DoS attack where one core consumes shared memory unfairly [95]. This

71

Delay

Time Of Check
(Sensor generates

information)

TOCTOU attack

Time Of Use
(Security monitor

processes information)

Figure 4.3: Time of check to time of use (TOCTOU) attack

results in performance degradation at other cores due to resource scarcity.

It further leads to operational delays resulting in TOCTOU attacks. This

vulnerability can be handled via conditional checks. A security monitor can

raise an alert if it observes exceptionally high scheduling delays affecting a

monitored process.

• Scrubbing attacks: These attacks occur when a security monitor is invoked

periodically via some sort of signaling in order to observe a process. If the

attacker has enough privileges to observe these signals, he can scrub his

traces when it happens. Consequently, the monitor notices nothing out of

the ordinary and returns the control to compromised process. These attacks

are present in SMM-based security monitors that require invocation. For

instance, HyperCheck [140], HyperGuard [145], etc.

4.5 Solution Design

The work presented in this chapter is an extension of the work by Chinchani et

al. [26]. All the design decisions and innovations hereafter are guided by formal

72

Figure 4.4: Simple cyclic arrangement of security monitors

requirements described in Section 4.3.

As discussed previously, the challenge is to always have a security monitor

monitored for tampering. Surveillance-based solutions trying to provide tamper-

resistance guarantees usually lead to infinitely long chains of monitors. The same

effect can be achieved via a cyclic topology. Cyclic graphs have no open ends which

means that if security monitors are arranged in a directed cycle, they will all be

monitored at all times. Refer to Fig. 4.4.

Below is the description of how formal requirements described in Section 4.3

shape the solution presented in this chapter:

• Easy verifiability: This requirement calls for a simple design whose security

strength can be easily verified. It was inferred from the survey in Section 4.2

that solutions built upon virtualization tend to get complex and cumbersome

and hence, virtualization is avoided in the design. Instead of following the suit

73

of current surveillance-based monitoring architectures, inspiration is derived

from coveillance. This choice made the solution design tremendously simple.

The presented design is a structural arrangement of lightweight processes

that monitor each other in a cyclic fashion. These processes are intentionally

simple and replicated so they are easy to update and verify. Additionally, the

structural arrangement is based on concepts derived from graph theory mak-

ing it easier to understand its security properties and any possible loopholes

that may ensue.

• Low time and performance overhead: The presented solution is composed of

lightweight processes and leverages the parallelism offered by multi-core ar-

chitectures. To further gain performance, process communication or event re-

porting takes place over the kqueue subsystem. Kqueue subsystem is a kernel

level communication mechanism which is extremely efficient and lightweight.

As a result of these design and implementation considerations, the evalua-

tions in Section 4.6 report low time and performance overheads.

• Address the threat model: While designing the solution, all the threats from

Section 4.4 have been addressed. It will be apparent as more design details

are discussed later on.

• Absence of WoVs: Creation of any WoVs is avoided by employing a cyclic

architecture and the kqueue subsystem. Cyclic architecture ensures that no

participating entity is unwatched at any time and kqueue subsystem ensures

that events are reported without any delay. Section 4.6 specifically discusses

the handling of TOCTOU and similar attacks.

• Small size of the TCB: One of the most important features of the presented

74

solution is that it does not impact the existing TCB. Because all participat-

ing entities are being watched by each other in a cyclic fashion, no single

entity needs to be assumed secured, unlike in surveillance-based architec-

tures. However, the design leverages existing TCB components such as the

kernel level communication mechanism in order to ensure a no-delay and

tamper-resistant event reporting.

• Strong security guarantees: The solution is designed to withstand a strong

adversary model. Thus, the attacker is not bounded by limited time, re-

sources or knowledge. Unlike the replication-based or layered monitoring

solutions, knowing the entities or their arrangement order does not weaken

the security strength of this solution.

In its simplest form, the solution consists of several user-space security mon-

itors. These security monitors can be on the same machine or on separate real

or virtual machines. The solution proposed here can be used with almost all ex-

isting security monitoring schemes to strengthen their tamper-resistance. Figure

4.4 presents a simple cyclic topology of this solution. The nodes are the security

monitors and the directed edges represent the monitoring relationships between

them. For instance, in this case, security monitor 3 is monitoring security monitor

2 and 4 is monitoring 3. Note that no monitor is left unmonitored. One of these

security monitors (called ‘the primary’ in the sequel) is designated to monitor crit-

ical processes (for instance, an IDS) on the system. The primary security monitor

is in a cycle with other security monitors (called ‘the watchers’ in the sequel) that

helps ensure its tamper-resistance. Because watchers are only required to monitor

other watchers (including the primary), they can be lightweight processes with

simple functionality. This makes it possible for the solution to provide strong

75

Figure 4.5: Circulant digraph with number of nodes=8, degree as incidence=3 and
jumps=1,2

tamper-resistance without any design and implementation complexities.

Building upon this idea, a generic coveillance-inspired solution based on circu-

lant digraphs is presented here. A circulant digraph CK(a1, a2, ..., an) with K ver-

tices v0, v1,, vK−1 and jumps a1, a2,, an, where 0 < ai < bK/2c, is a directed

graph such that there is a directed edge each from all the vertices vj ± aimodK,

for 1 < i < n to the vertex vj, 0 < j < K − 1. It is also homogeneous i.e., every

vertex has the same degree (number of incident edges), which is 2n, except when

ai = K/2 for some i, when the degree is 2n − 1. Figure 4.5 presents a directed

circulant digraph with 8 nodes, degree of incidence 3 and jumps 1, 2.

4.5.1 Topologies

A monitoring solution, cyclic or not, can have numerous topologies. In this case,

topologies vary from a simple cycle to a topology with multiple degree of incidence.

A few basic topologies with strong tamper-resistance are discussed here. In order

to compare these topologies, one may ask the following two questions:

76

• How secure a topology is?

• How efficient a topology is?

These questions form the basis of the discussion and evaluation of these topologies.

• Simple Ring or simple cycle. Simple ring topology represents an ordered

cycle of watchers as shown in Fig. 4.4. It offers a much lower probability of

subversion compared to the onion-peel model [26]. If an attacker does not

know about the order of watchers in the simple ring, he needs to try (n!− 1)

permutations (worst case) before he finds the right order. Note that alerts

will be raised for all these attempts indicating an attack pattern and sent to

the security administrator. In order to deal with a strong adversary model,

this topology considers insider attacks as well. Even if the attacker (may

be an insider) knows the arrangement of monitors in the ring, he needs to

synchronously compromise watchers all at once. There are ways to prevent

this from happening as discussed later.

• Circular digraph. Circulant digraph is characterized by a higher degree of

incidence (more watchers watching). This further reduces the probability of

a watcher being left unmonitored at any time. Refer to Fig. 4.5.

Simple ring topology is a special case of circulant digraph topology when

degree of incidence is 1. However, a circulant graph topology (with degree

of incidence > 1) is much more secure than a simple ring topology. This is

because the expected number of attempts required to find the right permu-

tation increases exponentially because the attacker does not know the degree

of incidence, the jump and the order of watchers.

77

• Adaptive ring. Since raising a large number of alarms is counter-productive

to system performance, a circulant topology though effective is not optimal.

Even if an attacker is not in a position to attack, he can tamper with the

deployed solution to make it raise a large number of useless alerts. In in-

trusion prevention systems (IPS), each alert results in a series of defensive

reactions. Thus, a large number of alerts can potentially lead to a DoS at-

tack. To counter this threat and reduce the number of alerts produced by a

circulant topology, an adaptive topology is proposed. It predicts system load

and tries to maintain cyclic monitoring at all times. This is especially useful

for multi-core systems. It requires that watchers at each core track the load

on other cores. As shown in Fig. 4.6, the initial state of this topology is set

to be a simple ring. If the watcher on core 2 realizes that core K has just

been assigned a lot of new monitoring tasks, it starts monitoring watchers

K and K-1, both. Similarly, if core 2 gets heavily loaded, watcher 3 starts

monitoring watchers 2, K and K-1. So, the cores that are lightly loaded take

up the additional responsibility of monitoring the watchers on heavily loaded

cores and their respective assignments.

Formally, an adaptive topology can be represented as a directed graph G =

(V,E) where,

– V is the set of all vertices in graph G. In other words, it is the set of

all watchers.

– E is the set of ordered pair of vertices of V . A directed edge from v′ to

v′′ is represented as v′ → v′′ where, v′ ∈ V and v′′ ∈ V .

For convenience, G is represented as an adjacency matrix A = aij of size

|V | × |V | such that,

78

Figure 4.6: Adaptive topology when cores 2 and K are heavily loaded

aij =

 1, if a directed edge vi → vj exists

0, otherwise

The following two conditions must hold true at all times:

–
|V |∑
i=1

aij ≥ 1,∀j where, 1 ≤ j ≤ |V |. If this condition is violated for any j,

vertex vj cannot be considered secure anymore and is eliminated from

the chain of trust.

– At least one cycle must exist in the graph containing all vertices (watch-

ers) in G except the ones eliminated due to violation of the first condi-

tion.

The solution does not allow loops of length 1 in A because it represents a

condition where the monitor monitors itself. Therefore, aij = 0 where i = j.

In other words, all diagonal elements in A are zero.

Another set L = lm of size |V | is defined, such that lm represents the load

condition of each vertex in V where, 1 ≤ m ≤ |V |. This represents the

79

load on the core where each watcher from V is running. In other words,

L represents the delay conditions of watchers in V . The load threshold is

represented as l̂.

As described earlier, aij = 1 for any 1 ≤ i, j ≤ |V | if a directed edge vi → vj

exists. The edges in this graph are reassigned based on the load on each

vertex as represented in L. Therefore, for every aij if li ≥ l̂ then the need

is to reassign the monitoring of some of vj’s where, vi → vj exists, to the

monitors of vi. Therefore, as a best effort without violating the two basic

conditions, an x is picked where axi = 1 and axj = 1 is arranged such that j

satisfies the condition aij = 1. The eventual target is to obtain l(i) ≤ (̂l) ∀i

where, 1 ≤ i ≤ |V |.

The probability of subversion for adaptive cycle topology is equal to the prob-

ability of subversion for circulant digraph topology. However, the number of

attempts required to find the right order of watchers is much larger than in

circulant digraph topology (in the worst case). This is because the degree of

incidence and jumps are always changing dynamically. Therefore, an adap-

tive topology provides better performance and stronger tamper-resistance as

compared to the circulant digraph topology.

4.6 Implementation

4.6.1 Monitoring

Monitoring among watchers can be implemented in several ways:

• Periodic checks: An elementary approach is to have processes periodically

ping their watchers to signal their liveness (mechanism called heartbeats) or

80

the watchers can periodically poll their assignments. This solution though

simple does not fit the purpose. The reason being that it is difficult to

choose a heartbeat/polling interval that satisfies the requirements described

in Section 4.3. If the interval is too small, it results in a large overhead. If

it is too large, there can be a substantial delay between the event (watcher’s

assignment being killed) and its notification (watcher realizing it). This will

lead to TOCTOU-attacks if killing watchers is carefully timed (for instance,

at the beginning of each heartbeat interval).

• Direct closed-loop monitoring of watchers using system calls: Support for

direct monitoring of processes is available in most *NIX operating systems

in the form of ptrace(2) family of system calls [55]. The proc filesystem pro-

vides an alternate mechanism for system call tracing called Truss, which is

a program in FreeBSD. The challenge with this approach is its closed-loop

aspect. When watchers are arranged in a closed-loop, taking control of the

traced watchers on each event results in the possibility of an exponential cas-

cade of events and deadlocks [39]. Design decisions at the operating system

level occlude such closed-loop relationships between traced watchers. Refer

to Fig. 4.7.

• Non-repudiable event generation and delivery system: FreeBSD provides a

good kernel (asynchronous) event notification mechanism called kqueue [75].

Kqueue is highly scalable and proposed as a replacement for poll(2) and

select(2). Web servers have been reported to achieve significant performance

gains when using kqueue subsystem for socket events.

Kqueue enables watchers to listen for the events generated by their assign-

ments. Refer to Fig. 4.8. It first creates a kevent handle similar to the file

81

Process 1 Process 2 kevent() kevent()

kevent()
Process 1

Process 2

Process 3

if ptrace()
in this direction?

in this direction
then ptrace() not allowed

(a) (b)

Figure 4.7: Monitoring watchers using ptrace(2) and kevent(2) (a) ptrace(2) does
not allow a loop; (b) kevent(2) being asynchronous allows such loops

descriptor returned via an open(2) system call. Then, it registers a listener

function for each of its assignment. The listener is essentially an idle event

loop triggered by the events when they occur. The kqueue subsystem allows

multiple watchers to register listeners for the same event. Since the event

delivery and notification mechanism is asynchronous unlike in ptrace(2), it

is possible to implement closed loops among the monitors (see Fig. 4.4). Al-

though a user-space process generates a system call, the corresponding event

is created and processed inside the kernel. Therefore, this event cannot be

repudiated or falsified.

