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Abstract — Concernsaboutboth securityand fault-tolerance
have had an importantimpacton the designand useof dis-

tributed information systemsin the past. As suchsystems
becomeamoreprevalent,aswell asmorepenasie,thesecon-

cernswill becomeeven more immediatelyrelevant. From

nationaldefenseto commercialintereststo privatecitizens,
distributedsystemsaremakingan ever greatetimpacton our

lives.

We will focushereon integratingsecurityandfault-tolerance
into one,general-purposprotocolfor securedistributedvot-
ing. Distributedvoting is a well-known fault-toleranceech-
nique[4]. For the mostpart, however, securityhadnot been
aconcernin systemghatusedvoting. More recently several
protocolshave beenproposedio shoreup this lack. These
protocols,however, have limitations which make them par
ticularly unsuitableor mary aerospacapplicationspecause
thoseapplicationsrequirevery flexible voting schemege.g.,
voting amongreal-world sensodata).

We presenta new, moregeneralvoting protocolthatreduces
the vulnerability of the voting processto both attacksand
faults. The algorithmis contrastedwith the traditional 2-
phasecommit protocolstypically usedin distributed voting
andwith other proposedsecurevoting schemes.Our algo-
rithm is applicableto exact andinexact voting in networks
where atomic broadcastand predeterminednessagalelays
arepresentsuchaslocal areanetworks. For wide areanet-
works without thesepropertieswe describeyet anotherap-
proachthat satisfiesour goalsof obtainingsecurityandfault
tolerancedor abroadrangeof aerospacaformationsystems.
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1. INTRODUCTION

As evidencedby recentnews stories,the aerospaceealmis

not immunefrom the concernsof securityaswell asfault-

tolerance.Although a recenthackingincidentat NASA was
deemednot to have endangeredh shuttle mission ([1]), at

thevery least,it calls attentionto the potentialthreatsposed
to the aerospaceommunity Networking on-boardsystems
with thosethatareground-basedaisesthe concernof open-
ing avenuedor highly detrimentalattacks.To betruly com-

prehensre, dependabl@erospacénformation systemsmust
toleratefaultsthatmanifestthemselesasa resultof random
phenomenar deliberatanterference.

Historically, aerospacenissionshave heenamongthefirst to
usefaulttolerance Early visionarieq2, 3] of the Apollo Pro-
gramforesav usingredundang to combatfailure: by having
asecondspacecrafaccompan acrew to themoon'ssurface,
their returnwould be ensuredshouldtheir primary landing
vehicle be damaged.Redundang at this level of granular
ity never cameaboutbecauselurabilityimprovementsn the
eventualdesignof the Lunar Module reducedhe risk to the
crew of having only oneof themonthe moon.

Leapingto the presentve seethatspecialdesigntechniques
have beenrequired for the computersused in aerospace



missions. The Self-Testing And Repairing (STAR) Com-
puter (1971), the Fault-TolerantMultiprocessor(1975), the
Fault-TolerantSpaceborn€ompute(FTSC)(1976),andthe
Multi-MicroprocessoFlight ControlSystem(1981)areprac-
tical computersystemshatperformcritical missionfunctions
andhave beerspecificallydesignedo ensuremissionsuccess
[4]. Redundang of selectedcomputercomponentswithin
thesedesignglaysanimportantrole in reducingtherisk as-
sociatedwith relying uponary single componento operate
flawlessly In oneof the mosthighly visible applicationsof
fault-tolerantcomputing,the SpaceShuttlemakesuseof re-
dundang atthelevel of general-purposeomputergo ensure
thatflight-critical operationsuchasascentreentry andland-
ing areperformedn spiteof thefailure of any onecomputer

Distributed computersystemsasan automaticconsequence
of their architecture canbe configuredfor concurrentoper
ationin additionto offering resilienceagainsthardwarefail-
ure [6]. This attractive dual-propertywas also obsened by
the designersf the SpaceShuttle computerin their vision
of on-boardsystemdfor advancedSpaceShuttlesand Space
Stationg5].

Distributed systemsare importantnot only to on-boardsys-
tems, but also to ground basedsystems. Tracking sys-
temsplacedaroundthe globe are inherently physically dis-
tributed;yetthey haveto belinkedto commandenters Also,
aerospacenissionsmay concernmultiple ground-baseden-
ters that must coordinatetheir separateactiities through
communicationnetworks. Connectity to this degreecre-
atesdistributed systemf distributed systems.Dependeng
amongthesesystems’componentsequiresfault-tolerantde-
signto combatthelik elihoodof missionfailuredueto system
componenftailure.

