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Abstract

Replication and redundancy techniques rely on the as-
sumption that a majority of components are always safe and
voting is used to resolve any ambiguities. This assumption
may be unreasonable in the context of attacks and intru-
sions. An intruder could compromise any number of the
available copies of a service resulting in a false sense of
security. The kernel based approaches have proven to be
quite effective but they cause performance impacts if any
code changes are in the critical path. In this paper, we pro-
vide an alternate user space mechanism consisting of pro-
cess monitors by which such user space daemons can be
unambiguously monitored without causing serious perfor-
mance impacts. A framework that claims to provide such a
feature must itself be tamper-resistant to attacks. We the-
oretically analyze and compare some relevant schemes and
show their fallibility. We propose our own framework that is
based on some simple principles of graph theory and well-
founded concepts in topological fault tolerance, and show
that it can not only unambiguously detect any such attacks
on the services but is also very hard to subvert. We also
present some preliminary results as a proof of concept.

1. Introduction

With the advent of computer networks, user space ser-
vices have not only become plausible but also very preva-
lent. Both academic and other organization environments
alike use services of user space daemons such as inetd, sshd,
lpd, etc. More complicated services are provided by intru-
sion detection systems, network management systems, etc.
As these services become feature-rich, the code base be-
comes larger and hence these programs are likely to contain
software bugs some of which may be exploitable. Empir-
ical case studies in software engineering and experiences

with large projects [14], [9], [12], [11] suggest this.
Maintaining high availability of these services is criti-

cal for the smooth functioning of any organization relying
on those resources. These services can fail due to software
faults or attacks by intruders. Occurrence of faults can result
in the unpredictable failure of the system. Intrusions are of-
ten likened to faults and successful attacks, like faults, leave
the system in an inconsistent or unusable state.

Fault detection and tolerance techniques have goals such
as dependability, reliability, availability, safety and per-
formability which are similar to the goals of intrusion pre-
vention and detection, and other security measures. How-
ever, the correspondence is not always one to one. Given
the gamut of possibilities through which intrusions or ma-
licious behavior can manifest, the decision-making is very
diffuse and hard, unlike detecting atomic faults where the
problem is less non-deterministic. Also, faults are generally
more random and occur independent of each other, whereas
an intruder can target specific parts of a system deliberately
in order to disable it as a whole.

Fault tolerance techniques profess redundancy and repli-
cation to maintain high availability with the assumption that
even if a small minority of them fail, the majority will con-
tinue to render the services required of them. Byzantine
agreement [23] and voting protocols [36], [19], [4] allow
for consistent outputs in spite of failures in some replicated
components. However, from the security point of view, it is
safe to assume that if an intruder can compromise a partic-
ular copy of a service, he can compromise other copies of it
as well with relative ease. This voids the assumption that a
majority of these copies will be safe and that the detection
of any such compromises will be unambiguous. From an
intruder’s point of view, taking over a service simply means
disabling a majority of its copies. Although not trivial, it
can still be done with careful reconnaissance and analysis
of weaknesses in the service components.

Fault tolerance is the attribute that enables a system to



continue the correct performance of its specified tasks in the
presence of hardware or software faults [31], [21]. It allows
greater availability and reliability of the particular system
component. This is true even in the context of intrusions.
But in order to respond to such events, one must provide a
mechanism to unambiguously detect these failures.

In this paper, we first discuss the pros and cons of build-
ing such detection systems at various levels of the operat-
ing system, and the related work. Then, we evolve some
theoretical machinery to analyze the various relevant tech-
niques. We propose a framework using some simple con-
cepts in graph theory and show that it has the capability of
detecting failures of services unambiguously and also mak-
ing it very hard for an intruder to subvert it. While known
solutions popularly implement this functionality inside the
kernel, the crux of this paper is to provide an alternate so-
lution by unambiguously detecting these failures in user
space. Although, the focus of this paper is more on failures
due to intrusions and attacks, this solution works equally
well with inherent software faults and failures.