4.6.2 Experimental Setup

Companies such as Intel and AMD have made significant progress in multi-core

technology. Clearspeeds CSX600 processor with 96 cores and Intels Teraflops Re-

search chip with 80 cores are the latest in this line [100, 54]. However, such systems

do not have a strong presence in the commercial market yet. This generally re-

82

User

Kernel
2) Event occurs

Process 1 Process 2

eg:

1) Register event handler

sys_execve()

3) Secure feedback to the parent process

Figure 4.8: Watcher monitoring using kqueue subsystem

stricts researchers to use a small number of 2-6 cores. In order to bridge this gap

between unavailability of present technology and researching the future trends,

multi-core simulators have been developed [92, 136]. These simulators emulate the

functioning of a multi-core platform on a system with lesser number of cores (even

on uni-core systems). AMD SimNow is one such open-source multi-core simulator

that closely emulates the non-uniform memory access (NUMA) architecture. It

is used here as a test-bed to experiment with simple ring and circulant digraph

topologies.

The following experiments are conducted on Intel Pentium Core2Duo 2.1 Ghz

processor with 4GB RAM. AMD SimNow is installed on Ubuntu 10.04 (the host

operating system). Inside AMD SimNow, FreeBSD 7.3 is installed as a guest

operating system. All experiments run on this guest operating system. This system

is configured to use emulated hardware of AMD Awesim 800Mhz 8-core processor

with 1024 MB RAM. Kqueue is used as the event delivery/notification subsystem.

4.6.3 Efficacy Against Attacks

The two primary performance metrics in a multicore system are time and memory

overheads. The setup time is defined as the time taken for the kqueue subsystem

83

Figure 4.9: Setup overhead for circulant digraph topology with 8 watchers

Table 4.1: Categorization of circular digraph topologies

Configuration Number of watchers Degree of Incidence
Series 1 2 1
Series 2 3 1,2
Series 3 4 1,2,3
Series 4 5 1,2,3,4
Series 5 6 1,2,3,4,5
Series 6 7 1,2,3,4,5,6
Series 7 8 1,2,3,4,5,6,7

to load. This is the only major time delay that this solution incurs. As shown

in Fig. 4.9, setup time increases linearly with increase in the degree of incidence.

With 8 watchers in a circulant digraph topology and maximum degree of incidence

(i.e., 7), the worst case setup delay is observed to be 0.3 ns.

The set of cases to be studied involves different circulant digraph configurations

with varying number of watchers and degrees of incidence as shown in Table 4.1.

For these cases, jumps start from a minimum of 1 and are incremented by 1 until

they satisfy the degree of incidence.

The following attack scenarios are used to test the security strength of this

84

Figure 4.10: Average number of alerts generated for killing watchers in sequential
order without delay, under light system load

solution.

• Experiment 1: Killing watchers without delay (under light system load): The

worst case scenario is where the attacker already knows the correct order of

watchers in the cycle. In Fig. 4.10, the number of alerts generated shows the

sensitivity of this solution towards the crash attacks via SIGKILL.

• Experiment 2: Killing watchers without delay (under heavy system load):

Experiment 1 was repeated under heavy load conditions to determine the

impact of increasing system load on frameworks sensitivity (number of alerts

generated) to an attack. A heavy load condition is simulated by running

OpenSSL benchmark in the background. In this emulated multi-core en-

vironment, a maximum of 6,164 processes can run on FreeBSD operating

system. Six thousand processes were deployed to achieve nearly 100% CPU

consumption for all cores. As seen in Fig. 4.11, the number of alerts gener-

ated is lesser than in Experiment 1. This is because now watchers have to

85

Figure 4.11: Average number of alerts generated for killing watchers in sequential
order without delay, under heavy system load

wait in the scheduling queue longer than in Experiment 1. Thus, to ensure

that we get at least one alert under all conditions, there should at least be 3

watchers in the configuration.

4.6.4 System Overhead

Memory overhead is defined as the amount of memory consumed by a running

instance of the solution as a percentage of the entire system’s memory capacity.

As shown in Fig. 4.12, it increases linearly with the degree of incidence. A circulant

topology with 8 watchers and degree of incidence 7 incurs a 0.8% memory overhead.

4.7 Discussion

This chapter presents a solution to the problem of ascertaining tamper-resistance

of security monitoring schemes in the user-space. Note that the security monitors

86

Figure 4.12: Memory overhead for a watcher in an 8-node circulant digraph topol-
ogy

in kernel space are not considered here. Such monitors are though more secure than

the ones in the user-space but they introduce significant problems to the trusted

computing base, making it vulnerable. Therefore, security monitors in the user-

space are a safer alternative if their tamper-resistance can be assured. This is what

the chapter focuses on. There exist several solutions in the literature for this pur-

pose. Therefore, the literature is reviewed to understand the limitations of existing

solutions, as well as, derive important lessons. Based on these, a new solution is

designed. It consists of lightweight watchers arranged in a cyclic configuration. To

make it more generic and effective, circulant digraph and adaptive topologies are

discussed. Circulant digraph topology provides good security. Adaptive topology

aims to provide a fine balance between security and performance overhead.

The quality of tamper-resistance provided by this solution is implementation-

dependent to some extent. This is because the directed edges in the solution design

represent periodic checks for specific conditions, such as a check if the monitored

87

program is continuously running. The conditions defining unexpected behavior

are decided and implemented by security practitioners. Hence, the term tamper-

resistant is preferred over tamper-proof to describe this solution. The watchers are

expected to be lightweight allowing easy formal verification of code correctness.

The solution is expected to have a low number of false positives because of the

simplicity of checks. Any false negatives will most likely result from the developers

missing to implement all the conditional checks.

Due to the popularity and widespread adoption of multi-core systems, this

solution is evaluated in a multi-core environment. Note that it works effectively

in a unicore environment as well [26]. For evaluation, the crash (kill) commands

and exploits are executed in sequence without any user delay. This is to simulate

a strong adversary model where the attacker has time to develop targeted and

automated attack scripts. The most effective attack against this solution is the

crash attack by an adversary with escalated privilege. If he can issue a killall

command for all the watchers, the solution can be subverted. However, most *NIX

operating systems allow killall to send SIGKILL signal to processes belonging to

the same group. In order to increase framework’s resistance to such crash attacks,

alternate watchers can be organized under two different groups. Watchers with

even PIDs (process IDs) retain their default GID, which is the PID of the parent

process. The GID of watchers with odd PIDs is changed to their respective PIDs.

Now, a SIGKILL signal sent to the default GID of the group will successfully kill

the watchers with even PIDs but the odd ones will still raise alerts. Killing multiple

groups involves issuing multiple kill commands which introduces delay that will

lead to alert generation.

To summarize, the solution presented in this chapter protects security monitors

against APTs by providing them with strong tamper-resistance. In addition to

88

that, it is lightweight in terms of time and performance overhead and thus, can be

employed as part of a mission survivable solution.

In the next chapter, we discuss the design of SWAT in a distributed environment

and how the solution presented in this chapter applies to it.

Chapter 5

Distributed Architecture for

Survivability

5.1 Introduction

Chapter 3 described an advanced persistent threat (APT)-based attack model

and a centralized version of SWAT to withstand it. Its concluding discussion

identified two major tasks that needed further work. First was to ensure that the

security monitors at each host are tamper-resistant. In this regard, a solution was

presented in Chapter 4. Second was to improve the hardware-based capabilities

for a secure and surreptitious node-to-node verification. This chapter proposes the

possible use of trusted platform module (TPM) for this purpose. In addition to it,

centralized SWAT is extended and restructured to work efficiently and effectively

in a distributed environment.

As discussed earlier, advanced adversaries are capable of maintaining multiple

footholds inside the system. Detecting and recovering a subset of these footholds

may raise red flags for the intruders, leading them to refine their attack strategies.

90

For instance, they may execute contingency scrubbing attacks and erase their

traces by either deleting files or corrupting certain system states, thereby foiling the

mission. This kind of behavior works against mission survivability requirements.

Therefore, any mission survivable solution must be tamper-resistant and should not

divulge any information prior to considering and analyzing all the repercussions.

Similar to the centralized SWAT described in Chapter 3, the solution presented

here leverages concepts of deception (hiding) in a hardware-based security setup

[146, 28]. It does not immediately raise an alert or activate recovery procedures

on intrusion detection. Instead, it continues to behave normally and observe in

order to better understand attacker intent, objectives and strategies (AIOS). This

approach has two advantages. First, it assists in the designing of targeted re-

covery procedures which are lightweight and highly effective. Second, providing

incomplete information to an attacker (by hiding detection information) prevents

any sort of strategy refinement by the attacker. Because the recovery is delayed,

the system relies on replication to account for the intermediate system unrelia-

bility. Replication provides reliable alternatives to suspected (but unrecovered)

replicas. Though costly, redundancy and replication are necessary requirements

for the fault-tolerance aspect of mission survivability. This design merely extends

its use to address security.

The presented mission survivability solution is in a way, a game changer. In-

stead of relying on a generic mix of traditional solutions, it assists in the designing

of a more effective (targeted) recovery in response to an attack. It buys the system

time to figure out AIOS while the attacker remains ignorant about any detections.

Extensive use of heavyweight solutions such as honeypots is successfully avoided

in this design. Note that no current or prior survivability solutions work in this

manner. The general rule is to detect anomalies or attacks and raise alerts that

91

initiate recovery. However, in this solution, the reaction is delayed (can afford it

in long running missions) and losses are covered via replication so more time can

be bought to profile an attack and earn all the aforementioned advantages.

To summarize, this chapter extends SWAT to work effectively in a distributed

environment. It involves tamper-resistant and surreptitious detection and node-to-

node verification of suspicious events. Distributed SWAT aims to identify AIOS

and design targeted recoveries that promote survivability. Its security strength

has been theoretically analyzed while the performance and scalability aspects are

measured via JavaSim simulations. Simulations demonstrate distributed SWAT’s

high scalability with respect to network size and application runtime. It is further

realized that the time overhead for long running applications can be easily kept

under 1% of original runtime by carefully adjusting the security strength.

Major contributions of this chapter are:

• Extending SWAT for its efficient and effective adoption in a distributed en-

vironment.

• Analyzing distributed SWAT for its security and tamper-resistance proper-

ties.

• Evaluating the performance of distributed SWAT.

Section 5.2 presents some preliminaries. Section 5.3 describes the architecture

and other details of distributed SWAT. Evaluation of the framework is described

in Section 5.4, followed by a discussion and conclusion in Section 5.5.

92

5.2 Preliminaries

This chapter builds upon the mission survivability research from Chapter 3 wherein

the solution approach relied upon a centralized and replicated architecture. In this

centralized version of SWAT, all replicas are assumed to be running in lockstep

and are regulated by a central authority, also called the coordinator. The coordina-

tor distributes workload among these replicas, each running on separate hardware

(or node). A host-based intrusion detection system (IDS) such as Tripwire [62]

monitors each node for signs of intrusion. Any intrusion attempts are translated

to an integrity-signature and stored away in the hardware where it stays secure

and hidden from the attacker. To make this framework lightweight, modified test-

logic such as design for testability (DFT) or built-in self-test (BIST) is used. This

pre-existing hardware comes virtually at no extra cost. Replicas send periodic

checkpoints/intermediate results to the coordinator for verification. The coordi-

nator responds back with a go-ahead signal if nothing out-of-ordinary is detected.

The integrity-signatures stored in the hardware piggyback these checkpoints and

are surreptitiously submitted to the coordinator for verification. Thus, coordinator

knows about the possibly compromised replicas and can easily ignore their submis-

sions. However, it still sends a go-ahead signal to all the replicas. The idea is to

hide any detection information from an attacker until the extent of a compromise

is fully known to the administrator. This prevents any unfavorable reactions by an

aggressive or desperate attacker (as discussed previously). Under APT, attackers

usually have multiple footholds inside the system. Administrators need a complete

picture if they intend to fully recover a system and should avoid generic solutions

such as a secure reboot. Rebooting can easily disrupt a mission’s continuity and

timeline. Frequent rebooting can even lead to denial-of-service (DoS) attacks. Ad-

93

ditionally, if a system is restored to the same state that was earlier compromised,

there are no guarantees that it will not be compromised again.