Thefocusof this paperis ondistributedvoting, awell-known
fault-tolerancetechniquein which multiple votersindepen-
dently computetheir resultsand vote to determinea major
ity; the majority resultis then committed (sentto the user).
Much work hasbeendonein this area,asdescribedn the
next sectionon pastwork. Our contrikution is a radical ap-
proach,in which the normal order of eventsis reversed—
ary arbitraryvoter caninitiate a committal, but the resultis
bufferedlong enoughfor the othervotersto checkthe result
andvote on whetherthey shouldrecommita new resultif the
first wasincorrect. This processs repeatedintil a majority
of votersagree andthefinal resultis sentto theuser These-
curity implicationsof this simple changeare profound. The
next sectionreviews the basicconceptf distributedvoting,
and presentsseveral algorithmsthat have beenproposedn
the past.Thenour new proposalthetimed-tuffer distributed
votingalgorithm(TB-DVA) is describecandanalyzedn sec-
tionsthreeandfour. Sectionfive presentssomepreliminary
work on anotheralgorithmwhich operatesunderlooserre-
strictionsthanthe TB-DVA, andhencecanbeevenmoregen-

erally applied.

2. PAST WORK

Replicationandmajority voting arethecorventionalmethods
for achieving fault tolerancein distributed systems.Decen-
tralized voting, in which the replicatedvotersindependently
determinghe majority ratherthanrelying on a centralsener
totally theresults hashecomehestratay of choice,andhas
hadanumberof incarnationg7, 8, 9]. Most of thesesystems
have usedthe 2-phase commit protocol in orderto implement
thevoting schemeln this protocol,the replicatedvotersfirst
exchangeheir votesandindependentlyleterminghe major
ity result. Oncea final resulthasbeencalculated oneof the
votersis arbitrarily chosernto committhatresult(i.e. to pass
the resulton to the user). This methodis widely adwocated
in designingrault-toleranopendistributedsystemg10]. The
problemwith thistypeof protocolliesin thecommittalphase.
If the voter chosento commit the resultfails right beforeor
during the committal,the userwill receve a badresult. The
probabilityof thishappenings slight,andusuallyfallswithin
acceptableisk parameters.However, if securityaswell as
fault-tolerancas to be taken into accountthenthe problem
is greatlyexacerbatedlf a hostileattacler hastaken control
of the committing voter, thenthe attacler can control what
resultstheuserseesregardlesf the othervoters’results.

Therehave beenseveral protocolsproposedhat attemptto
overcomethis problem.For example thealgorithmpresented
in [11] worksasfollows (in avery simplified presentation):

1. A clientsendsarequesto oneof thevoters.
2. Thevotermulti-caststherequesto theothervoters.

3. The votersexecutethe requestand senda reply to the
client.

4. Theclientwaitsfor f + 1 repliesfrom differentvoters
with the sameresult,where f is the numberof faultsto
betoleratedthisis thefinal result.

While this strateyy obviously is not subjectto the sameprob-
lem asthe 2-phasecommit protocol,sincein essenceill the
voterscommit a result, it doesrequiresubstantiacomputa-
tion onthepartof theclient, which mustcollectandcompare
all therepliesuntil f + 1 have beencollectedthatcarry the
sameresult. As aresult,this systemdoesnot scalevery well.

Anotherprotocolthatattemptgo alleviatethis problemis de-
scribedin [12]. It makesuseof a (k,n)-threshold signature



scheme. Informally, this describes schemewhereina public
key is generatedalongwith n sharesof the corresponding
privatekey, eachof which canbe usedto producea partialre-
sultonasignedmessagen. Any k of thesepartialresultscan
thenbeusedto reconstructhewhole of m. In this particular
protocol,n is the numberof voters,andk is setasonemore
thanthe numberof toleratedfaults. Eachvotersignsits result
with its particularshareof theprivatekey andbroadcastg to
the othervoters. The voterthensortsthroughthe broadcast
messagefor k partialresultswhich agreewith its own result
and can be combinedinto the whole messagen, wherem
would be the signedfinal result. The voterthensendsm to
the client, which acceptghefirst suchvalid m sent. Again,
this protocolis notsubjectto theerrorinherentin the2-phase
commitprotocol,andit is alsonotcomputationallyexpensve
for the client. However, it achiesesthis by shifting the com-
putationalburdento the voters. As a result, this systemalso
doesnotscaleverywell.