1.1. Paper Organization

Section 2 gives a more elaborate description of the re-
lated work done by peers. Section 3 explains the theoretical
aspects of the framework and compares it with the current
techniques. Section 4 analyzes the various configurations.
Section 5 discusses the implementation issues. Preliminary
experiments and results are presented in Section 6. The pa-
per is concluded in Sections 7 and 8 by a discussion and
overview of our future work.

2. Background and Relevant Work

2.1. Fault Tolerance Techniques

A software service or component may fail due to differ-
ent reasons. In order to expedite proper response, it is very
important to ascertain the fact that the component has in-
deed failed. Detection of failures is a decision-making prob-
lem with varying degrees of hardness depending on what
failure model is considered. For our work we take into ac-
count these models:

� Inherent software failures

� Failures due to attacks

Software errors and bugs inevitably creep into large
projects due to the human factor. Even though these pro-
grams may be tested extensively, some of these software
bugs may not be detected. Total elimination of these errors

requires program verification that is often not computation-
ally feasible. Consequently, since it is not possible to elimi-
nate all the faults, a workaround is to achieve a high degree
of fault tolerance.

Fault tolerant software architectures [5], [16], [22] have
a common theme of redundant and replicated software enti-
ties or components that communicate with each other using
some protocol to arrive at a consistent and correct outcome.
These failure models assume failures that occur indepen-
dent of some system activity.

Networks are often susceptible to outages because fail-
ure of components or nodes has resulted in some path or
circuit becoming open or incomplete. The problem of de-
veloping fault-tolerant networks has been well-studied us-
ing topologies and graph theory [32], [6] [30]. Although,
we use concepts in graph theory to model the problem, our
effort attempts to provide a framework to ensure high avail-
ability of processes and services (in the context of intrusions
and attacks) on a single host rather than across nodes on a
network.

2.2. Intrusion Detection Techniques

The various facets central to providing protection to ser-
vices are prevention, preemption, detection, deterrence and
mitigation. Being a decision-making problem (often non-
binary), intrusion detection is very hard to solve. Since
the seminal work by Denning [13], significant efforts have
been invested in devising new and effective techniques to
perform intrusion prevention and detection. [34] presents a
collection of about hundred such systems.

Even though the trusted computing base (TCB) of a
component or process should be as minimal as possible [2],
it is rarely the case [25]. A user space process relies on
the operating system and if the kernel becomes unstable
then the correct behavior of the process is highly suspect.
However, kernels are typically well tested and secure from
tampering making kernel space implementations a natural
choice for achieving tamper-resistance. It then becomes an
engineering tradeoff between safety of the intrusion detec-
tion itself and possible performance penalties of kernel level
implementations. The various pros and cons are evaluated
as follows.

� Completely in the kernel space

Many intrusion detection system implementations fall
into this category, e.g., [35]. When designing an in-
trusion detection system, the safety of the system be-
comes a critical question. Since, the processor priv-
ilege levels prevent user space programs to tamper
with anything inside the kernel, it becomes an obvi-
ous choice to implement the system inside the kernel.
Also, if some event immediately forces a user space



program to be woken up, then the context switches can
be very expensive. On the other hand, there are some
pitfalls too. A bad implementation inside the kernel is
equally serious if not more. If the code is added to the
critical paths of the kernel, then the performance im-
pact could be very high. The Linux Security Modules
(LSM) [1] framework provides a diffuse mechanism
to perform checks at various places inside the kernel
as compared to a more central system call interception
based checks [35], which could be expensive.

� Completely in the user space

If kernel implementation can be avoided, then it is best
done outside the kernel in the user space. Some tools
such as DWatch [15], [17], etc., are user space pro-
grams that watch other daemon programs. The advan-
tage of implementing the detection system completely
in the user space [20] is that there is very little overall
performance degradation. But, completely exposing
such a critical process to the elements does not read
well with information assurance analysts. Therefore,
the safety of the intrusion detection system becomes
a very serious issue because channels of direct access
to the user space components exist and the safety of
the system depends on how soundly it has been im-
plemented and good access restrictions. The task of
protecting such a component relies on the operating
system access control mechanisms [29].

