
Secure and Fault-Tolerant Voting in Distributed Systems
�

BenHardekopf, Kevin Kwiat, ShambhuUpadhyaya
�

Air ForceResearchLaboratory

AFRL/IFGA

525BrooksRd.

Rome,NY 13441-4505�
hardekob,kwiatk � @rl.af.mil; shambhu@cse.buffalo.edu

Abstract – Concernsaboutboth securityandfault-tolerance
have hadan importantimpacton the designanduseof dis-
tributed information systemsin the past. As suchsystems
becomemoreprevalent,aswell asmorepervasive,thesecon-
cernswill becomeeven more immediatelyrelevant. From
nationaldefense,to commercialinterests,to privatecitizens,
distributedsystemsaremakinganevergreaterimpacton our
lives.

Wewill focushereon integratingsecurityandfault-tolerance
into one,general-purposeprotocolfor securedistributedvot-
ing. Distributedvoting is a well-known fault-tolerancetech-
nique[4]. For themostpart,however, securityhadnot been
a concernin systemsthatusedvoting. More recently, several
protocolshave beenproposedto shoreup this lack. These
protocols,however, have limitations which make thempar-
ticularly unsuitablefor many aerospaceapplications,because
thoseapplicationsrequirevery flexible voting schemes(e.g.,
votingamongreal-world sensordata).

We presenta new, moregeneralvoting protocolthatreduces
the vulnerability of the voting processto both attacksand
faults. The algorithm is contrastedwith the traditional 2-
phasecommit protocolstypically usedin distributedvoting
andwith other proposedsecurevoting schemes.Our algo-
rithm is applicableto exact and inexact voting in networks
whereatomic broadcastandpredeterminedmessagedelays
arepresent,suchaslocal areanetworks. For wide areanet-
works without theseproperties,we describeyet anotherap-
proachthatsatisfiesour goalsof obtainingsecurityandfault
tolerancefor abroadrangeof aerospaceinformationsystems.

�
0-7803-6599-2/01/$10.00c

�
2001IEEE�

Author affiliated with SUNY Buffalo; work performedwhile underthe
Air ForceResearchLaboratory/InformationDirectorate’s 2000SummerFac-
ulty ResearchProgram.

TABLE OF CONTENTS

1. INTRODUCTION

2. PAST WORK

3. THE ALGORITHM

4. DISCUSSION

5. WIDE-AREA NETWORKS

6. CONCLUSION

1. INTRODUCTION

As evidencedby recentnews stories,the aerospacerealmis
not immunefrom the concernsof securityaswell as fault-
tolerance.Althougha recenthackingincidentat NASA was
deemednot to have endangereda shuttlemission ([1]), at
thevery least,it callsattentionto thepotentialthreatsposed
to the aerospacecommunity. Networking on-boardsystems
with thosethatareground-basedraisestheconcernof open-
ing avenuesfor highly detrimentalattacks.To betruly com-
prehensive, dependableaerospaceinformationsystemsmust
toleratefaultsthatmanifestthemselvesasa resultof random
phenomenaor deliberateinterference.

Historically, aerospacemissionshavebeenamongthefirst to
usefault tolerance.Earlyvisionaries[2, 3] of theApollo Pro-
gramforesaw usingredundancy to combatfailure: by having
asecondspacecraftaccompany acrew to themoon’ssurface,
their return would be ensuredshouldtheir primary landing
vehiclebe damaged.Redundancy at this level of granular-
ity nevercameaboutbecausedurability improvementsin the
eventualdesignof the LunarModule reducedthe risk to the
crew of having only oneof themonthemoon.

Leapingto thepresentwe seethatspecialdesigntechniques
have been required for the computersused in aerospace

missions. The Self-Testing And Repairing(STAR) Com-
puter (1971), the Fault-TolerantMultiprocessor(1975), the
Fault-TolerantSpaceborneComputer(FTSC)(1976),andthe
Multi-MicroprocessorFlight ControlSystem(1981)areprac-
tical computersystemsthatperformcritical missionfunctions
andhavebeenspecificallydesignedto ensuremissionsuccess
[4]. Redundancy of selectedcomputercomponentswithin
thesedesignsplaysanimportantrole in reducingtherisk as-
sociatedwith relying uponany singlecomponentto operate
flawlessly. In oneof the mosthighly visible applicationsof
fault-tolerantcomputing,theSpaceShuttlemakesuseof re-
dundancy at thelevel of general-purposecomputersto ensure
thatflight-criticaloperationssuchasascent,reentry, andland-
ing areperformedin spiteof thefailureof any onecomputer.

Distributedcomputersystems,asan automaticconsequence
of their architecture,canbe configuredfor concurrentoper-
ation in additionto offering resilienceagainsthardwarefail-
ure [6]. This attractive dual-propertywasalsoobserved by
the designersof the SpaceShuttlecomputerin their vision
of on-boardsystemsfor advancedSpaceShuttlesandSpace
Stations[5].