Otherprotocolshave alsobeenproposedgachwith its own
adwantagesanddisadwantageg$13, 14, 15, 16]. However, all
of theabove schemedor securingthe distributedvoting pro-
cessmake the commonassumptiorwhich underliesthe idea
of state-machineeplication—two differentvoters,startingin
the samestateand following the sameinstructions,will in-
evitably arrive atthe sameresult.While therearemary cases
whenthis assumptiornolds,therearealsotimeswhenit does
not. Thisis truein the caseof so-called nexact voting [17].

In inexactvoting, two resultsdo nothave to bebit-wiseidenti-
calin orderto be considerecqual,aslong asthey fall within
some pre-definedrange of tolerance. This situation often
ariseswhendatais gatheredrom sensorsnteractingwith the
realworld —it is extremelyunlikely thattwo differentsensors
will collect exactly the samedata,evenif they arearbitrar
ily closeto oneanotherandsamplingthe samephenomena;
thereforesomeanalysisneedsto be doneto determinegf the
sensorstatais effectively equal,evenif notidentical.

In suchsituationgheschemeslescribediborewill encounter
problems becaus@f the commonassumptiornthey all make
that the replicatedvoters’ datawill be identical. The sec-
ond algorithmdescribedabove, which usesa (k,n)-threshold
schemegcannotbe usedfor inexactvoting — in orderfor the
partialresultsto be combinedogetherinto awholeresultfor
theclient, the partialresultsmustbeidentical.

While someof the algorithmscould be modified to handle
inexactvoting, the performancecostincurredthroughmulti-
ple inexactcomparisonsvould be prohibitive. For example,
thefirst algorithmdescribedn this section,in which all vot-
erssendtheir resultsto the client, would force the client to
make multiple inexactcomparisonsn orderto determinethe
majority. Sinceinexactcomparisonganbevery complex op-

erationsthis placesanunacceptabléurdenon the client.

3. THE ALGORITHM

Assumptions

The proposedalgorithmhastwo setsof participants.Oneis

thesetof voters,which canbe arbitrarily large but musthave

atleastthreeelementsThesevotersarecompletelyindepen-
dent; the only exchangeof informationthat takes placebe-

tweenthemis communicatinghe voters’individual results.
The othersetcontainsthe userandaninterfacemodule. The

interface module buffers the userfrom the voters (seeFig-

ure 1). The interfacemoduleconsists,in its abstractform,

of a simple memorybuffer andtimer. A taskis sentfrom

the user throughthe interfacemodule,to the voters. At the

terminationof the algorithm,the interfacemodulepasseshe

final resultbackto the user

The ervironment for the algorithm is a network with an
atomicbroadcastapabilityandboundednessagédelay(e.g.,
a local areanetwork). It is assumedhat a fair-use policy
is enforced,so that no host canindefinitely appropriatethe
broadcastmedium[18]. It is alsoassumedhatno voter will
commit an answeruntil all votersare ready— this can be
easilyenforcedby settinganapplicationdependenthreshold
beyond which all functionalvotersshouldhave their results
ready;any commitsattemptedeforethisthresholds reached
areconsiderecautomaticallyinvalid. Eachvotercancommit
only once-thisis enforcecdattheinterfacemodule whichig-
norescommitsfrom avoterwhich haspreviously committed.
The mostimportantassumptiormadeis that a majority of
the participatingvotersarefault-freeandfollow the protocol
faithfully. No assumptionaremadeabouttheremainingvot-
ers— they canrefuseto participate sendarbitrarymessages,
commitincorrectresults etc.;they arenotboundin any way.

Description

Eachof the (correct)voterswill follow thestepsbelow:

1. If no othervoter hascommittedan answerto the inter-
facemoduleyet, the voter doesso with its own vote; it
thenskipstheremainingsteps.