� A hybrid approach

The third approach seeks a middle ground [18], [26]
straddling the both extremes. User space configuration
and notification mechanisms are typically built into the
intrusion detection systems for human interaction, e.g.,
[26] has a client hypervisor configuration mechanism
in user space. Even though the intrusion detection sys-
tem is securely implemented, compromising the noti-
fication mechanism could result in alarms not being
raised even though an intrusion has occurred.

There are no rigid guidelines on how a detection sys-
tem should be implemented. This is due to the complex-
ity and variety of the problems. It has also been realized
that no single technique is sufficient and a multitude of se-
curity systems have to be used in tandem to increase the
probability of detection. Such a configuration is an appli-
cation of the concept of heterogeneous replication or N-
version programming [10], [7] to improve detection cover-
age. However, replication has the undesirable side effects of
increased overheads and additional complexity of decision-
making.

2.3. Summary

It is clear that protecting services using intrusion detec-
tion systems is not adequate since the IDS itself may come
under attack and fail, leaving the system vulnerable. It
therefore becomes a question of “who watches the protec-
tor?”, “is it always necessary to deploy a kernel space IDS
to protect user space services?” and “are fault-tolerant ar-
chitectures capable of combating attacks?”.

We show that given a set of process monitors in various
commonly known fault-tolerant configurations, it is possi-
ble to disable them without being detected. The focus of
our work is to provide a tamper-resistant framework to de-
tect the failure of any such user space components with a
very high accuracy. The following sections deal with the
development and implementation of such a framework.

3. Theoretical Framework

In this section, we state some assumptions and terms,
and present a theoretical analysis based on them.

3.1. Basic Assumptions

� A host

A host consists of resources and an operating system
that mediates their access. There may be some system
level access controls such as file permissions in place
but they are static. The framework that we propose
resides completely on a host.

� A service

A service is a user space component, which could be
any program or parts of it that are implemented in the
user space. For example, it could be a daemon, an in-
trusion detection system component, etc. The goal is
to maintain high availability of this component and to
achieve this, it is essential to detect its failure unam-
biguously and respond.

� A protective framework

A protective framework monitors and protects a ser-
vice or a user space component. It consists of one
or more active process monitors interacting with each
other in some configuration and monitor some user
space component. This framework is completely con-
structed in the user space.

� A failure event due to intrusions

In our analysis, we assume that no software component
is 100% secure. Any such component can be success-
fully compromised with some probability, viz., P � X �



but it is not important how this probability is consti-
tuted. In general, calculating intrusion probabilities is
very hard.

� Intruder’s skills
It is only a matter of time before some intruder learns
how some system functions, and discovers its weak-
ness and vulnerabilities. We assume that the intruder
has full knowledge of the system to begin with.

3.2. Additional Terms

We quantify tamper resistant properties with the follow-
ing metrics.

3.2.1 Probabilities of Subversion

If a protective framework consists of various components
each with a probability pi of being compromised, then we
can speak of the following probabilities of subversion:

� Total Probability of Subversion
The total probability of subversion is defined as the
probability with which the entire framework consisting
of various components can be disabled. Ideally, given
n such components each with an individual probability
of subversion equal to pi, the total probability of sub-
version would be ∏n

i � 0 pi. But, this is the ideal case. A
framework design may be such that disabling a part of
the system may bring down the whole system.

� Per-Stage Probability of Subversion
The per-stage probability of subversion is defined as
the probability with which a subset of all components
constituting the framework can be subverted at any in-
stant of time without raising any signals of suspicion
or intrusion.

In a general configuration where there can be various
components each with some probability of subversion,
the per-stage probability of subversion is not necessar-
ily uniform. Due to design flaws in a configuration, it
may become possible to sequentially disable the com-
ponents resulting in the subversion of the entire sys-
tem. Some parts of the framework may offer greater
resistance than others. The smaller the per-stage prob-
ability of subversion, the harder it is to subvert that
particular component or module. We can define a min-
imum per-stage probability of subversion as the mini-
mum of the per-stage probabilities of subversion of all
components or modules constituting the framework.
This quantifies the maximum resistance the framework
can put up at any given time. For example, let the pro-
tective framework consist of two components A and B,

and let it be possible that they can be disabled in a se-
quence, A followed by B. So, the per-stage probability
of subversion of this framework would be pA at some
instant of time t0 followed by pB at some time t1. If
pA � pB, then pA is the minimum per-stage probabil-
ity of subversion.