The research in Chapter 3, referred to as the base scheme in the sequel, provides

a centralized framework for SWAT. In order to extend centralized SWAT for its

effective adoption in a distributed environment, the following three goals can be

defined:

• To make security-monitors at each node tamper-resistant? – Extension 1

• To ensure secure communication between nodes? – Extension 2

• To extend centralized SWAT to a distributed environment? – Extension 3

Extension 1. IDSes are usually deployed in user-space making them as vulner-

able as the processes they monitor. In Chapter 4, a coveillance-based watchdog

solution is presented for this classic problem of ‘Who watches the watcher.’ This so-

lution is chosen over other virtual-machine based solutions because it is lightweight

and effective, thus conforming to mission survivability requirements. Moreover, it

performs equally well on both uni-core and multi-core platforms. This scheme

involved lightweight processes called process-monitors monitoring each other in a

cyclic fashion. Since cycles do not have any loose ends, all participating process-

monitors are monitored at all times. Refer to Fig. 4.4 for a diagram of the ring

topology. In a uni-core environment, all process-monitors in the ring run on the

same processor. A process-monitor from this ring is assigned an additional re-

sponsibility of monitoring the security monitor (e.g., Tripwire). Any tampering

of the security monitor (or process-monitor) is reported by the process-monitor

monitoring it and is captured as an integrity-signature stored in the hardware (as

discussed in the base scheme). There are several other advanced topologies de-

94

scribed in Chapter 4. However, for the sake of simplicity, this chapter employs

ring topology.

Extension 2. As described in the base scheme, test-logic circuitry is used to

store integrity-signatures at the hardware level. Because test-logic does not pro-

vide any processing capabilities at all, additional software is needed for secure

communication if test-logic circuitry is used for storage. This new software can be

made tamper-resistant by using the coveillance-based watchdog framework (Ex-

tension 1). Any cryptographic keys used by this software should be stored at the

hardware level. If the software or its process-monitors are attacked, instead of

updating the integrity-signature in the hardware, all cryptographic keys can be

deleted, thereby disabling any impersonation by the attacker. Alternatively, TPM

can be used. TPM is a secured micro-controller with cryptographic functional-

ities. It enables the execution of cryptographic functions within the hardware.

Its capabilities include random number generation, RSA encryption/decryption,

SHA-1 hash calculations and limited NVRAM [11]. TPM contains 16 internal

memory slots called platform configuration registers (PCRs) that are initialized to

known values. A function call PCRExtend is the only way a software can update

PCR values. Once updated, these values are securely stored in the TPM. Thus,

PCRExtend can be used by the security monitor to commit an integrity-signature

for storage in the hardware. API calls like Seal/Unseal/Bind/Unbind/Quote, etc.

can be used to avail authentication, confidentiality and integrity features provided

by the TPM [134].

Extension 3. For this extension, a novel solution is presented in Section 5.3.

95

5.3 Distributed Architecture for Survivability

5.3.1 Framework Requirements

Following are the requirements for a good distributed survivability solution:

• Should be highly adoptable in a distributed environment. With the advent of

cloud technology, any survivability solution cannot be considered for generic

use until it runs efficiently in a distributed environment.

• Should support the commercial off-the-shelf (COTS) paradigm. A good so-

lution should also not restrict its use to a closed system or have security

policies that restrict the set of systems it can communicate with.

• Should be tamper-resistant.

• Should deal with the APT-based attack model described in Chapter 3. As a

result, it should consider the repercussions before acting in a certain way or

divulging new information.

• Must fulfill all mission survivability requirements. It should preserve mis-

sion’s timeliness property. However, predictable and bounded delays are

allowed and can be accounted for in the original mission timeline.

5.3.2 Framework Details

Distributed SWAT leverages concepts of deception, especially information hiding

[146, 28]. As discussed in Section 5.1, it is important that any intrusions are

reported surreptitiously. The monitoring entity can then decide whether to take

immediate action or to continue observing in order to refine the attack profile.

96

Good attack profiles help in the design of targeted recovery procedures that are

lightweight and effective. For instance, if the actual source of a malicious event is

discovered, a system reboot (which can disrupt mission’s continuity and timeline)

may no longer be necessary. To achieve these objectives, a system needs to have

the following characteristics:

• Tamper-resistant monitoring of critical processes at each node: For this pur-

pose, Extension 1 as described in Section 5.2 can be used. All critical pro-

cesses (such as security monitors) in the user-space are provided with tamper-

resistant monitoring using a lightweight, cyclic watchdog framework.

• Tamper-resistant and surreptitious capture and storage of integrity-signature

at each host: This can be achieved via the use of either TPM or test-logic

circuitry as discussed in Extension 2 of Section 5.2.

• Tamper-resistant and surreptitious intrusion reporting to a remote authority:

This can be achieved using TPM or a combination of software and test-logic

circuitry as discussed in Extension 2 of Section 5.2.

In order to possess all these characteristics, each node in the distributed SWAT

needs to have the following components as shown in Fig. 5.1:

• Hardware Replicas: Replication provides the redundancy required for fault-

tolerance. Redundancy is the cornerstone of survivable systems. SWAT

delays recovery (or any other response) until it has assessed the extent of

system compromise. Replication can help a system survive this delay in

response. Furthermore, even if some replicas are compromised near mission

completion, mission can still survive with the help of tamper-free replicas.

97

• Effective isolation of replicas: It is essential that replicas are diverse and

well-isolated to increase their robustness against repeated attacks. An ideal

environment should have each replica running on a separate physical ma-

chine. However, virtual machines are good alternatives as well. Although

replication increases the overhead but it is a necessary requirement for mis-

sion survivability.

If virtual machines (VM) sharing the same hardware are used as replicas,

they would need to share a single TPM or test-logic circuitry for intrusion

reporting. This sharing can be implemented by assigning dedicated bits

to indicate the integrity-signature of each replica. For instance, a simple

implementation can use a bit marked ‘1’ to indicate tampered state and ‘0’

to indicate tamper-free state of a replica. This way, a 32-bit word can track 32

virtual replicas running on a single machine. So, a word 0000.....0101 denotes

that replicas 1 and 3 may have been tampered with. Considering that PCRs

in TPM have a capacity of 160 bits each, they can store richer information

than just a binary security status. However, this is an application-specific

design issue and is outside the scope of this dissertation.

• Hardware-support for secure and surreptitious storage of integrity-signatures:

For the sake of simplicity, TPM is used in this design. Note that any process

that writes to the TPM should be verified for integrity. Secure boot and

trust chains facilitated by TPM can easily solve this problem [134].

• Tamper-resistant monitoring for all critical processes in the user-space: For

this purpose, the cyclic watchdog framework described in Extension 1 of

Section 5.2 is employed.

98

Figure 5.1: Various sub-components of a node in the proposed distributed surviv-
ability solution

• TPM daemon: TPM does not know what to do with the data that it stores

and processes. A TPM daemon is the logical layer over TPM that provides

useful functionalities. For instance, parsing and structuring the data de-

crypted by TPM to a form usable by other applications, scheduling tasks to

TPM, etc.

• Voting service: Based on the information provided by the TPM daemon,

the voting service decides which replicas to trust. From among the results

reported by these trusted replicas, a voting (majority, random selection, etc.)

is conducted to determine the final result.

99

5.3.3 Operational Details

Let S be a distributed network of nodes {Si}ni=1 running a particular mission crit-

ical application such as a process control system or a peer-to-peer computation

requiring a certain level of mission assurance. Each node Si calculates an inter-

mediate result and submits it to another node in the network. Every node has m

replicas running the same application in lockstep. Therefore, it submits {ρj}mj=1

copies of a result. A node can run in any one of the following modes: Process,

Send, Receive and Vote. The operational steps are formally described in Fig. 5.3.

In ‘Process’ mode, a few threads (δ) run replicas while others run a tamper-

resistant cyclic watchdog framework monitoring each replica. A participating node

combines input received from another node (ρ̂), if applicable, with its own data.

This data is then processed by the local replicas. Meanwhile, if the monitoring

framework senses intrusion, it commits a change in the value of integrity-signature

ψ stored at the hardware level. After the processing at all replicas is complete, the

node switches to ‘Send’ mode. In this mode, it securely sends the set of results

{ρj}mj=1 along with the integrity-signature ψ to the next node as determined by the

application. Note that this secure communication between nodes is TPM-assisted.

If the node has any further tasks pending, it switches to ‘Receive’ mode and waits

for further input; otherwise, it stops processing.

Upon receiving data, a node switches to ‘Voting’ mode. Here, it uses ψ to

derive a set C of replicas suspected to be compromised at the sending node. It

disregards all votes from these replicas and performs voting on the rest to derive

the result ρ̂. It then switches to ‘Process’ mode. At startup, all nodes are either

in the ‘Receive’ or ‘Process’ mode depending on the design.

An instance of such a mission survivable architecture is shown Fig. 5.3. This

100

1: while (System = ‘Running’) do
2: if (MODE = ‘Process’) then
3: Run parallel threads δ for replicas and process-monitors
4: if (δ = ‘Replica’) then
5: if (Pending tasks 6= NULL) then
6: if (ρ̂ 6= NULL) then
7: Combine ρ̂ with node’s data
8: end if
9: Feed data to replicas for processing
10: Wait for processing to complete
11: end if
12: Switch to MODE = ‘Send’
13: end if
14: if (δ = ‘Process-Monitor’) then
15: while (TRUE) do
16: if (Suspicious activity detected) then
17: Change the value of ψ accordingly
18: end if
19: end while
20: end if
21: else if MODE = ‘Send’ then
22: SecureSend({ρj}mj=1), ψ)
23: if Pending tasks 6= NULL then
24: Switch to MODE = ‘Receive’
25: else
26: END
27: end if
28: else if MODE = ‘Receive’ then
29: Receive({ρj}mj=1, ψ)
30: Switch to MODE = ‘Vote’
31: else if MODE = ‘Vote’ then
32: Analyze ψ to identify C, a set of compromised replicas on the sending

node
33: Vote on {ρj}mj=1 where j /∈ C
34: Switch to MODE = ‘Process’
35: else
36: Error: Unsupported MODE
37: end if
38: end while

Figure 5.2: Pseudocode - Operational details

101

figure depicts a sample peer-to-peer application consisting of four geographically

distributed nodes which represent processing elements (PEs) and a client (laptop).

All PEs gather data from their respective environments. They process this data

and forward a set of results to their peers chosen by the application. The receiving

PE combines the received information with its own data, processes it and forwards

its set of results to the next PE. Node at location 1 has several replicas running the

application. These replicas are being monitored by their respective cyclic watchdog

frameworks that commit an integrity-signature to the TPM if suspicious activity

is detected. A set of results from Node 1 is sent to nodes at locations 2 and 3.

Along with the set of results, the daemon sends over TPM information as well.

The TPM daemon at the destination node parses this information and delivers it

to the voting service. Voting service determines which results (replicas) are to be

trusted and uses them in further processing. Such exchanges go on until a set of

results is finally delivered by node 4 to the client. Client, in this case, needs to run

a TPM, a daemon and a voting service in order to get the final result.

5.4 Evaluation

Distributed SWAT is evaluated for its security strength and performance. Section

5.4.1 models security relationships between its various components and assists in

analyzing SWAT’s security strength. Section 5.4.2 describes SimJava simulations

used to evaluate SWAT’s time performance.

5.4.1 System Modeling

In this section, the security dependencies are modeled for analyzing the security

strength of distributed SWAT using propositional logic as described by Schryen et

102

Figure 5.3: A distributed architecture for mission survivability against APT

al. [121]. The end goal is to determine the trustworthiness of a distributed system

that employs SWAT to deliver correct results while fulfilling a set r of certain

security requirements.

Each node Si, where 1 ≤ i ≤ n, has the following components (as described

earlier):

• m number of replicas running the same application on separate physical or

virtual machines, collectively represented as {Rj}mj=1. Each replica is mon-

itored by a cyclic watchdog framework {Pk}
{cl}ml=1
k=1 , where Pk is a process-

monitor and cl is the total number of process-monitors monitoring each

replica. This setup is easily adoptable by both uni-core and multi-core plat-

forms.

• TPM hardware at node i, represented as Ti.

103

• TPM logical layer daemon at node i, represented as Di, monitored by a cyclic

watchdog framework {Ps}as=1, where Ps is a process-monitor and a represents

the number of participating process-monitors.

• Voter at node i, represented as Vi, performs voting functions and is monitored

by a cyclic watchdog framework {Pt}bt=1, where Pt is a process-monitor and

b represents the number of participating process-monitors.

When a client submits a request to this distributed system, it trusts that all its

nodes will satisfy r.

S = S1 ∧ S2 ∧ S3 ∧ ∧ Sn (5.1)

For each Si to fulfill r, all its components should satisfy r.