Distributedsystemsareimportantnot only to on-boardsys-
tems, but also to ground basedsystems. Tracking sys-
temsplacedaroundthe globeare inherentlyphysicallydis-
tributed;yetthey haveto belinkedto commandcenters.Also,
aerospacemissionsmayconcernmultiple ground-basedcen-
ters that must coordinatetheir separateactivities through
communicationnetworks. Connectivity to this degreecre-
atesdistributedsystemsof distributedsystems.Dependency
amongthesesystems’componentsrequiresfault-tolerantde-
signto combatthelikelihoodof missionfailuredueto system
componentfailure.

Thefocusof thispaperis ondistributedvoting,awell-known
fault-tolerancetechniquein which multiple votersindepen-
dently computetheir resultsandvote to determinea major-
ity; the majority result is thencommitted (sentto the user).
Much work hasbeendonein this area,asdescribedin the
next sectionon pastwork. Our contribution is a radicalap-
proach,in which the normal order of events is reversed–
any arbitraryvoter caninitiate a committal,but the result is
bufferedlong enoughfor theothervotersto checkthe result
andvoteonwhetherthey shouldrecommitanew resultif the
first wasincorrect. This processis repeateduntil a majority
of votersagree,andthefinal resultis sentto theuser. These-
curity implicationsof this simplechangeareprofound. The
next sectionreviews thebasicconceptsof distributedvoting,
andpresentsseveral algorithmsthat have beenproposedin
thepast.Thenour new proposal,thetimed-buffer distributed
votingalgorithm(TB-DVA) is describedandanalyzedin sec-
tions threeandfour. Sectionfive presentssomepreliminary
work on anotheralgorithmwhich operatesunderlooserre-
strictionsthantheTB-DVA, andhencecanbeevenmoregen-

erally applied.

2. PAST WORK

Replicationandmajorityvotingaretheconventionalmethods
for achieving fault tolerancein distributedsystems.Decen-
tralized voting, in which the replicatedvotersindependently
determinethemajority ratherthanrelyingon a centralserver
to tally theresults,hasbecomethestrategy of choice,andhas
hadanumberof incarnations[7, 8, 9]. Mostof thesesystems
haveusedthe2-phase commit protocol in orderto implement
thevoting scheme.In this protocol,thereplicatedvotersfirst
exchangetheirvotesandindependentlydeterminethemajor-
ity result. Oncea final resulthasbeencalculated,oneof the
votersis arbitrarily chosento commit thatresult(i.e. to pass
the resulton to the user). This methodis widely advocated
in designingfault-tolerantopendistributedsystems[10]. The
problemwith thistypeof protocolliesin thecommittalphase.
If the voter chosento commit the resultfails right beforeor
during thecommittal,theuserwill receive a badresult. The
probabilityof thishappeningis slight,andusuallyfallswithin
acceptablerisk parameters.However, if securityaswell as
fault-toleranceis to be taken into account,thenthe problem
is greatlyexacerbated.If a hostileattacker hastakencontrol
of the committing voter, then the attacker cancontrol what
resultstheusersees,regardlessof theothervoters’results.

Therehave beenseveral protocolsproposedthat attemptto
overcomethisproblem.For example,thealgorithmpresented
in [11] worksasfollows(in a verysimplifiedpresentation):

1. A client sendsa requestto oneof thevoters.

2. Thevotermulti-caststherequestto theothervoters.

3. The votersexecutethe requestandsenda reply to the
client.

4. The client waits for �	��
 repliesfrom differentvoters
with thesameresult,where � is thenumberof faultsto
betolerated;this is thefinal result.

While thisstrategy obviously is notsubjectto thesameprob-
lem asthe2-phasecommitprotocol,sincein essenceall the
voterscommit a result, it doesrequiresubstantialcomputa-
tion onthepartof theclient,whichmustcollectandcompare
all the repliesuntil ���

 have beencollectedthat carry the
sameresult.As a result,thissystemdoesnotscaleverywell.

Anotherprotocolthatattemptsto alleviatethisproblemis de-
scribedin [12]. It makesuseof a (k,n)-threshold signature

scheme. Informally, thisdescribesaschemewhereinapublic
key is generated,along with � sharesof the corresponding
privatekey, eachof whichcanbeusedto produceapartialre-
sultonasignedmessage� . Any � of thesepartialresultscan
thenbeusedto reconstructthewholeof � . In this particular
protocol, � is thenumberof voters,and � is setasonemore
thanthenumberof toleratedfaults.Eachvotersignsits result
with its particularshareof theprivatekey andbroadcastsit to
the othervoters. The voter thensortsthroughthe broadcast
messagesfor � partialresultswhichagreewith its own result
andcanbe combinedinto the whole message� , where �
would be the signedfinal result. The voter thensends� to
the client, which acceptsthe first suchvalid � sent. Again,
thisprotocolis notsubjectto theerrorinherentin the2-phase
commitprotocol,andit is alsonotcomputationallyexpensive
for theclient. However, it achievesthis by shifting thecom-
putationalburdento thevoters.As a result,this systemalso
doesnot scaleverywell.