Additionally, we can also define a maximum per-stage
probability of subversion as the maximum of all per-
stage probabilities of subversion in a group of subsets
of components. This quantifies the fact that the secu-
rity of a system is only as strong as its weakest link.

If the configuration of the protective framework is such
that it is possible to disable the whole protective frame-
work by disabling its components in some sequence,
then the total probability of subversion becomes less
relevant. The per-stage probability of subversion over-
shadows the total probability of subversion because
even if the latter is very low, the effective probabil-
ity of subversion is the former. Consequently, it is de-
sirable to maintain both of them as low as possible.
For the purposes of completeness of analysis, we men-
tion both the probability aspects although the per-stage
probability of subversion may be more significant that
the total probability of subversion.

� Degree of Incidence
When some entity or process is monitored by d other
entities, then that entity is said to have a degree of in-
cidence equal to d (Fig. 1(c)). It is desirable to keep
the degree of incidence of a process as high as possi-
ble since it would become necessary to disable all the
processes that are monitoring that particular process to
successfully subvert the system.

3.2.2 Framework Overhead

Any process monitor that is introduced in the framework
performs some specific task such as monitoring and inter-
acts with other entities. Therefore, its operations incur some
overhead. This overhead is due to two components: the
overhead when the process is running in isolation and the
overhead due to the interaction with other entities or pro-
cesses. Scalability of a system is determined by the over-
heads its components generate when they grow in number.
Hence it is important to take this factor into account for per-
formance analysis.

� Overhead when a process runs in isolation
When a process is initiated, it causes some overhead in
terms of memory and processor usage. It is represented
as a function δ (Fig. 1(a)). Since, the process typically
runs in an information processing loop, this overhead
is more or less a constant per process.
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Figure 1. (a) Overhead δ due to isolated exe-
cution (b) Overhead θ of monitoring another
process (c) Degree of incidence d for a pro-
cess

� Overhead when a process monitors another process
When a process monitors another process, it incurs an
overhead due to information processing. Let the func-
tion that describes it be θ (Fig. 1(b)). This overhead
depends on the number of processes that it interacts
with.

3.3. Mutual Trust

Problems requiring protocols of communication are hard
to solve since any entity or process can emanate false data
and “lie” about the information that it sends. Hence, we
consider models that do not require any communication
among processes or in other words, there is no mutual trust
between them. Any given process monitors a subset of its
neighbors but does not participate in any direct communi-
cation with them. Actual monitoring and information gath-
ering occurs indirectly via mechanisms that the operating
system provides.

3.4. Problem Transformation

With the above conceptual machinery, one can transform
the framework design problem into a graph topology prob-
lem. The transformation proceeds as follows:

1. Each process becomes a node. Associated with each
node is the overhead due to isolated execution.

2. If a process Ei monitors another process E j, then there
is a directed edge from node i to node j. This edge
exists as long as the process that is monitoring is not
disabled. Associated with this edge is the overhead of
monitoring.

3. The degree of incidence is the number of incoming
edges to a node. Note that there are a few rules by
which edges can be formed. An edge from a process to

itself (see Fig. 2(a)) is useless since disabling the pro-
cess disables this edge also. Having multiple redun-
dant edges from one process to another process (see
Fig. 2(b)) is also undesirable since it only increases
overhead without increasing the overall monitoring ca-
pability.

Process Process 1 Process 2

(a) (b)

Figure 2. Undesirable edge formations (a)
self-loop (b) redundant edges between the
pair of processes

The goal is to minimize the total and per-stage proba-
bilities of subversion while keeping the overhead as low as
possible. Since no process trusts the other and there is no di-
rect communication, inter process communication does not
exist and need not be represented.

4. Topological Configurations

In this section, we describe and analyze the various rel-
evant techniques and finally present the most optimum so-
lution to the problem. Each configuration is composed of a
few processes in some topological arrangement. We make
some claims 1 and justify them subjectively.