Si = Ti ∧Di ∧ Vi ∧R1 ∧R2 ∧R3 ∧ ∧Rm (5.2)

Tamper-resistant functioning of these components relies on the tamper-resistant

functioning of their respective coveillance-based watchdog frameworks. Thus,

Si = Ti ∧ {P1 ∨ P2 ∨ ∨ Pa}︸ ︷︷ ︸
Di

∧{P1 ∨ P2 ∨ ∨ Pb}︸ ︷︷ ︸
Vi

∧

{P1 ∨ P2 ∨ ∨ Pc1}︸ ︷︷ ︸
Ri1

∧{P1 ∨ P2 ∨ ∨ Pc2}︸ ︷︷ ︸
Ri2

∧......∧

{P1 ∨ P2 ∨ ∨ Pcm}︸ ︷︷ ︸
Rim

(5.3)

should satisfy r.

In a cyclic watchdog configuration, there is a high probability that all process-

104

monitors are monitored at all times (discussed in Chapter 4). Thus, they cannot

be tampered without raising an alert. Therefore, they can be assumed to be

tamper-resistant with a probability approaching 1.

Si = Ti ∧ {1}︸︷︷︸
Di

∧ {1}︸︷︷︸
Ri1

∧ {1}︸︷︷︸
Ri2

∧ {1}︸︷︷︸
Ri3

(5.4)

Combining (5.1), (5.2) and (5.4),

S = {T1 ∧ T2 ∧ T3 ∧ ∧ Ti} (5.5)

should satisfy r.

From (5.5), it can be concluded that the reliability of distributed SWAT de-

pends on the reliability of its TPM components to satisfy r. In general, TPMs

are considered to be highly reliable [11] which indicates the high reliability of

distributed SWAT.

5.4.2 Simulation

A generic peer-to-peer (P2P) distributed network that employs distributed SWAT

is simulated for performance evaluation. The simulated network topology is shown

in Fig. 5.4. All nodes are connected to one another directly or through a string of

peers. Clients can submit their tasks to any of the participating nodes and get a

result back from the same node.

The performance evaluation is conducted using SimJava (2.0) on a 32-bit Win-

dows system with 2 GB RAM and Intel Core Duo processor. Simulation param-

eters are derived using the multi-step evaluation approach as previously seen in

Chapter 3. These simulations primarily evaluate time performance and scalabil-

105

Figure 5.4: Peer-to-Peer topology of the simulated distributed network

ity. Space overhead is not particularly evaluated because the memory requirement

is not significant if replicas are already a part of system’s fault-tolerance setup.

Furthermore, all the other system components (daemons and TPM) are extremely

lightweight in terms of memory.

Long running missions are primarily considered for evaluation because APTs

usually have a greater impact on them. Such missions, if interrupted at a later

stage, require lots of resources and time for re-runs (if re-runs are possible at all).

Short-missions can always be reset, recovered or replayed if found corrupted or

compromised.

Figure 5.5 depicts the scalability of distributed SWAT with respect to mis-

sion’s runtime. Thus, the x-axis represents average runtime per node while the

y-axis represents time overhead as a percentage of original mission runtime on a

logarithmic scale. This simulation is replayed for five different network sizes. For

evaluation purposes, simple majority voting is assumed. In Fig. 5.5, a simple

challenge-response mechanism (instead of RSA) is used for authenticating (but

106

Figure 5.5: Time overhead for different network sizes in the absence of RSA-based
TPM security

not encrypting) the communication. A problem with this communication security

setup is that it assumes a weak APT model where the attacker has less or no con-

trol over the communication channel. It can be observed that the (time) overhead

percentage decreases with increasing mission runtime. This is because for a fixed

network size, time overhead increases at a much slower rate than mission runtime,

making SWAT extremely scalable. However, as the network size increases (from

10 to 90 nodes), a slight increase in time overhead can be noticed. This scalability

aspect is investigated shortly. A major takeaway from this simulation is that for

any network size, missions with runtime greater than 1 sec (average per node)

incur a time overhead of less than 10%. Furthermore, missions with an average

runtime of greater than 10 sec per node have a time overhead of less than 1%.

This number decreases further as the mission runtime increases.

Employing RSA for communication security (using TPM) incurs additional

time overhead. Measurements received after encrypting the communication in

previous simulation with an RSA key-size of 512 bits and data-size of 20 bytes are

shown in Fig. 5.6. Here, time overhead observed follows the same trend as in Fig.

107

Figure 5.6: Time overhead for different network sizes in the presence of RSA-based
TPM security

5.5. However, the 10% time overhead cutoff is for missions where average runtime

per node is 10 sec or greater. The 1% time overhead cutoff is for the missions with

30 sec or greater of average runtime per node.

Figure 5.7 analyzes SWAT’s scalability with respect to the network size (number

of nodes). Thus, the x-axis represents network size while the y-axis represents time

overhead as a percentage of original mission runtime on a logarithmic scale. This

simulation uses a simple challenge-response mechanism for authentication (not

RSA). It is observed that the time overhead increases drastically as the network

size expands from 3 to 10 nodes; it increases very slowly afterwards. Note that

the time unit here represents average runtime per node. This means that when a

bigger network is considered, it results in a longer runtime. This explains the trend

seen for this simulation. For a mission with an average runtime of 1 sec or greater

per node, the time overhead is bounded by 10% irrespective of the network size.

For a mission where the average runtime per node is 10 sec or greater, this bound

decreases to 1%. These observations demonstrate the high scalability of SWAT for

long running missions irrespective of the network size.

108

Figure 5.7: Time overhead for different average mission runtimes (at each node)
in the absence of RSA-based TPM security

Figure 5.8 measures the same parameters as measured in Fig. 5.7, except that

it uses RSA for communication security. It uses a key-size of 512 bits and data-size

of 20 bytes. Same trends are observed in both cases as shown in Fig. 5.8 and Fig.

5.7. However, because of the increased time overhead, for achieving the 1% bound,

a mission needs to have at least 30 sec of average runtime per node.

Note that a specific key and data size are used for the evaluations above. If TPM

is required to provide better security strength, it may need to use stronger RSA

parameters. Figure 5.9 measures the time overhead for the different levels of RSA-

based TPM security. The x-axis represents network size and the y-axis represents

time overhead as a percentage of original mission runtime on a logarithmic scale.

Key-size and data-size are the two parameters that determine security strength of

RSA. Table 5.1 lists the various cases of RSA security settings for TPM. Case 1

refers to the scenario with challenge-response based authentication and no RSA.

All the rest of the cases use RSA with the specified parameters. It can be observed

that there is a slow increase in overhead when data-size increases and key-size

109

Figure 5.8: Time overhead for different average mission runtimes (at each node)
in the presence of RSA-based TPM security

remains the same. However, an increase in key-size increases the time overhead

drastically. Cases 2, 5 and 8 with steeper positive slopes of time overhead mark

the increasing key-size. All other cases with a gradually increasing slope are for

the increasing data-size. Note that the time overhead shoots up as the key-size

reaches 2048, which provides very strong security but may cause excessive time

overhead.

5.5 Conclusion

This chapter presents a mission survivability solution that aims to survive APTs in

a distributed environment. The basic idea is to buy defense enough time to figure

out the precise nature of an attack. This helps in the designing of targeted recovery

procedures. Targeted recoveries are more effective and incur lesser overhead than

generic procedures. The solution also helps to disguise the knowledge of detection

110

Table 5.1: Cases for different levels of RSA-based TPM security

RSA key-size Encryption data-size
(bits) (bytes)

Case 1 - -
Case 2 512 20
Case 3 512 50
Case 4 512 100
Case 5 1024 20
Case 6 1024 50
Case 7 1024 100
Case 8 2048 20
Case 9 2048 50
Case 10 2048 100

Figure 5.9: Time Overhead plotted against levels of security provided by TPM for
different network sizes

from the attacker. This ‘false assurance’ could prevent the attacker from switching

to an aggressive strategy or contingency plan.

Each node in SWAT runs application replicas in lockstep but on separate and

isolated virtual machines. They also employ IDSes that surreptitiously report sus-

111

picious activities to the TPM (in the form of integrity-signatures). Nodes exchange

sets of replica-results and their integrity-signatures for verification by other nodes.

All the user-space components of distributed SWAT that require tamper-resistance

employ the watchdog cyclic framework described in Chapter 4. Compromised repli-

cas are not recovered immediately but are monitored for more information about

AIOS. Meanwhile, the intermediate results are obtained from the tamper-free repli-

cas (with good integrity-signatures). This buys the defense more time to design

targeted recoveries without leading to a change in attacker’s strategies or risking

mission survivability. Note that the delay in reaction introduced by SWAT is con-

tingent upon the threat situation. If SWAT faces an immediate threat and can

no longer wait, it may even initiate a generic recovery procedure. Hence, SWAT

is adaptive in nature and waits for more information only when possible without

compromising the survivability of the mission.

The security strength of the presented solution is analyzed using theoretical

system modeling. It is concluded that the security strength of distributed SWAT

relies primarily on subsystems that are inherently secure. SimJava simulations are

used to evaluate a generic P2P network that employs distributed SWAT. Measure-

ments indicate that distributed SWAT incurs a time overhead that constitutes only

a fraction of mission’s runtime. This fraction decreases drastically as the mission

runtime increases. For a mission that runs for at least 1 sec average per node in

the network, a time overhead bound of 1% can be easily achieved by adjusting

its security strength. Thus, long running missions can efficiently adopt SWAT

without the risk of over-stretching their timelines. Because the response to an

attack is delayed, a maximum bound on the expected number of recoveries can

be proactively calculated and accounted for in the original mission timeline. This

prevents the reactive recoveries, whenever initiated, from violating mission surviv-

112

ability’s timeliness property. Strong security and tamper-resistance properties of

distributed SWAT, along with its efficiency, could make it a good defense strategy

against APTs for which no good solutions currently exist.

In the next chapter, we discuss the efficient deployment of deception-based

solutions in a production environment and how deception can assist in effective

identification of zero-day exploits.

Chapter 6

SWAT in Production

Environment

6.1 Introduction

The preceding chapters in this dissertation have presented centralized and dis-

tributed versions of SWAT (Survivable framework for (cyber) Warfare against

Advanced Threats) for strengthening mission survivability against advanced per-

sistent threats (APT). Considering that APTs specifically target critical systems,

they tend to exploit zero-day vulnerabilities often. Usually employed anomaly-

based detection solutions have a high overhead and thus, are not suitable for pro-

duction environments. This chapter presents an extension to SWAT that enables

it to defend against zero-day exploits by employing deception at the end systems.

Deception employed in this chapter uses honeypots and is customized in real-

time. In addition, it addresses the generic problem of deploying deception-based

survivability solutions in a production environment. End systems in production

environment have a necessary requirement to stay responsive and secured at all

114

times while openly interacting with the outside world. Thus, they are the most

vulnerable but have a great vantage point. The solution presented in this chap-

ter leverages the location of end-systems for increased effectiveness. Unlike the

deception-based solutions that pass the entire traffic through honeypots, the pre-

sented solution sieves out suspicious traffic based on its behavior. Each design

choice is supported by evidence and a detailed review of related literature. Finally,

the challenges involved in implementing this SWAT extension and their possible

resolutions are presented.

6.2 Related Work

Several anomaly-based detection systems have been proposed in order to detect

zero-day exploits [25]. However, Liu et al. [80] describe the big challenge, “how

to make correct proactive (especially predictive) real-time defense decisions during

an earlier stage of the attack in such a way that much less harm will be caused

without consuming a lot of resources?” Solutions that attempt to recognize a

zero-day, multi-shot stealth attack usually take two approaches – predictive and

reactive. Under the predictive approach, all the suspected policy violations are

taken as a sign of intrusion. During the early stages of an attack, false alarms

are difficult to sieve out, thus this approach may result in service degradation

or even resource exhaustion. Under the reactive approach, defender relies on the

correlation techniques employed by the system and takes an action only when he is

somewhat certain of the foul play. As with any such approach, it is difficult to know

when to react. If the alarms are not considered unless a complete attack profile

emerges, it may be too late to react. Thus, the defender needs to find a balance

between these two extreme ways of dealing with zero-day exploits. Such a trade-

115

off is offered by solutions based on honeypots (a form of deception). Usually, the

defender redirects all the traffic through honeypots, which is responsible for white-

listing the traffic [110, 105]. Many researchers have introduced methodologies

for employing honeynet in a production-based environment [76, 69]. However,

analyzing heavy amounts of traffic using honeypot-like systems requires a lot of

resources and time.

Anagnostakis et al. [4] proposed shadow honeypots as an effective solution to

deploy honeypots in a production environment. Shadow honeypot is an identi-

cal copy of the production server but instrumented to detect potential attacks.

A variety of anomaly detectors monitor traffic in the network and the suspected

traffic is forwarded to the shadow honeypot. Misclassified traffic is verified by the

shadow and transparently handled correctly. There are many challenges with this

approach. First, predictive anomaly detectors (higher sensitivity) will have more

false positives and will direct more misclassified traffic to the shadow honeypot,

creating unnecessary delays and overhead. Reactive anomaly detectors (lower sen-

sitivity) will take more time to create a complete profile and will miss a lot of

malicious traffic before identifying a problem with the flow. Moreover, identifying

zero-day attacks ask for higher sensitivity intrusion detection. Additionally, each

suspected traffic stream may need separate copies of shadow honeypot (else an at-

tacker can verify deception by initiating two parallel malicious flows). This further

increases the overhead.