2. In the casethat anothervoter hascommitted,the voter
compareshecommittedvaluefrom the othervoterwith
its own vote.

3. If theresultsagree the voter doesnothing; otherwiseit
broadcastgts dissentingvoteto all theothervoters.
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Figurel: SystemArchitecture

4. Onceall votershave hadachanceo compareheirvotes
with the committedvalue (this interval would be deter
minedby atimer), the voter analyzesall the dissenting
votesto determindf a majority dissentingvote exists.

5. If nomajority exists, thenthe voterdoesnothing.

6. If a new majority exists (or if anothey perhapsfaulty,
voter commitsa new result), then the voter returnsto
stepl.

Theinterfacemodulewill follow thesesteps:

1. Oncea commitis receved, the resultis storedin the
buffer andthetimer is started.Thetimeris setto allow
time for all the votersto checkthe committedvalueand
dissentf necessary

2. If anew commitis receved beforethe timer runsout,
the new resultis written over the old onein the buffer,
andthetimeris restarted.

3. If nocommitoccursbeforethe timer runsout, thenthe
interfacemodulesendgheresultin its buffer to theuser
andthealgorithmis terminated.

4. DISCUSSION

Authentication

For the correctexecutionof the voting algorithmit is neces-
sarythat the commitssentto the timed-kuffer modulefrom
thevariousvotersbheauthenticatedAny known sophisticated

authenticationechniqguesanbeusedto enforcesecurecom-

municationputit shouldbedonewithoutincreasinghecom-

plexity of the buffer module. For illustrative purposeswve

describea simple authenticatiortechniquethat doesnt em-

ploy standardccryptographianethodssuchaspublic key en-

cryption[19]. Thetechniquedescribechereis calledSKEY

authenticatiorf19], which is simpleto implementbut is ca-

pableof strongauthenticatiorwith minimal communication
betweenthe votersandthe interfacemodule. This approach
allows the implementationof our secureand fault tolerant
voting on the existing platformswithout ary modifications
to theunderlyingprotocols.

The SKEY authenticationis basedon a one-way function.
The voter and the host on which the buffer moduleis built
first agreeon a commonrandomnumberR prior to the start
of the voting algorithm. A setof numberszy, zo, ..., z,, iS
generatect a givenvoteraswell asthe hostby applyingthe
one-way function f onR asz; = f(R),z2 = f(f(R)), and
soon. The hostalsocalculatesand storesz,, 1. The voter
sendsts commitby appendinge,, to its vote. The hostwill
calculatef (z,,) andcomparet with 1. If thesenumbers
match,the communicatioris treatedasauthentic. The voter
will deletez,, andusez,,_1 next time whenit hasto commit
to thetimed-tuffer module.

Since the SKEY method requiresonly an occasionalex-
changeof arandomnumberbetweenthe votersandthe host
computerin which the timed-tuffer resides,a reasonable
level of securitycanbe maintainedon the exchangeof votes.

The Interface Module

The function of the interfacemoduleis to recorda commit
from avoter, setup atimer andwait until thetimeoutexpires
anddeliverthecorrectresultto theuser It is possiblethatthe



timermayberesetsereraltimesbeforepassinghefinal result
to theuser In addition,theinterfacemoduleshouldhave the
capabilityto authenticatevotersprior to their committalsso
thatit cantrack the votersto ensurethata voter cancommit
only oncein agivenvoting cycle. In orderto reducethelik e-
lihood of attackson the interface,it shouldbeisolatedfrom
the rest of the voter complex and be built to hasve minimal
interactionwith the outsideworld.

Dependinguponthe level of voting, the designof the inter-

facemodulemay vary. Voting may proceedat either hard-
wareor softwarelevels. It essentiallydependsn thevolume
of data,compleity of computationapproximatiorandcon-
text dependeng of the voting algorithms. If low level, high

frequeng votingis to be done,a hardwareimplementatioris

preferred;if high level voting with low frequeng is desired,
a software implementationof the interface module may be
suitable. This is becausehe voting is generallymuchmore
comple athigherlevelsof abstractionWe assumdow level,

highfrequeng votingin hardwareanddiscuss hardwarear

chitecturefor theinterfacemodulebelow.

Sinceonly onecopy of the vote needsto be bufferedbefore
giving it to theuser theamountof memoryrequiredis small.
The actualsize dependn the datathatis votedupon. The
tracking of voterscanbe implementedusing a flag register
Onebit flag pervoteris sufiicient. Theflagwill besetassoon
asacommitis recevedfrom avoterandwill beresetafterthe
expiry of thetimer. If multiple commitsarerecevedfrom the
samevoterduringtheflag setstate they will beignored.