4.1. Simple Replication

Claim 1 The simple replication scheme has the weakest
tamper resistant properties.

One common technique in fault tolerance domain to in-
crease availability is by service replication. Multiple copies
of a process can be executed on a host to increase availabil-
ity per host. These n number of processes directly monitor
the user space component E (ref. Fig. 3(a)).

This may initially appear as a good solution but it has
some serious drawbacks. It is possible for an attacker to
disable each of the processes in the protective framework
with relative ease. There is hardly any self-protective capa-
bility.

4.2. Layered Hierarchy

Claim 2 The layered hierarchy scheme is only marginally
better than the simple replication scheme.

1Complete mathematical proofs to these claims are omitted
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Multiple wrappers can be defined around a user space
component to monitor it. [28] speaks of an “onion peel”
model to provide stronger deterrence.

Let each layer be composed of one process and let there
be n such layers. Each layer monitors its lower layer and
the lowest layer directly monitors the user space component
E. This forms a layered hierarchy of processes (Fig. 3(b)).
This configuration is a little better in terms of self-protective
capability since an attacker has to detect the sequence and
disable the processes in that strict order.

4.3. Circulant Digraph

In this section we show that the most optimum configu-
ration is that of a circulant digraph.

A circulant graph is defined as a graph Cil � n � of n ver-
tices in which the ith vertex is adjacent to the � i � j � th and
the � i � j � th vertices for each vertex j in the list l. For ex-
ample, Ci1 	 2 	 3 	 
 
 
 	 � n � 2  � n � is a complete graph and Ci1 � n � is a
cyclic graph.

Relaxing the properties of symmetry and adding the re-
quirement of directed edges, it can be equivalently defined
as a graph Cil � n � of n vertices in which the ith vertex has a
directed edge to the � i � j � th vertex for each j in l. Then,
Ci1 � 2 � 3 � � � ��� � n � 1 � is a complete digraph. In general, a circu-
lant digraph of in-degree or out-degree d can be defined as
a graph Ci1 � 2 � 3 � � � ��� d , where 1 � d ��� n � 1 � .

In this scheme, the processes are arranged in a circulant
digraph topology with some degree of incidence d. Figure
4 shows a framework where processes are arranged in a cir-
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Figure 4. A circulant digraph configuration
with n � 8 and d � 3

culant digraph configuration with n � 8 and d � 3. At least
one process in the group has an additional responsibility of
monitoring the user space component. This configuration
has a strong self-protective capability.

Claim 3 A circulant digraph configuration provides the
strongest (in the theoretical context) tamper resistance
properties.

It is not possible to subvert any subset of processes with-
out alerting the processes monitoring them. If the entire
framework has to be subverted, all the processes have to be
subverted at exactly the same time.

Consider the trivial case when the degree of incidence
d � 1. Disabling the entire framework requires subversion
of every process and also its parent before it can respond to
that event. There is a definite sequence in which this can be
done and it is some circular permutation of the processes.
Therefore, the intruder has to detect the correct circular per-
mutation and disable the processes in that order. But in or-
der to do so, he must make a correct guess from a large
number2 of circular permutations.

As such, a successful attack requires precise synchro-
nization, and when the degree of incidence d � 1, the situa-
tion is further complicated, since subversion of any process
alerts multiple processes.

5. Implementation Issues

The circulant digraph framework requires the implemen-
tation of a closed loop, where events or messages are deliv-
ered in real time. Operating systems such as FreeBSD and

2Number of circular permutations is of exponential order



Linux support direct interaction between processes through
the ptrace(2) family of system calls [20] or the proc file sys-
tem (which truss uses). In either approach it is possible for a
process to trace the execution of another process. However,
taking control of the traced process on each event makes it
undesirable to form such a closed loop (see Fig. 5(a)). This
is due to the fact that there is a possibility of an exponential
cascade of events and deadlocks [3] Therefore, design deci-
sions occlude such closed loop relationships between traced
processes.