116

6.3 SWAT Extension

6.3.1 Extension Modeling

Honeypots are deceptive systems that come across as systems capable of low-

resource compromise with high perceived gains. Honeypots not only distract at-

tackers from attacking the main system but also log any activities extensively.

Studying these logs can help a defender gauge AIOS (attacker intent, objectives

and strategies) and design good defense strategies to ward off any future attacks.

Spitzner [128] describes honeypot as “a security deception resource whose value

lies in being probed, attacked, or compromised.” Honeypots are generally classi-

fied under two categories – physical and virtual. Physical honeypots are created

using real computer systems while virtual honeypots use software to emulate the

workings of a real honeypot and the connecting network. Virtual honeypots are

cheaper to create and maintain and hence, are used in production environments

more often. Virtual honeypots are further divided into high interactive and low

interactive honeypots. Qasswawi et al. [113] provide a good overview of the de-

ception techniques used in virtual honeypots.

High interactive honeypots emulate real operating systems. Thus, attackers feel

like they are interacting with real systems and can even completely compromise

them. Some examples are User Mode Linux (UML), VMware and Argos. Low-

interaction honeypots simulate limited network services and vulnerabilities. They

cannot be completely exploited. Examples are LaBrea, Honeyd and Nepenthes

[112, 113]. Cohen’s Deception Toolkit (DTK) [27] laid the groundwork for low-

interaction honeypots. It led to the development of advanced products such as

Honeyd. Honeyd [128] simulates services at TCP/IP level in order to deceive tools

like Nmap and Xprobe. Though it does not emulate an entire operating system,

117

its observables are modified to give the impression that it does.

Honeypot farm is a cluster comprised of honeypots of the same or diverse

kinds. Hybrid honeypot farms are usually a mixture of low and high interactive

honeypots.

Designing deception-based prevention is the first step in the SWAT exten-

sion modeling. Traditional preventive measures include firewalls, encryption tech-

niques, digital certificates, strong passwords, access control, strong configuration

management and training programs. These measures are known to be effective

in deterring weak adversaries. However, most advanced adversaries manage to

find a way around these measures. McGill [88] suggested an interesting approach

towards attack prevention. Instead, of treating attacks as constant probabilistic

events such as earthquakes or tsunami that cannot be prevented, they should be

treated as ‘conditional risk.’ This is a good representation of real-world attacks

because attackers usually take calculated risks. They start with snooping around

the system looking for weaknesses and vulnerabilities to exploit. Thereafter, they

measure the resource requirement of the possible attacks against their available

resources. Based on similar analyses, attackers decide whether to go ahead or

abandon the attack. Thus, the apparent vulnerability of a system (in other words,

the resource requirement of attacking the system) heavily impacts the probability

of it being attacked. Thus, deceiving an attacker into believing that a system has

stronger security is one of the many deceptive prevention measures. Based on the

vast amount of literature on the factors influencing an attacker’s choice of target,

deception-based prevention methodologies can be categorized under the following

three headings:

• Hiding: Hiding is one of the simplest forms of deception. One could use

118

schemes such as fingerprint and protocol scrubbing to hide important sys-

tem information [141, 125]. In a similar manner, false information can be

deliberately fed to the adversaries as well. Yuill et al. [146] developed a

model for understanding, comparing, and developing methods of deceptive

hiding.

• Distraction: McGill [88] demonstrated that given two targets of equal value,

an attacker is more likely to attack the target with lesser protection. How-

ever, Sandler and Harvey [120] analytically proved that this tendency con-

tinues until a threshold. If more vulnerability is introduced, an attacker’s

preference of the chosen target does not increase beyond a certain thresh-

old. In other words, decreased protection does not always translate to an

increased attacker interest. Even if an attacker is deflected from the main

target by providing it with stronger security or adding a distraction target

with lesser security, the attack probability on the main target will never be

zero. A strong security model always assumes that the attacker is capable

of knowing a system via reconnaissance, social engineering, etc. In general,

attackers rely on observables to draw inferences about the system. These

observables can be manipulated to feed misinformation or hide information

from the attackers. Thus, strategies can be devised to affect an attacker’s

perception of the system and reasonable assumptions can be made about at-

tacker’s beliefs, observables and sensitivities. Studies like the one by McGill

[89], model threat scenarios based on target’s susceptibility and attacker’s

tendencies. Such models can be used to assess the attractiveness of a target

to an attacker when its apparent susceptibility is manipulated.

• Dissuasion: Dissuasion describes the steps taken by a defender to influence

119

adversary behavior in system’s favor. It involves manipulating system ob-

servables to make it look like it has stronger security than it actually does.

As discussed previously, this usually discourages attackers. Dissuasion is im-

plemented either as deterrence or devaluation. Deterrence involves a false

display of greater strength. This is generally achieved by displaying an in-

terface with multiple intrusion detection systems or firewalls. Devaluation,

on the other hand, involves manipulating observables to lessen the perceived

value that may come out of a system compromise. McGill [88] developed a

probabilistic framework around the use of defensive dissuasion as a defensive

measure.

Axiom 1: Adding more vulnerability to one of the two equal-value systems in-

creases the likeliness (until a threshold) of an attack on the system with more

vulnerability.

Axiom 2: False display of strength dissuades an attacker from attacking the

system.

Axiom 3: Increasing or decreasing the perceived value of a system affects the

attacker’s preference of attacking the system favorably or adversely, respectively.

Note that deception-based prevention techniques are complementary to con-

ventional prevention techniques and not a replacement.

Designing deception-based detection is the next step in the SWAT extension mod-

eling. If an attacker gets distracted by a vulnerable system or a traffic stream, it

is flagged as suspicious by an intrusion detection system (IDS) and directed to a

honeypot farm. Diverse deceptions are designed for the honeypots in the farm so

that a pattern is discernible even for stealthy intrusions. Attackers use observables

120

to infer about the vulnerabilities of a system. Stealthy attackers prefer vulnera-

bilities that can be quietly exploited over the ones that make any changes to the

user interface. By offering them such vulnerabilities, honeypots can collect more

data to generate better intrusion profiles. There are two significant challenges in

developing such a solution. First, such deceptions should force or manipulate a

stealthy attacker into leaving discernible and traceable patterns. Second, such a

detection mechanism should be hidden lest the attacker should get spooked and

execute a contingency plan (or switch strategies) for which the defender is not

likely to be prepared. In addition to that, the system should be provided with

basic prevention, detection and recovery abilities while conserving the timeliness

property of the mission.

Thus, in general terms, deception-based detection can be designed as follows

– For a given system state s1(t), there is a set φ1 of suspicious actions (for in-

stance, a possible exploit attempt). A user that chooses an action from this set

is malicious with a probability p. However, he could be benign with a probability

1-p. Let system states s1(t), s2(t),....,sn(t) (where, n is the total number of system

configurations) have φ1, φ2,....,φn as their respective sets of suspicious actions. For

some system states, this set of actions can be more clearly categorized as malicious

with higher probabilities pi where, 1≤i≤n. Choosing such states more frequently

helps the defender to come up with a clear user profile in a shorter time. In

honeypots, a defender can choose states with higher pi’s, which means that if an

attacker keeps choosing the actions from the set φ, his probability of being mali-

cious (p1.p2.p3....pn) will cross the threshold in a shorter time. Thus, choosing and

controlling these states is crucial in determining if an attacker is malicious with

a higher probability in a shorter time. Thus, deception-based detection expedites

the understanding of AIOS.

121

Figure 6.1: Smart-Box

The next step in SWAT modeling is designing deception-based recovery with

adaptation. As discussed in Chapter 5, intrusion detection and reporting must be

surreptitious and tamper-free. Any recovery should be initiated after AIOS has

been estimated.

Smart-box assists in the designing of good deception strategies in real-time to

generate a good AIOS profile. Conceptually, a smart-box works as shown in Fig.

6.1. It takes input from the IDS about the suspected traffic flow and generates

an intermediate AIOS profile based on this information [80]. Then it maps this

intermediate AIOS profile to deception scripts that can help further refine the

AIOS. These scripts are stored in the script repository.

6.3.2 Design Details

Building up from the concepts discussed above, the solution architecture is pre-

sented in Fig. 6.2. It is an extension of the work presented by Lakhani [69].

As shown in Fig. 6.2, the mission survivable system runs behind several layers

of protection such as firewalls, deception, etc. The first layer of proxy servers uses

Axioms 1, 2 and 3 to mislead attackers into choosing systems that re-route their

traffic to a honeypot farm via the smart-box. Rest of the user traffic goes through

the main server, the firewall and the IDS. IDS is another layer of defense which

122

Figure 6.2: Deception framework for mission survivability

is capable of re-routing any suspicious traffic to the honeypot farm for further

analysis.

In traditional solutions, a traffic stream is tagged suspicious when an IDS iden-

tifies an attack pattern associated with it or it has originated to/from the dark

address space. Dark address space is the set of Internet’s routable address reserved

for future network expansion. These two filtration criteria worked just fine until

cloud computing came along. Now attackers launch their attacks from behind the

cloud using valid IP addresses and evade detection. Therefore, in addition to the

two criteria, another layer of distraction proxy servers is introduced. This layer

contains a main server which is widely publicized to legitimate clients. This main

server is extremely secure and its apparent security is further enhanced (decep-

tion/deterrence). Thus, amateur attackers are dissuaded from attacking it. Other

proxy servers expose a specific set of non-essential, vulnerable services. For in-

stance, a server can keep the ssh port open to accept the traffic while another

123

server can run a vulnerable version of Windows operating system. These vulnera-

ble servers not only distract malicious traffic away from the main server but also

provide information (about compromise attempts) to the smart-box that aids in

the development of AIOS.

Another important use of smart-box is its ability to optimize resource allocation

in hybrid honeypot farms. Honeypots should be assigned to traffic streams based

on their immediate or predicted AIOS. This is because low-interaction honeypots

can be easily verified if the attacker suspects that deception is employed. Use

of high-interactive honeypots for deception is more fool-proof but consumes more

computing and memory resources. Thus, smart-box helps in efficient and effective

allocation of these honeypot resources by assessing the nature of an attack/attacker

and re-routing the traffic to appropriate honeypots (similar to loading the decep-

tion scripts from the repository).

Logging tools and analyzer in the honeypot farm are responsible for generat-

ing AIOS. Based on this AIOS, the flow is either whitelisted and forwarded to

the production server or blacklisted. If blacklisted, either automated patches (if

available) are scheduled for execution or the administrator is alerted. In this step,

AIOS helps the defender to develop an effective patch for the next recovery cy-

cle while the unsuspected malicious actor stays busy playing with the honeypot.

Thus, deception buys defender the time to design an effective recovery.

Since a system is “as secure as its weakest point”, the need is to ensure that

this solution not only provides survivability but is tamper-proof at all times. Since

all modules in this design, such as proxy servers, the traffic redirection module,

intrusion detection systems, etc. are connected to the same network, they are

always susceptible to intrusions. Therefore, these modules need to be tamper-proof

in order for the entire design to be tamper-proof. The various schemes discussed

124

through Chapters 3-5 can be used for this purpose.

6.4 Discussion and Conclusion

The SWAT extension described above is to be used at the end-systems to effec-

tively and efficiently identify and prevent against the zero-day attacks. It involves

deception based prevention, detection and recovery techniques along with a module

(smart-box) to customize deception in real-time for expedited profile development.

While designing any good survivability solution for a strong adversary model,

assuming attacker’s limitations is never wise. Therefore, a good deception should

be non-verifiable [99]. Deception is difficult to create but easier to verify. For

instance, when an attacker attempts to delete a file and a deceptive interface gives

a positive deletion confirmation but does not delete it, the attacker can still verify

if the file exits. Assuming that for a state s(t), an action χ is expected to have an

effect ω. Generally, deception (like in honeypots) involves confirming that χ has

been performed but the effect ω is never reflected in the system. If the attacker

has a feedback loop to verify ω, deception can be easily identified. Therefore,

either the feedback loop needs to be controlled so as to give the impression that ω

exists or the feedback loop should be blocked for all regular users. An open and

honest feedback loop only helps the attacker to figure out ways around deception

by trial-and-error.

There are several implementation-specific challenges involved in the designing

of an effective solution. For instance, designing proxy servers, re-routing the traf-

fic, choosing the right IDS, etc. Designing an effective smart-box presents two

interesting challenges. First, how to assess the nature of the traffic flow and sec-

ond, how to map the AIOS to an appropriate honeypot in the farm. Designing

125

an implementation of both these functions can benefit from the use of machine

learning algorithms. Deceptions in honeypots can also be customized based on the

parameters provided by the smart-box.