A smallamountof additionalmemorymustbe built into the
interfacemoduleto supporthe SKEY authenticatiorof com-
municationbetweenthe voters and the timed-huffer as de-
scribedbefore. This memoryis neededo storea sequence
of n numberdor eachof the votersasrequiredby the SKEY
methodof authentication. Control logic must be designed
into theinterfacemoduleto stepdown thesequenceachtime
acommitis recevedfrom avoter. Re-initializationof the se-
guencefor a specificvoter is necessaryhenthe sequence
reducedo zero,over time. This canbe doneby requesting
the hostcomputerto receive a new randomnumberfrom the
voterandcomputinga new sequenceAnothercapabilitythat
needgo bebuilt into theinterfacemoduleis thesynchroniza-
tion of resultdelivery with the expiry of thetimer.

Thoughtheinterfacemodulemaybeviewedasa singlepoint
of failure, it is farlessvulnerableo failurethanavoterwould
be dueto the decreasedevel of compleity comparedo the
voter/processanodule.Theinterfacemodulehasnorequire-
mentto run ary algorithm(code).lt is isolatedfrom thevoter
comple andis designedo have minimal hardwareandmin-
imal interactionwith the outsideworld. Thus,it is lessvul-

nerableto attacksaswell.

Correctness

The algorithmdescribedherehasbeenformally specifiedin
Lamport's TemporalLogic of Action [20], andverifiedto be
correct. Theproofof thisresult,however, is beyondthescope
of this paper

Performance

Besidesthe securityand fault-toleranceattributesof the al-
gorithm, anotherimportantcharacteristigs its performance.
A detailedanalysiswas performedin [21], and shaved that
this algorithmhaddefiniteperformancexdvantagesTo sum-
marizethe conclusionsof that paper it wasdeterminedhat
this algorithmhad an averageO(1) performancen relation
to the numberof votersused- i.e., the algorithm scalesex-
tremelywell to systemswith large numbersof voters. This
resultis especiallyimportantgiventhatthesecurityandfault-
tolerancgasopposedo performancepf a systemusingthis
algorithmriseslinearly with the numberof votersin the sys-
tem.

Intrusion Tolerance

Anotherbenefitof this algorithmthatwe have yetto fully ex-
ploreis its applicabilityto the problemof intrusiontolerance.
Any voterthatcommitsanincorrectvaluecanbe partitioned
from the network andflaggedfor review by a higherauthor
ity (eitherautomatear human)asa possiblesecuritybreach.
Assumingthatall votersaredeniedaccesgo covertchannels
(a strongassumption)we canalso have eachvoter monitor
all othervoters,andin a similar manneiflag ary voterthatis
releasingconfidentialinformation. We will befurtherexplor-
ing thesepossibilitiesandwhat benefitthey canbring to the
securityof the systemasawhole.

5. WIDE-AREA NETWORKS

This sectiondiscussesomepreliminarywork on securdénex-
actvoting in awide-areanetwork, wherethe assumptionsf
atomichroadcasaindboundedmessagelelayarenot practi-
cal. Wetake advantageof Lamportsresultsdescribedn [22],
where he concludesthat Byzantine fault-tolerancecan be
muchsimplifiedthroughthe useof digital signaturesAgain,
the uniqueaspectof this algorithm,just asfor the previous,
is the way it juxtaposeghe requirementgor security fault-



toleranceandperformancen inexactvoting.

Motivation

Distributing dataandcomputatioroverawide areanetwork is
becomingastandargractice.Critical databasebave already
beenreplicatedanddispersedo variousgeographicasitesto
increasetheir longevity [23, 24]. Redundantomputations
arealsodistributedin orderto combatlocalizednetwork fail-
uresandattacksjncreasingothsecurityandfault-tolerance.
As aconsequenceedundantomputation®nreplicateddata
at remotelocationsmustsomehav coordinatetheir resultsin
orderto presenta majority resultto the user One example
of thisrequirements gatheringdatafrom distributedsensors
with overlappingareasof coverage. Determininga major
ity resultfrom thesesensorsgproducesthe lowest probabil-
ity of errorfor the widestrangeof obsenation probabilities
[25]. Dataneednot beidentical. It may even be madedif-
ferentdeliberately:datadiversity [26] is a softwarefault tol-
erancestrat@y wherea relatedsetof pointsin a programs
dataspaceare obtained executeduponusingthe samesoft-
ware, andthena decisionalgorithm (i.e., voter) determines
theresultingoutput.