Process 1 Process 2 kevent() kevent()

kevent()
Process 1

Process 2

Process 3

if ptrace()
in this direction?

in this direction
then ptrace() not allowed

(a) (b)

Figure 5. Monitoring process events using
ptrace(2) and kevent(2) (a) ptrace(2) doesn’t al-
low a loop (b) kevent(2) being asynchronous
allows such loops

5.1. Kernel Event Subsystem

Both the approaches discussed above result execution
and control flow in a lock-step manner. Since each pro-
cess monitor in our framework executes in a tight sense-
decide-act loop, it calls for a more asynchronous event no-
tification mechanism. Currently, the operating system with
such a support and the convenience of experimentation is
FreeBSD. The event notification mechanism on FreeBSD
is called kqueue [24] . It is a highly scalable and generic
event notification mechanism proposed as a replacement for
poll(2) and select(2). Web servers have been reported to
achieve significant performance gains [24] when using the
kqueue subsystem for socket events. However, it provides
only a limited set of events that can be monitored such as
exit(2), fork(2) and the exec family.

When a process wants to listen to the events generated by
another process, it first creates a kevent handle and then reg-
isters a listener for the target process. It then enters a loop,
waiting for events to occur. The kqueue subsystem allows
multiple processes to register listeners for the same event.
The edges discussed in the earlier sections manifest as the
listeners registered for some specific events. Since the event
delivery is asynchronous unlike ptrace(2), it is possible to
define loops among the process monitors (see Fig.5(b)).

Process level behavior can be captured by monitoring the
system calls the process makes [20], [35]. Other relevant
ways of run time verification of process behavior are proof
carrying code [27] and model carrying code [33]. Hence,
run time monitoring of processes becomes an instance of
the problem for which these techniques are proposed as
solutions. It must be noted that the support at this level
to monitor a larger set of events is not currently present
in FreeBSD. Since kqueue doesn’t support every possible
event at the process level, we have to patch the operating
system to provide the additional functionality such as re-
trieving arguments to the exec(2) family of system calls, etc.

6. Experiments and Results

Since the simple replication and layered hierarchy
schemes are flawed from the security point of view, we do
not consider them for empirical evaluations. On the other
hand, the circulant digraph has been theoretically proven to
be very good in terms of protective capabilities and only
this configuration is considered and verified empirically for
feasibility and strength of the approach.

6.1. Experimental Setup

The simulations were conducted on a uniprocessor Pen-
tium III 450MHz PC with 64 MB RAM running FreeBSD
4.5. This version of FreeBSD has adequate support for pre-
liminary implementation through the kqueue subsystem to
demonstrate the strength of the approach. However, a com-
plete implementation would require monitoring of a larger
set of events than it currently supports.

The target of the monitoring framework is inetd daemon.
This is a generic service that spawns off other appropriate
daemons to handle network connections. Each active en-
tity or node of this monitoring framework is implemented
as a process and there is an edge in the topology graph if a
process monitors another process. Monitoring multiple pro-
cesses at the same time, i.e., when the degree of incidence
is greater than one is made possible by multi-threading.
The attacker is given all information regarding the process
monitors and their relationships. In reality, this information
about the edges is actually hard to obtain. This setup satis-
fies all the basic assumptions and the developed theoretical
framework.

6.2. Attack Scenarios

Current limitations of the kqueue subsystem allow us to
test the framework against crash attacks. An attacker can
cause any number of the process monitors to crash. This
is made possible by implementing the process monitors in
such a way that they do not handle any signals and they can



each be killed via the kill command. Each process mon-
itor registers a handler for the exit(2) system call. An in-
truder is successful if he can cause all the monitors to crash
before one of them can raise a signal.