In the next chapter, we conclude this dissertation by briefly describing the work

and discussing its effects on current survivability scenario, as well as, the possible

directions to further this research.

Chapter 7

Discussion and Conclusion

This chapter presents a brief overview of the work presented in this dissertation,

highlights the key research issues and identifies the areas for future work.

The increasing complexity of mission critical systems combined with the emer-

gence of advanced persistent threats (APT) demand stronger mission survivability.

This dissertation presents a survivability solution for this purpose called SWAT

(Survivability in (cyber) Warfare against Advanced Threats). SWAT combines

traditional survivability solutions such as prevention, detection, recovery and adap-

tation with deception techniques in order to strengthen mission survivability. It

uses deception at each stage to surreptitiously gather information about suspicious

events. This information is reported and processed stealthily. Any correlations are

used in the development of attacker’s intent, objectives and strategies (AIOS).

SWAT also leverages strategical placement of honeypots near the end systems to

improve system’s resilience against zero-day attacks. Effective use of honeypots

can further expedite AIOS development. AIOS is used in the real-time design

and customization of targeted recovery procedures. Such AIOS-based recoveries

are beneficial in two major ways. First, they are more selective and effective than

127

generic recoveries and tamper-free processes do not suffer unnecessarily. This even-

tually leads to stronger mission survivability wherein only the tampered processes

are revived and penalized. Second, surreptitious information gathering and report-

ing enables the recovery to repair more intruder access points at once. Generic and

incremental recoveries are seldom effective against stealthy attackers who have es-

tablished several access points throughout the system. In a way, generic recoveries

provide valuable feedback to the intruders about system’s defense and further help

their future attack strategies without effectively blocking them out of the system.

Targeted recoveries can avoid this effectively if implemented correctly.

Chapter 1 provides a detailed introduction to the survivability problems (espe-

cially due to APT) in existing mission critical systems. In addition, it also discusses

the solution approach and provides a summary of the contributions made by this

dissertation.

Chapter 2 presents a review of the literature relevant to the current survivabil-

ity scenario. It also describes the recent instances of cyber attacks that can be

categorized under APT. These instances are used to derive a generic APT-based

attack model in Chapter 3. This chapter also discusses the role of deception in

designing defense solutions for the cyber space. It is realized during this discus-

sion that deception has long been used for defense in cyber scenarios or otherwise.

However, its related ethical and legal issues are an ongoing topic of debate.

Chapter 3 describes a generic APT-based attack model. It then continues to

define a generic centralized, fault-tolerant system whose survivability is targeted

by advanced persistent attacks. A centralized version of SWAT is used to pro-

vide this system with strong survivability. Centralized SWAT involves the use of

software-based tripwires that gather suspicious event information and stores it in

the hardware in the form of integrity-signatures. The hardware component used for

128

surreptitious and tamper-free storage of this integrity-signature uses the existing

test-logic hardware. This preexisting hardware comes at no extra cost and hence

makes centralized SWAT cost-effective. SWAT uses deception at each step for hid-

ing or misrepresenting information to the attacker. The integrity-signature is used

by a central authority to design a targeted recovery that can effectively recover the

remote system from an advanced compromise. SWAT is lightweight in terms of

its time and performance overheads and hence conserves the timeliness property

of survivability as well. It does not have any application-specific dependencies and

thus, its implementation has the potential to be application transparent.

Performance evaluation of centralized SWAT employs multi-step evaluation.

Multi-step approach is required because there are no existing benchmarks for com-

plex systems such the ones that employ SWAT. SWAT involves interactions be-

tween the various hardware and software components that are difficult to model

for simulation. Furthermore, an experimental prototype development is also hard

in this case because of the minor changes required at the hardware layer to the

test-logic. Therefore, multi-step evaluation provides a combination of theoretical

analysis, pilot system implementation and simulation in order to deliver more real-

istic and statistically accurate results. The evaluation of centralized SWAT shows

promising results. Overall, SWAT is believed to provide strong survivability at low

cost for mission critical applications.

The discussion of centralized SWAT covers most of the major issues except

the following two. First, how to ensure that security monitors trusted to report

integrity-signatures stay tamper-resistant at all times? For this purpose, a solution

is presented in the Chapter 4. Second, how to encrypt the communication between

nodes? Test-logic circuitry can be used only for storage but not processing. How-

ever, node-to-node verification requires the communication to be encrypted. Use

129

of trusted platform module (TPM) is explored in Chapter 5 for this purpose.

Chapter 4 presents a scheme to ensure the tamper-resistance of critical compo-

nents such as security monitors in SWAT. The solution described in this chapter

consists of lightweight watchers (processes that monitor other processes) arranged

in a cyclic configuration in a multi-core environment. A uni-core solution along

the same lines had been proposed earlier in the works of Chinchani et al. [26].

This solution can have several topologies. Circulant digraph and adaptive topolo-

gies are discussed in detail. Circulant digraph topology provides good security

whereas adaptive topology aims to provide a fine balance between security and

performance overhead. The scheme organizes light-weight watchers in cycles with

directed edges. These directed edges represent periodic checks for specific condi-

tions such as if the monitored program is continuously running. Thus, the quality of

tamper-resistance provided by this solution is implementation-dependent to some

extent because the conditions defining unexpected behavior are decided and im-

plemented by security practitioners. The watchers are expected to be lightweight

allowing easy formal verification of code correctness. They are also expected to

have low number of false positives because of the simplicity of checks. Any false

negatives will most likely result from the developers missing to implement all the

conditional checks effectively. The solution is lightweight in terms of time and

performance overhead and thus, can be employed as part of a mission survivable

solution.

Chapter 5 extends SWAT for effective and efficient operation against APT in

a distributed environment. The basic idea is the same as in centralized SWAT, to

buy defense enough time to figure out the precise nature of an attack (AIOS). This

helps in the designing of targeted recovery procedures. Distributed SWAT, as in

centralized SWAT, disguises the knowledge of detection from the attacker. This

130

‘false assurance’ prevents the attackers from switching to an aggressive strategy

or contingency plan. Each node in distributed SWAT runs application replicas in

lockstep but on separate and isolated virtual machines. They also employ IDS that

surreptitiously report suspicious activities to the TPM (in the form of integrity-

signatures). Nodes exchange sets of replica-results and their integrity-signatures

for verification by other nodes. All the components of distributed SWAT that

require tamper-resistance employ watchdog cyclic solution described in Chapter

4. Compromised replicas are not recovered immediately but are monitored for

refining AIOS. Meanwhile, the intermediate good results are obtained from the

tamper-free replicas. Security strength analysis of distributed SWAT shows that

it is inherently secure by design. Simulations show the distributed SWAT to have

low time and performance overhead. Strong security and tamper-resistance prop-

erties of distributed SWAT, along with its efficiency, could make it a good defense

strategy against APTs for which no good solutions currently exist.

Chapter 6 describes a SWAT extension to be deployed at the end-systems

to effectively and efficiently identify and prevent zero-day attacks. It involves

deception based prevention, detection and recovery techniques along with a module

(smart-box) to customize deception in real-time for expedited profile development.

SWAT employs deception extensively and at each step of its survivability de-

sign. However, there are several pitfalls that one should be aware about when

it comes to implementing deception for real-world purposes. First, good decep-

tions should not be verifiable as discussed in Chapter 6. Hence, they should be

either made non-verifiable or the feedback loop that can confirm their existence

to normal users should be closed. Second, good deceptions are system and situa-

tion specific. Generic deceptions can be easily verified if they are implemented in

different systems and are not customized appropriately. Third, there are several

131

legal and ethical issues that hinder the widespread adoption of deception. Many

of them have been discussed by researchers like Cohen [27] and Lakhani [69] over

the years. Despite these, there is a visible trend of the increasing use of honeypots

for defense in diverse systems.

Missions with long timelines (especially the ones that spread over months and

years) are especially threatened by the APTs as discussed in Chapter 3. Any good

solution developed for long-running missions should remain effective throughout

the lifetime of the mission. In other words, the effectiveness of a security solution

should not be time-dependent. The design of SWAT satisfies this requirement

sufficiently.

SWAT provides strong survivability but makes certain assumptions in order

to get a handle on the challenging problem of stealth attacks. For instance, it

treats the cyber defender as a power player, being able to see and control all the

parameters, while the attacker has no clue as to what is going on at the other

end. In real world, however, such a power bias rarely exists. A deeper look at

SWAT reveals the following strong assumptions – (a) security monitors such as

the Tripwire can detect every suspicious incident on a system, (b) the detection

information such as the integrity-signature is completely hidden from the adversary,

(c) there are no false alarms, and (d) the attacker has absolutely no idea about the

existence of a deceptive defense system in place. In reality, these assumptions will

not hold true and the SWAT design should move beyond these assumptions in order

to arrive at realistic solutions and tools. This means, among other things, adding

more intelligence to the smart box and other modules that transform information

collected into defensive reactions (such as recoveries). Therefore, the need is to

reach a power balance between the attacker and the defender. For example, the

attacker can be assumed to have the knowledge of deceit existence. This kind of

132

power balance and some common knowledge can be formulated as a game between

an attacker and the defender. Game theory has been used for a long time to

model such interactions and researchers have already used game theory as a tool

to analyze and provide strong network security, as surveyed in by Roy et al. [118].

Effort in this direction will help generalize the initial formulations and provide

more insight into developing mechanisms and tools to handle the scourge of stealth

attacks.

To conclude, SWAT identifies deception as the key to withstanding advanced

attacks. All its constituent solutions do excellent on maintaining low time and

performance overheads. In general, solutions based on deception can benefit from

adopting game-theory and letting go of the assumption that the deception will

always be hidden. Therefore, an important avenue that requires further exploration

in SWAT is the adoption of game theory for real-time customization of deceptions.

Chapter 8

List of Abbreviations

Abbreviation Expansion

AIOS Attacker Intent, Objectives and Strategies

AV Anti-Viruses

BIST Built-In-Self-Test

C&C Command and Control

COTS Commercial-Of-The-Shelf

CPU Central Processing Unit

CTMC Continuous-Time Markov Chains

DFT Design For Testability

DoS Denial-Of-Service

FFT Fast Fourier Transform

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IPS Intrusion Prevention System

JTAG Joint Test Action Group

LU dense LU matrix factorization

134

Abbreviation Expansion

PCI Peripheral Component Interconnect

PCR Platform Configuration Register

PE Processing Element

PLC Programmable Logic Controllers

SCADA Supervisory Control And Data Acquisition

SIFT Software Implemented Fault Tolerance

SMI System Management Interrupt

SMM System Management Mode

SOR Jacobi Successive Over-relaxation

Sparse Sparse Matrix multiplication

SWAT Survivable framework for cyber Warfare against Advanced Threats

TCB Trusted Computing Base

TDI Test Data Input

TOCTOU Time-Of-Check-to-Time-Of-Use

TPM Trusted Platform Module

VM Virtual Machine

WoV Window of Vulnerability

Bibliography

[1] A. L. Williamson. Discrete Event Simulation in the Mbius Modeling Frame-
work. Master’s Thesis, University of Illinois, 1998.

[2] M. Abramovici and C. Stroud. BIST-based Test and Diagnosis of FPGA
Logic Blocks. IEEE Transactions on VLSI Systems, 9:159–172, 2001.

[3] M. Al-Kuwaiti, N. Kyriakopoulos, and S. Hussein. A Comparative Analysis
of Network Dependability, Fault-tolerance, Reliability, Security, and Surviv-
ability. IEEE Communications Surveys and Tutorials, 11:106–124, 2009.

[4] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos,
and A. D. Keromytis. Detecting Targeted Attacks Using Shadow Honeypots.
Proceedings of the 14th USENIX Security Symposium, 2005.

[5] apk. Interface Promiscuity Obscurity. Phrack Magazine (article 10 of 15),
8, 1998.

[6] K. Askola, R. Puupera, P. Pietikainen, J. Eronen, M. Laakso, K. Halunen,
and J. Roning. Vulnerability Dependencies in Antivirus Software. Second
International Conference on Emerging Security Information, Systems and
Technologies (SECURWARE), pages 273 –278, aug. 2008.

[7] K. M. M. Aung, K. Park, and J. S. Park. Survival of the Internet Applica-
tions: A Cluster Recovery Model. Sixth IEEE International Symposium on
Cluster Computing and the Grid Workshops, 2:33, 2006.

[8] R. Automation. Arena Software Simulation. http: // www. arenasimulation.
com , 2000.

[9] S. Axelsson. Technical Report, Department of Computer Engineering,
Chalmers University of Technology. Intrusion Detection Systems: A Sur-
vey and Taxonomy, 99, 2000.