Centralizedsoting (having a distinguishedcoordinatomwhich
collectsthevotesfrom all votersandthendetermineshema-
jority) is a simple solutionto the problemof resolvingthe
outputof redundantiotersin awide areanetwork. However,
as networking becomesmore ubiquitousthe advantagesof
distributed(i.e. decentralizedyoting becomeclear

Use of a centralizedcoordinator which may be quite dis-
tantfrom the participatingvoters,could consumenuchmore
bandwidththan distributed voting, in which the votersneed
only communicateamongthemseles. Transmittingresults
from thevotersto the coordinatomayinvolve mary network
hopsand accruemore overall delay than having the voters
communicateamongthemseles. Designatinga nodethatis
closeto theredundanvotersto actasa’delegate’coordinator
may not be possiblebecausdt entailsplacingcompletetrust
in thatdelggateandassuringthat a dependableommunica-
tionslink existsbetweernt andtheresults final destination.

Another problemwith centralizedvoting is the possibility
of link failure which may partition the network, rendering
communicatiorbetweereitherthevotersandthe coordinator
or the coordinatorandthe userimpossible. In a distributed
schemeaslong asa majority of the voterscancommunicate
a final resultcanbe calculated;andaslong asthe usercan
communicatewith ary of the participatingvotersit canob-
tainthatresult.

Thefactthatthe coordinatoiis receving messagefom each

and every voter makes network congestionin its vicinity
likely, especiallyif it is responsibléor mary redundantasks
carriedoutatthe sametime (andhences receving messages
from mary votersat once). Decentralized/oting distributes
the messagéraffic attendanion eachtaskandthustendsto
confineit to the participatingvoters.

Decentralizedsoting also allows the necessargomputation
for determiningthe majority to be distributedandcalculated
in parallelamongthe voters. Insufficient computingcapac-
ity of the coordinatorcan restrictthe usefulnesof central-
izedvoting. Researcthasbeendonein the areaof software
agentghat performcentralizedvoting [27], but no consider
ation hasbeengivento agentshat may not be ableto com-
putethe majority, but only applyit. Such“boundedrational
agents”have limited decisioncapabilitiesdueto restrictions
placeduponthemregardingthe computationatesourceshey
can consume[28]. This may be a problemwhen the task
of comparingtwo votesinvolvescomple< calculationssuch
aswhenthe votesmay be somevhatdifferent,yet still bein
agreementDeterminingthe majority of correct-yet-diferent
resultscalls for “inexact voting” that, being potentially far
more complex than a mere bit-wise comparisonof results
[29], canreadily exceedan agents limited decisionmaking
power. Requiringthe coordinatorto correctlydecideamong
resultsthat can differ but still be correctis understandable
whenone considersg.g., the toleranceof sensomreadings.
Being unableto computea majority result,an agentthat ob-
tainstheresultfrom elsevherecouldnonethelesaseit to, for
example,manipulateanactuatorthrougha microcontroller

A final consideratiorwhen using centralizedvoting is the
possibility of an adwersaryobservingthe network. Suchan
adwersarycould, using network traffic analysis,easily deter
mine theimportanceof the coordinatorfrom the sheemum-
berof message#t wasreceving. Beingdistinguishedn this
mannermakes the coordinatora temptingtarget for attack.
Oncethecoordinatohasbeencompromisedtheattaclerhas
completecontrol over theresultsseenby the user In decen-
tralized voting, no voter is more importantthan ary other
Donecorrectly anattacler would have to compromisea ma-
jority of the votersbeforebeing able to control the results
seenby theuser greatlyincreasinghe costof any successful
attack.

Issuesconcerningnetwork congestionthe inability to des-
ignate alternatetrustworthy coordinators,link failures, the
potentiallycomplex computatiorfor determininga majority,
and security all motivate the use of distributed voting in a
wide areanetwork.