When a process receives an event that it is listening for, it
simply prints a message to the screen and this is perceived
as an intrusion signal. This configuration is tested under
light and heavy loads. It is still theoretically possible to
subvert this configuration if the intruder can chance upon
the right sequence of processes. This is an instance of a time
of check to time of use (TOCTOU) attack [8]. While the re-
sponses may be quick under light load, the window between
the event and response widens under high load. However,
most TOCTOU attacks are successful only when one such
window exists. In our case, there are multiple such win-
dows and all of them have to be predicted and exploited.
This makes the entire exercise very hard for an intruder.
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Figure 6. A plot of number of responses (r)
against the degree of incidence (d) for vari-
ous values of number of processes (n) under
heavy system load

6.3. Recognizing Attacks

The plot of number of intrusion signals with respect to
the degree of incidence for each configuration under heavy
system load is given in Fig. 6. The load was increased from
0 to 20 (approximately) processes per minute. The graph
characteristics under light system load are very similar if
not the same.

We have plotted only the minimum of responses seen
when trying various sequences of attacks. Averages may
have been higher but they do not correctly reflect the nature
of success or failure of attacks, hence we did not choose
to plot the averages. In the weakest possible configuration,
i.e., with degree of incidence equal to 1, there was consis-

tently one response regardless of the number of processes.
At least in our experiments, it was not possible to success-
fully subvert this setup. While theoretical analysis showed
that this configuration fails if all the processes are subverted
at the same time, implementation of the operating system
and the kernel event mechanism prevents such parallelism
due to the strict serial execution in critical sections of the
operating system code, e.g., locking and unlocking of the
run queues, kernel event queues, etc. This is true even in
multiprocessor environments.

Empirical results suggest that the number of intrusion
signals is more closely tied to the degree of incidence than
the number of processes in the setup. For the same degree,
when the number of processes increases, the number of re-
sponses remains the same. But the number of responses
increase when the degree of incidence increases.

6.4. System Overhead

The memory footprint of each process monitor was only
1.4 MB. The kqueue subsystem was introduced to counter
the scalability problems due to poll(2) and select(2). All the
processes are in sleep state until an event occurs and they
are woken up. Even with a large number of processes, there
is hardly an increase in processor usage. This just shows
that the overhead of monitoring is negligible.

6.5. Summary

Initial experiments show as a proof of concept that not
only is this framework very strong in terms of tamper resis-
tance but also incurs very small overheads making it highly
scalable.

7. Discussion

This paper shows that currently known techniques in the
fault tolerance domain are not sufficient to solve the prob-
lem of ensuring high availability of a user space service
because of the inherent differences between faults and at-
tacks. By formulating the problem differently, we are able
to devise an alternate scheme to kernel based protection.
This framework theoretically provides good tamper resis-
tance against attackers. The preliminary implementation
and results show the feasibility of such a framework.

This monitoring framework has certain restrictions and
limitations. The processes in the framework rely on the op-
erating system to provide a secure event notification mech-
anism. Consequently, this framework can be deployed only
when it is known that the system it is being installed on,
has not been compromised. Also, current operating sys-
tems provide only limited support for the framework’s im-
plementation in terms of asynchronous event monitoring.



The strength of this framework lies in the fact that none
of the processes require any direct communication since
they do not trust each other and there is no single hierarchy
(every process monitor monitors some process and it by it-
self is always being monitored). It is not possible to subvert
a subset of them and succeed in an attack; all of them have
to be disabled and at exactly the same time. Hence, merely
knowing the vulnerabilities in implementation of the frame-
work is not adequate.

It must be noted that while it was not possible to sub-
vert the framework during our experiments, this should not
be misread as a tamper-proof (instead of tamper-resistant)
property. It is still theoretically possible to subvert it, only
that it is non-trivially hard.

We are currently investigating the feasibility of fully im-
plementing this framework and conjecture that it may be
possible to provide this generic wrapper around most dae-
mons to make them tamper-resistant. While the focus of the
protective framework was to safeguard a user space service,
the concept is applicable and can be extended to those do-
mains which use sensors and monitors and their safety be-
comes an important issue. In other words, it addresses the
question of who watches the watcher, wherever this frame-
work is relevant.

8. Future Work

The most outstanding future goals of this ongoing
project are as follows:

� Construct a more complete kernel event subsystem by
supplementing the existing kqueue subsystem.

� Provide sufficient primitives to construct complex fil-
ters.

� Proper criteria to decide parameters such as number of
processes, etc., on a per system basis.

� Testing and deployment on different user space ser-
vices.
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