[10] A. Azab, P. Ning, Z. Wang, X. Jiang, and X. Zhang. HyperSentry: En-
abling Stealthy In-context Measurement of Hypervisor Integrity. 17th ACM
Conference on Computer and Communications Security (CCS), 2010.

136

[11] S. Bajikar. Trusted Platform Module (TPM) Based Security on Notebook
PCs - White Paper. Mobile Platforms Group, Intel Corporation, 2002.

[12] S. Bake, N. Filipiak, and K. Timli. In the Dark: Crucial Industries Confront
Cyberattacks. McAfee Second Annual Critical Infrastructure Protection Re-
port, 2011.

[13] M. Banatre, A. Pataricza, A. Moorsel, P. Palanque, and L. Strigini. From
Resilience-building to Resilience-scaling Technologies: Directions ReSIST.
NoE Deliverable D13. DI/FCUL TR 0728, Department Of Informatics, Uni-
versity of Lisbon, 2007.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the Art of Virtualization. ACM
SIGOPS Operating Systems Review (SOSP), 37(5):164–177, oct 2003.

[15] V. R. Basili and B. T. Perricone. Software Errors and Complexity: an
Empirical Investigation0. Communications of the ACM, 27:42–52, January
1984.

[16] R. Baskerville. Information Warfare Action Plans for e-Business. European
Conference on Information Warfare and Security, pages 15–20, 2004.

[17] L. E. Bassham and W. T. Polk. Threat Assessment of Malicious Code and
Human Threats (NISTIR 4939). National Institute of Standards and Tech-
nology Computer Security Division, 1992.

[18] A. Bessani, H. Reiser, P. Sousa, I. Gashi, V. Stankovic, T. Distler,
R. Kapitza, A. Daidone, and R. Obelheiro. FOREVER: Fault/intrusiOn
REmoVal through Evolution & Recovery. Proceedings of the ACM Middle-
ware Companion, 2008.

[19] L. Bridges. The Changing Face of Malware. Network Security, pages 17–20,
2008.

[20] V. Bukac, P. Tucek, and M. Deutsch. Advances and challenges in stan-
dalone host-based intrusion detection systems. Trust, Privacy and Security
in Digital Business (Springer Berlin / Heidelberg), 7449:105–117, 2012.

[21] Bulba and Kil3r. Bypassing Stackguard and Stackshield. Phrack Magazine,
56, 2000.

[22] M. Carvalho. A Distributed Reinforcement Learning Approach to Mission
Survivability in Tactical MANETs. Proceedings of the 5th Annual Workshop
on Cyber Security and Information Intelligence Research: Cyber Security and
Information Intelligence Challenges and Strategies, pages 21:1–21:4, 2009.

137

[23] M. Carvalho, D. Dasgupta, and M. Grimaila. Mission Resilience in Cloud
Computing: A Biologically Inspired Approach. 6th International Conference
on Information Warfare and Security, pages 42–52, 2011.

[24] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance and Proactive
Recovery. ACM Transactions on Computer Systems, 20:398–461, 2002.

[25] V. Chandola, A. Banerjee, and V. Kumar. Anomaly Detection: A Survey.
ACM Computing Surveys (CSUR), 41:15:1–15:58, 2009.

[26] R. Chinchani, S. Upadhyaya, and K. Kwiat. A Tamper-resistant Frame-
work for Unambiguous Detection of Attacks in User Space Using Process
Monitors. First IEEE International Workshop on Information Assurance
(IWIAS), pages 25–34, 2003.

[27] F. Cohen. Deception Toolkit. [online] 2001. http: // all. net/ contents/

dtk. html .

[28] F. Cohen, D. Lambert, C. Preston, N. Berry, C. Stewart, and E. Thomas. A
Framework for Deception. Computers and Security (IFIP-TC11), 2001.

[29] E. Cole. Advanced Persistent Threat: Understanding the Danger and How
to Protect your Organization. Syngress, 2012.

[30] M. K. Daly. The Advanced Persistent Threat. Large Installation System
Administration Conference (LISA), 2009.

[31] D. C. Daniel and K. L. Herbig. Strategic Military Deception. Pergamon
Press, 1982.

[32] R. J. Ellison, D. A. Fisher, R. C. Linger, H. F. Lipson, T. A. Longstaff, and
N. R. Mead. Survivability: Protecting Your Critical Systems. IEEE Internet
Computing, 3:55–63, 1999.

[33] E. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson. A Survey of Rollback-
recovery Protocols in Message-passing Systems. ACM Computing Surveys
(CSUR), 34:375–408, 2002.

[34] S. Embleton, S. Sparks, and C. Zou. SMM Rootkits: a New Breed of OS
Independent Malware. Proceedings of the 4th International Conference on
Security and Privacy in Communication Networks, 2008.

[35] J. Eronen, J. Eronen, R. Puuper, E. Kuusela, K. Halunen, M. Laakso, and
J. Rning. Software Vulnerability vs. Critical Infrastructure - a Case Study
of Antivirus Software. International Journal On Advances in Security, 2(1),
2009.

138

[36] N. Falliere, L. O. Murchu, and E. Chien. W32. stuxnet dossier - White paper.
Symantec Corporation, Security Response, 2011.

[37] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure
Toolkit. International Journal of Supercomputer Applications, 11:115–128,
1997.

[38] C. A. Fowler and R. F. Nesbit. Tactical Deception in Air-land Warfare.
Journal of Electronic Defense, 1995.

[39] FreeBSD. Freebsd Problem Report Kern/29741. [online] 2002. http: // www.
freebsd. org/ cgi/ query-pr. cgi? pr= kern/ 29741 .

[40] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: a
Virtual Machine-based Platform for Trusted Computing. SIGOPS Operating
System Review, 37(5):193–206, oct 2003.

[41] T. Garfinkel and M. Rosenblum. A Virtual Machine In-
trospection Based Architecture for Intrusion Detection.
ACMSymposiumonOperatingSystemsPrinciples , 2003.

[42] D. Geer. Chip Makers Turn to Multicore Processors. Computer, 38:11–13,
2005.

[43] R. Geist and K. Trivedi. Reliability Estimation of Fault-Tolerant Systems:
Tools and Techniques. Computer, 23:52–61, 1990.

[44] K. K. Goswami, R. K. Iyer, and L. Young. DEPEND: A Simulation-Based
Environment for System Level Dependability Analysis. IEEE Transactions
on Computers, 46:60–74, 1997.

[45] R. Goyal, S. Sharma, S. Bevinakoppa, and P. Watters. Obfuscation of
Stuxnet and Flame Malware. Latest Trends in Applied Informatics and Com-
puting, 2012.

[46] W. Gragido and J. Pirc. Cyber Crime and Espionage: Seven Commonalities
of Subversive Multivector Threats. Syngress, 2011.

[47] M. J. Gross. A Declaration of Cyber-War. [online] 2011. http: // www.

vanityfair. com/ culture/ features/ 2011/ 04/ stuxnet-201104 .

[48] A. Haeberlen, P. Kouznetsov, and P. Druschel. The Case for Byzantine
Fault Detection. Proceedings of the 2nd Conference on Hot Topics in System
Dependability,, 2, 2006.

[49] S. Hakimi and A. T. Amin. On the Design of Reliable Networks. Networks,
3:241–260, 1973.

139

[50] halflife. Bypassing Integrity Checking Systems. Phrack Magazine (article 9
of 17), 7, September 1997.

[51] G. Hoglund. Malware Commonly Hunts Down and Kills Anti-virus
Programs. [online] 2009. http: // fasthorizon. blogspot. com/ 2009/ 03/

malware-commonly-hunts-down-and-kills. html .

[52] A. Hrivnak. Host Based Intrusion Detection: An Overview of Tripwire and
Intruder Alert. SANS Institute InfoSec Reading Room, 2002.

[53] X. Huangang. Building a Secure System With LIDS. [online] 2010. http:

// www. lids. org/ document/ build_ lids-0. 2. html .

[54] Intel. Teraflops Research Chip. [online]. http: // www. intel. com/ content/

www/ us/ en/ research/ intel-labs-teraflops-research-chip. html .

[55] K. Jain and R. Sekar. A User Level Infrastructure for System Call Inter-
ception: A Platform for Intrusion Detection and Confinement. Network and
Distributed Systems Security Symposium (NDSS), 2000.

[56] D. G. Jr. Monopoly Considered Harmful. IEEE Security and Privacy, 1:14–
17, 2003.

[57] Z. Kalbarczyk, R. Iyer, S. Bagchi, and K. Whisnant. Chameleon: a Software
Infrastructure for Adaptive Fault Tolerance. IEEE Transactions on Parallel
and Distributed Systems, 10:560–579, 1999.

[58] Z. Kalbarczyk, R. K. Iyer, S. Bagchi, and K. Whisnant. Chameleon: A
Software Infrastructure for Adaptive Fault Tolerance. IEEE Transactions
on Parallel and Distributed Systems, 10:560–579, 1999.

[59] A. Kapoor and R. Mathur. Predicting the Future of Stealth Attacks. Virus
Bulletin Conference, 2011.

[60] E. J. Kartaltepe, J. A. Morales, S. Xu, and R. Sandhu. Social Network-
based Botnet Command-and-control: Emerging Threats and Countermea-
sures. Proceedings of the 8th International Conference on Applied Cryptog-
raphy and Network Security (ACNS), pages 511–528, 2010.

[61] S. M. Khan. Vulnerability Centric Exploitation Attempts in Open Source
Software Systems. International Journal of Computer Technology and Ap-
plications, 3, 2012.

[62] G. H. Kim and E. H. Spafford. The Design and Implementation of Tripwire:
a File System Integrity Checker. Proceedings of the Second ACM Conference
on Computer and Communications Security, pages 18–29, 1994.

140

[63] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and J. R.
Lorch. SubVirt: Implementing Malware With Virtual Machines. Proceedings
of the 2006 IEEE Symposium on Security and Privacy, 2006.

[64] K. J. Knappa and W. R. Boulton. Cyber-Warfare Threatens Corporations:
Expansion into Commercial Environments. Information Systems Manage-
ment, 23:76–87, 2006.

[65] C. Ko, T. Fraser, L. Badger, and D. Kilpatrick. Detecting and Countering
System Intrusions Using Software Wrappers. Proceedings of the 9th USENIX
Security Symposium, 2000.

[66] R. Kuhn and C. Johnson. Vulnerability Trends: Measuring Progress. IT
Professional, 12:51–53, 2010.

[67] I. T. Lab. The Blue Pill Project. [online]. http: // theinvisiblethings.

blogspot. com/ 2006/ 06/ introducing-blue-pill. html .

[68] M. Labs. Protecting Your Critical assets, Lessons Learned From ” Operation
Aurora”. Technical report, 2010.

[69] A. D. Lakhani. Deception Techniques Using Honeypots. MSc Thesis, ISG,
Royal Holloway, University of London, 2003.

[70] C. Lam. Hadoop in Action. Manning Publications Co., 2010.

[71] M. Laurean, C. Maziero, and E. Jamhour. Protecting Host-based Intru-
sion Detectors Through Virtual Machines. Computer Networks, 51:12751283,
2007.

[72] T. Lawless. St Michael: Detection of Kernel Level Rootkits. [online] 2009.
http: // sourceforge. net/ projects/ stjude .

[73] A. Lee and P.-M. Bureau. The Evolution of Malware. Virus Bulletin Con-
ference, pages 8–10, 2007.

[74] C. E. Leiserson and I. B. Mirman. How to Survive the Multicore Software
Revolution (or at Least Survive the Hype). Cilk Arts Inc., 2008.

[75] J. Lemon. Kqueue: A Generic and Scalable Event Notification Facility for
Freebsd. BSDCon, 2000.

[76] J. G. Levine, J. B. Grizzard, and H. L. Owen. Using Honeynets to Protect
Large Enterprise Networks. IEEE Security and Privacy, 2:73–75, 2004.

[77] S. Levitan and D. M. Chiarulli. Massively Parallel Processing: It’s Dj Vu all
Over Again. 46th ACM/IEEE Design Automation Conference (DAC), pages
534–538, 2009.

141

[78] X. Lin, M. Zhu, and R. Xu. A Framework for Quantifying Information
System Survivability. Third International Conference on Information Tech-
nology and Applications, 2:552–555, 2005.

[79] J.-C. Liou. When the Software Goes Beyond its Requirements – A Software
Security Perspective. Proceedings of the 2012 Ninth International Conference
on Information Technology - New Generations, pages 403–408, 2012.

[80] P. Liu, W. Zang, and M. Yu. Incentive-based Modeling and Inference of At-
tacker Intent, Objectives, and Strategies. ACM Transactions on Information
and System Security (TISSEC), 8, 2005.