Assumptions

While the underlying wide-areanetwork itself may be un-



reliable, we assumehat this algorithm operateson top of a
reliabletransporiprotocol,guaranteeingventualdelivery of
messagesgalthoughthe messagesre not necessarilydeliv-
eredin the orderthey weresent). On top of this layeris an-
otherlayerwhich guaranteesventualdelivery of valid mes-
sages messagesvhich have beendigitally signedandcor-
rectly verified asdescribedn the next paragraph.Messages
which cannotbe verifiedarediscarded We assumehe pres-
enceof a public-key infrastructurg[19], in which eachvoter
hasa privatekey andeachvoter knows (or cansecurelyob-
tain) the public key of every othervoter Eachvoter knows
a priori who the othervotersare. We further assumehata
majority of the votersarefault-freeandwill correctlyfollow
the protocol (i.e., they aretrustworthy). As before,no as-
sumptionsaremadeaboutthe remainingvoters. Thereis no
interfacemodaulein this system-justthevotersandtheclient.
Theultimategoalof thealgorithmis to have eachtrustworthy
voteragreewith every othertrustworthy voteron onefinal re-
sult,andto have proofthatits resultis thatwhich wasagreed
on.

Two differentfunctionsareemployedin the algorithm: one-

way hashes anddigital signatures. A one-way hashis afunc-
tion thatmapsan argumentto a uniquefixed-widthvaluein

sucha way that it is impossibleto recover the original ar

gumentfrom that value. A digital signaturecanbe accom-
plishedin severalways;onemechanisnis encryptinga mes-
sage(or the hashof a messageyvith a privatekey. The sig-
naturecan be verified by decryptingthe signaturewith the
correspondingublic key. This providesa securemethodof

authentication.All signaturesnclude a timestampto guard
againstreplayattacks.

Description

Each(correct)voterwill follow the stepsbelow:

1. Computearesult.
2. Computethe hashof theresultandsave thatvalue.
3. Signtheresultandsendit to all the othervoters.
4. For all the signedresultsreceivedfrom the othervoters:
(a) Make surethatthis resultisn't arepeatf(i.e., there
is only oneresultpervoter).

(b) Verify thesignatureo make sureit is avalid result.

(c) If theresultagreeswith thisvoter'sresult(usingin-
exactcomparisornf necessarythenhashtheother
voter'sresult,signthehash,andsendit backto the
othervoter (this signedhashis called an endorse-
ment).

5. For all endorsementsecevedfrom the othervoters:

(a) Makesuretheendorsemerisn’t arepeali.e.,only
oneendorsemenpervoter).

(b) Verify thesignatureandcomparethehashvalueto
thevaluesaredin step2 in orderto make sureit is
avalid endorsement.

6. Onceamajority of endorsementsasbeenreceved,the
algorithmis terminated.

The votersendup with a majority of endorsementtor their
result,andoncea majority vote hasbheendeterminedhevot-
erscan,if necessartransmittheresultto ary interestechost
alongwith the relevant endorsementsThe hostcan accept
the first suchresultaccompaniedy a majority of endorse-
mentswhich areall verified correctly knowing thatthatvote
is the result agreedto by a majority of the voters. We are
guaranteedhat a majority of endorsementwill be receved
by correctvotershecaus®f theassumptiorthata majority of
thevoterswill operatecorrectly

Discussion

The goal of the algorithm, asstatedearlier, is to enablevot-
ersto agreeon a commonresultand provide proof thattheir
resultis the onethat was agreedon. It mustdo this in an
environmentwhereall messagemustpassthroughunknovn
(andpossibleuntrustworthy) intermediarynodes,andwhere
all of thevotersarenotthemselesnecessarilyrustworthy.

Themechanisnthatmakesthis possibles thepublic-key dig-
ital signature With this, votersareableto determingheorig-
inator of amessageandverify thatno-onetamperedvith the
messag®eforeit wasreceved. This meanghattheinterme-
diary nodescannotinfluenceary of thevoters—they canonly
relaymessagefotethatbecausef the statedassumptiorof
a reliable transportprotocol, intermediatenodescannotin-
definitelydelaymessagesither). It alsomeanghatno voter
canmasqueradasanothervoter, nor canary voter fake an
endorsemerfrom ary othervoter.