[81] Y. Liu and K. Trivedi. A General Framework for Network Survivability
Quantification. Proceedings of 12th GI/ITG Conference on Measuring, Mod-
elling and Evaluation of Computer and Communication Systems together
with 3rd Polish-German Teletraffic Symposium, 2004.

[82] P. Loscocco and S. Smalley. Integrating Flexible Support for Security Policies
into the Linux Operating System. Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference, 2001.

[83] T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, C. Jalali, P. Neumann,
H. Javitz, A. Valdes, and T. Garvey. A Real-time Intrusion-detection Expert
System (IDES). SRI International, Computer Science Laboratory, 1992.

[84] M. Ramilli and M. Bishop. Multi-stage delivery of malware. 5th International
Conference on Malicious and Unwanted Software (MALWARE), pages 91–
97, 2010.

[85] Mandiant Corporation. APT1: Exposing One of China’s Cyber Espionage
Units. [online] 2013. http: // intelreport. mandiant. com .

[86] R. Masood, U. Um-e-Ghazia, and Z. Anwar. SWAM: Stuxnet Worm Analysis
in Metasploit. Frontiers of Information Technology (FIT), pages 142–147,
2011.

[87] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker:
An Execution Infrastructure for TCB Minimization. Proceedings of the ACM
European Conference on Computer Systems (EuroSys), 2008.

[88] W. L. McGill. Defensive Dissuasion in Security Risk Management. IEEE
International Conference on Systems, Man and Cybernetics (SMC), 2009.

[89] W. L. McGill, B. M. Ayyub, and M. Kaminskiy. Risk Analysis for Critical
Asset Protection. Blackwell Publishing Inc, 27:1265–1281, 2007.

142

[90] B. Meyer. Object-oriented software construction. Prentice Hall, 1988.

[91] B. Miller and R. Pozo. Scimark 2.0 Benchmark. [online] 2004. http: // math.
nist. gov/ scimark2 .

[92] J. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,
J. Eastep, and A. Agarwal. Graphite: A Distributed Parallel Simulator
for Multicores. 6th IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 1–12, 2010.

[93] S. Moitra and S. Konda. Simulation Model for Managing Survivability of
Networked Information Systems. Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pennsylvania, Technical Report CMU/SEI-
2000-TR-020, 2000, 2000.

[94] J. Molina and M. Cukier. Evaluating Attack Resiliency for Host Intrusion
Detection Systems. Journal of Information Assurance and Security, 4:1–9,
2009.

[95] T. Moscibroda and O. Mutlu. Memory Performance Attacks: Denial of
Memory Service in Multi-core Systems. Proceedings of 16th USENIX Security
Symposium, 18:1–18, 2007.

[96] K. Munro. Deconstructing Flame: the Limitations of Traditional Defences.
Computer Fraud and Security, pages 8–11, 2012.

[97] B. S. Murphy. Deceiving Adversary Network Scanning Efforts Using Host-
Based Deception. 2009.

[98] E. Nakashima and J. Pomfret. China Proves to be an Aggressive Foe
in Cyberspace. [online] 2009. http: // www. washingtonpost. com/ wp-dyn/

content/ article/ 2009/ 11/ 10/ AR2009111017588. html .

[99] V. Neagoe and M. Bishop. Inconsistency in Deception for Defense. Proceed-
ings of the Workshop on New Security Paradigms, 2007.

[100] Y. Nishikawa, M. Koibuchi, M. Yoshimi, A. Shitara, K. Miura, and
H. Amano. Performance Analysis of ClearSpeed’s CSX600 Interconnects.
IEEE International Symposium on Parallel and Distributed Processing with
Applications, pages 203–210, 2009.

[101] C. Null. New Malware Attack Laughs at Your Antivirus Software. [online]
2010. http: // old. news. yahoo. com/ s/ ytech_ wguy/ 20100510/ tc_ ytech_

wguy/ ytech_ wguy_ tc1985 , 2010.

143

[102] OPSWAT. Security Industry Market Share Analysis. [on-
line] 2012. http: // www. opswat. com/ sites/ default/ files/

OPSWAT-market-share-report-march-2012. pdf .

[103] I. V. Paputungan, A. Abdullah, and L. T. Jung. Critical Service Recovery
Model for System Survivability. Proceedings of the 9th WSEAS Inernational
Conference on Mathematical and Computational Methods in Science and En-
gineering, pages 246–252, 2007.

[104] J. Park and P. Chandramohan. Static vs. Dynamic Recovery Models for
Survivable Distributed Systems. Proceedings of the 37th Hawaii International
Conference on System Sciences , pages 5–8, 2004.

[105] R. R. Patel and C. S. Thaker. Zero-Day Attack Signatures Detection Us-
ing Honeypot. International Conference on Computer Communication and
Networks (CSI- COMNET), 2011.

[106] D. Patterson and H. J. Computer Organization and Design: The Hard-
ware/Software Interface. Morgan Kaufmann, 1994.

[107] B. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An Architecture
for Secure Active Monitoring Using Virtualization. IEEE Symposium on
Security and Privacy, pages 233–247, 2008.

[108] P.M.Curtis. Maintaining Mission Critical Systems in a 24/7 Environment.
John Wiley & Sons, Inc.,, 2007.

[109] Pongor , György. OMNeT: Objective Modular Network Testbed. Proceedings
of the International Workshop on Modeling, Analysis, and Simulation On
Computer and Telecommunication Systems, pages 323–326, 1993.

[110] G. Portokalidis and H. Bos. SweetBait: Zero-Hour Worm Detection and
Containment Using Low- and High-Interaction Honeypots. Science Direct,
51:1256–1274, 2007.

[111] D. Powell and R. S. (Editors). Conceptual Model and Architecture of MAF-
TIA. [online] 2003. MAFTA Project Deliverable D21, http: // www. maftia.
org .

[112] N. Provos and T. Holz. Virtual Honeypots: From Botnet Tracking to Intru-
sion Detection. Addison-Wesley, 2008.

[113] M. T. Qassrawi and H. Zhang. Deception Methodology in Virtual Honeypots.
Second International Conference on Networks Security Wireless Communi-
cations and Trusted Computing (NSWCTC), 2:462–467, 24–25, 2010.

144

[114] N. A. Quynh and Y. Takefuji. A Novel Approach for a File-system In-
tegrity Monitor Tool of Xen Virtual Machine. Proceedings of the 2nd ACM
Symposium on Information, Computer and Communications Security, pages
194–202, 2007.

[115] Rajkumar Buyya and Manzur Murshed. GridSim: A Toolkit for the Model-
ing and Simulation of Distributed Resource Management and Scheduling for
Grid Computing. Concurrency and Computation: Practice and Experience
(CCPE), 14:1175–1220, 2002.

[116] K. A. Repik. Defeating Adversary Network Intelligence Efforts with Active
Cyber Defense Techniques. Graduate School of Engineering and Manage-
ment, Air Force Institute of Technology, 2008.

[117] N. C. Rowe and H. S. Rothstein. Two Taxononmies of Deception for Attacks
on Information Systems. Journal of Information Warfare, 3:27–39, 2004.

[118] S. Roy, C. Ellis, S. Shiva, D. Dasgupta, V. Shandilya, and Q. Qishi. A survey
of game theory as applied to network security. 43rd Hawaii International
Conference on System Sciences (HICSS), pages 1–10, 2010.

[119] R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. van Doorn, J. L. Griffin, and
S. Berger. sHype: Secure Hypervisor Approach to Trusted Virtualized Sys-
tems. Research Report RC23511, IBM T.J. Watson Research Center, York-
town Heights, NY, USA, 2005.

[120] T. Sandler and H. E. Lapan. The Calculus of Dissent: An Analysis of
Terrorists’ Choice of Targets. 76:245–261, 1998.

[121] G. Schryen, M. Volkamer, S. Ries, and S. M. Habib. A Formal Approach
Towards Measuring Trust in Distributed Systems. Proceedings of the 2011
ACM Symposium on Applied Computing, 2011.

[122] H. Schwetman. CSIM: a C-based Process-oriented Simulation Language.
Proceedings of the 18th Conference on Winter Simulation, pages 387–396,
1986.

[123] M. Shahzad, M. Shafiq, and A. Liu. A Large Scale Exploratory Analysis of
Software Vulnerability Life Cycles. 34th International Conference on Soft-
ware Engineering (ICSE), pages 771–781, 2012.

[124] T. Shi, J. Zhao, X. Yin, and J. Wang. Research on Telecommunication
Switching System Survivability Based on Stochastic Petri Net. 3rd Interna-
tional Conference on Innovative Computing Information and Control, page
413, 2008.

145

[125] M. Smart, G. R. Malan, and F. Jahanian. Defeating TCP/IP Stack Finger-
printing. Proceedings of the 9th conference on USENIX Security Symposium,
9:17, 2000.

[126] A. Smith and N. Toppel. Case study: Using Security Awareness to Combat
the Advanced Persistent Threat. Thirteenth Colloquium for Information
Systems Security Education, 2009.

[127] P. Sousa, A. Bessani, M. Correia, N. Neves, and P. Verissimo. Resilient Intru-
sion Tolerance Through Proactive and Reactive Recovery. Proceedings of the
13th IEEE Pacific Rim International Symposium on Dependable Computing,
page 373380, 2007.

[128] L. Spitzner. Honeynet Project, Know Your Enemy: Defining Virtual Honey-
nets. [online] 2008. http: // www. honeynet. org/ papers/ virtual .

[129] A. Srivastava and J. Giffin. Recent Advances in Intrusion Detection. Lecture
Notes in Computer Science, Springer Berlin / Heidelberg, 5230:39–58, 2008.

[130] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the Reliability of
Commodity Operating Systems. ACM Transactions on Computer Systems
(TOCS), 23:77–110, 2005.

[131] Symantec. CoreGuard Antivirus. [online] 2009. http: // www. symantec. com/
security_ response/ writeup. jsp? docid= 2009-043009-2213-99 .

[132] Symantec. Trojan.FakeAV [online] 2007. http: // www. symantec. com/

security_ response/ writeup. jsp? docid= 2007-101013-3606-99 .

[133] C. Tankard. Advanced Persistent Threats and how to Monitor and Deter
Them. Network Security, pages 16–19, 2011.

[134] Trusted Computing Group, Incorporated. TCG Software Stack (TSS) Spec-
ification Version 1.2. 2007.

[135] S. Tzu. The Art of War (Translated by James Clavell). Dell Publishing, New
York, NY, 1983.

[136] A. Vasudeva, A. K. Sharma, and A. Kumar. Saksham: Customizable x86
Based Multi-Core Microprocessor Simulator. First International Confer-
ence on Computational Intelligence, Communication Systems and Networks,
pages 220–225, 2009.

[137] D. Wagner and P. Soto. Mimicry Attacks on Host-based Intrusion Detec-
tion Systems. Proceedings of the 9th ACM Conference on Computer and
Communications Security, 2002.

146

[138] J. Wang, K. Sun, and A. Stavrou. An Analysis of System Management Mode
(SMM)-based Integrity Checking Systems and Evasion Attacks. Depart of
Computer Science, George Mason University, 2011.

[139] J. Wang, H. Wang, and G. Zhao. ERAS - an Emergency Response Algorithm
for Survivability of Critical Services. First International Multi-Symposiums
on Computer and Computational Sciences, 2:97–100, 2006.

[140] S. J. Wang and A. Ghosh. HyperCheck:A Hardware-Assisted Integrity Mon-
itor. 13th International Symposium on Recent Advances in Intrusion Detec-
tion (RAID), 2010.

[141] D. Watson, M. Smart, G. R. Malan, and F. Jahanian. Protocol Scrubbing:
Network Security Through Transparent Flow Modification. IEEE/ACM
Transactions on Networking, 12:261–273, 2004.

[142] Websense Security Labs. Fake Input Method Editor(IME) Trojan. [online]
2010.

[143] J. Wensley. SIFT: Software Implemented Fault Tolerance. Proceedings of
Fall Joint Computer Conference (AFIPS), 41:243–253, 1972.

[144] R. Wichmann. Samhain: Distributed Host Monitoring. [online] 2006. http:

// www. la-samhna. de/ samhain .

[145] R. Wojtczuk and J. Rutkowska. Xen 0wing Trilogy. Black Hat Conference,
2008.

[146] J. Yuill, D. Denning, and F. Feer. Using Deception to Hide Things from Hack-
ers: Processes, Principles, and Techniques. Journal of Information Warfare,
pages 26–40, 2006.

[147] G. Zhao, H. Wang, and J. Wang. A Novel Quantitative Analysis Method for
Network Survivability. First International Multi-Symposiums on Computer
and Computational Sciences, 2:30–33, 2006.

[148] Y. Zuo and B. Panda. Unifying Strategies and Tactics: A Survivability
Framework for Countering Cyber Attacks. IEEE International Conference
on Intelligence and Security Informatics, pages 119–124, 2009.