In the secondroundof the inexactvoting algorithm, signing
the hashratherthantheresultitself is a corvenience There-
sultmaybe of ary sizefrom asimplenumberto amulti-field

recorddependingon the application,while the hashwould
alwaysbe a constantsize (e.g. 160 bits). If theresultitself
were going to be signedas proof of correctnessthenthere
would be one of two options. Onewould be that the voters
couldexchangesignedvotes,in which casesachvoterwould
haveto storemultiple copiesof the samevote,eachsignedby
adifferentvoter. In orderto proveto ahostthattheresultwas
correct,avoterwould haveto transmiteachof thevotesto the
host, which would in turn have to verify andcomparethem
all. The otheroptionwould be thatthe voterscould eachin

turn sign a vote, so that eachvote would be signedmultiple



Advantages Disadvantages
Centralized | simpletoimplement single point-of-failure; rigid archi-
tecture
Distributed | no single point-of-failure; flexible | comple< to implement;relianceon

architecture

committingvoter

Tablel: ComparisorChartfor CentralizedandDistributedVoting.

times. This would necessitat¢hat the vote from eachvoter
be sentto a majority of the othervoters, greatly expanding
the numberof messagesecessary A side-benefiof using
the hashis thatthe intermediarynodescannotdeterminethe
valueof the variousvotesthey arerelaying,sincethereis no

way to de-hasha one-way hash(hencethe name).Of course,
an untrustworthy voter canrelay its own resultto arnyoneit

wishes,sothis doesnot provide absoluteconfidentiality

The requirementfor timestampgor eachsignatureis there
in orderto guardagainstresendattacks. An attacler could
recordthe messagesentin a previous run of the algorithm
andresendthemto the votersin a subsequentun. If there
washo way of determiningthatthesewereold messagegshe
voterscouldbefooledinto acceptinghemasvalid votes.But
sincethe hasheof thesevoteswould not matchthe hashes
of the voters’ results,the voteswould be discardedand the
voterswouldn’t be ableto agreeon a majority result— even
thougha majority of themmay be functioningcorrectly

Performance

Performancef the algorithm canbe measuredy the com-
plexity of the operationgequiredof eachvoterandthe num-
ber of messagesequiredto be sentover the network. In the
following analysisy is the numberof voters.

Thefirst stepfor eachvoteris to calculateits resultandsign
and hashthat result. Sinceeachvoter doesthis only once,
andin parallel, this canbe taken as a constant. Eachvoter
will thenreceve onesignedvotefrom every othervoter. For
eachsignedvote the voter mustverify it andcomparat with
its own result. Sincethis is inexact voting, this comparison
may be computationallyexpensve. If the vote agreeswith
thevoter’'sresult,thevoterhashesndsignsthevote (atrivial
operatiorrelativeto thecomparison) Eachvoterwill thenre-
ceive amaximumof oneendorsemerftom every othervoter,
which they will have to verify andcomparewith the hashof
their own result. The complexity for eachvoteris therefore
O(n). Everyvotersendnesignedvoteto every othervoter,
resultingin n(n — 1) messagesEachvoterthensendsat a
maximumoneendorsemertb every othervoter, causingan-
othern(n — 1) messagedpr atotal of 2n(n — 1) messages.
Thereforethecomplexity of thealgorithmwith regardsto the

numberof messages O(n?).

6. CONCLUSION

Faultspresentisk to the succes®f anaerospacenission,so
they will continuallybea concernof thefaulttolerancecom-
munity. We have taken up the issueof securityin conjunc-
tion with fault tolerance. This motivatedus to devise new

approacheso distributed voting. Within a LAN (andsome
casesa WAN) we replacedthe ubiquitous2-phasecommit
protocolwith onethatis light-weightandimprovesboth per

formanceand securitywithout losing any of the traditional
fault coverage. Accompalying this algorithm is one that
we proposedor resolvingcorrect-tut-possibly-not-idetical

voteswithin a WAN. Both of thesealgorithmsare usedto

uniquelyenhanceheintegrity of distributedinformationsys-
tems— protectingthem from faults and hostile attacks. Ta-

ble 1 contrastghe advantagesand disadantagef central-
ized and distributed voting. The contritution of the tech-
niquesdescribedn this paperis to remove someof the dis-

adwantage®f distributedvoting evidentin thethird quadrant.
Applying thesealgorithmsto thosedistributed systemsaused
for aerospaceissionscansignificantlycontributeto thelik e-

lihood thatthe missionwill succeed.
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