Otherprotocolshave alsobeenproposed,eachwith its own
advantagesanddisadvantages[13, 14, 15, 16]. However, all
of theaboveschemesfor securingthedistributedvoting pro-
cessmake thecommonassumptionwhich underliesthe idea
of state-machinereplication– two differentvoters,startingin
the samestateandfollowing the sameinstructions,will in-
evitably arriveat thesameresult.While therearemany cases
whenthisassumptionholds,therearealsotimeswhenit does
not. This is truein thecaseof so-calledinexact voting [17].

In inexactvoting,tworesultsdonothaveto bebit-wiseidenti-
cal in orderto beconsideredequal,aslongasthey fall within
somepre-definedrangeof tolerance. This situation often
ariseswhendatais gatheredfrom sensorsinteractingwith the
realworld – it is extremelyunlikely thattwo differentsensors
will collect exactly the samedata,even if they arearbitrar-
ily closeto oneanotherandsamplingthe samephenomena;
thereforesomeanalysisneedsto bedoneto determineif the
sensors’datais effectively equal,evenif not identical.

In suchsituationstheschemesdescribedabovewill encounter
problems,becauseof thecommonassumptionthey all make
that the replicatedvoters’ datawill be identical. The sec-
ondalgorithmdescribedabove,which usesa (k,n)-threshold
scheme,cannotbeusedfor inexactvoting – in orderfor the
partialresultsto becombinedtogetherinto awholeresultfor
theclient, thepartialresultsmustbeidentical.

While someof the algorithmscould be modified to handle
inexactvoting, theperformancecostincurredthroughmulti-
ple inexactcomparisonswould beprohibitive. For example,
thefirst algorithmdescribedin this section,in which all vot-
erssendtheir resultsto the client, would force the client to
make multiple inexactcomparisonsin orderto determinethe
majority. Sinceinexactcomparisonscanbeverycomplex op-

erations,this placesanunacceptableburdenon theclient.

3. THE ALGORITHM

Assumptions

Theproposedalgorithmhastwo setsof participants.Oneis
thesetof voters,whichcanbearbitrarily largebut musthave
at leastthreeelements.Thesevotersarecompletelyindepen-
dent; the only exchangeof information that takesplacebe-
tweenthemis communicatingthe voters’ individual results.
Theothersetcontainstheuserandaninterfacemodule.The
interfacemodulebuffers the userfrom the voters(seeFig-
ure 1). The interfacemoduleconsists,in its abstractform,
of a simple memorybuffer and timer. A task is sentfrom
the user, throughthe interfacemodule,to the voters. At the
terminationof thealgorithm,theinterfacemodulepassesthe
final resultbackto theuser.

The environment for the algorithm is a network with an
atomicbroadcastcapabilityandboundedmessagedelay(e.g.,
a local areanetwork). It is assumedthat a fair-usepolicy
is enforced,so that no hostcan indefinitely appropriatethe
broadcastmedium[18]. It is alsoassumedthatno voterwill
commit an answeruntil all votersare ready– this can be
easilyenforcedby settinganapplicationdependentthreshold
beyond which all functionalvotersshouldhave their results
ready;any commitsattemptedbeforethisthresholdis reached
areconsideredautomaticallyinvalid. Eachvotercancommit
only once– thisis enforcedat theinterfacemodule,whichig-
norescommitsfrom avoterwhichhaspreviouslycommitted.
The most importantassumptionmadeis that a majority of
theparticipatingvotersarefault-freeandfollow theprotocol
faithfully. No assumptionsaremadeabouttheremainingvot-
ers– they canrefuseto participate,sendarbitrarymessages,
commitincorrectresults,etc.;they arenot boundin any way.

Description

Eachof the(correct)voterswill follow thestepsbelow:

1. If no othervoter hascommittedan answerto the inter-
facemoduleyet, the voterdoessowith its own vote; it
thenskipstheremainingsteps.

2. In the casethat anothervoter hascommitted,the voter
comparesthecommittedvaluefrom theothervoterwith
its own vote.

3. If theresultsagree,thevoterdoesnothing;otherwiseit
broadcastsits dissentingvoteto all theothervoters.

� � �

�

InterfaceModule

User

����������� ����������� ���������� ���������"!

Figure1: SystemArchitecture

4. Onceall votershavehadachanceto comparetheirvotes
with thecommittedvalue(this interval would bedeter-
minedby a timer), the voter analyzesall the dissenting
votesto determineif a majoritydissentingvoteexists.

5. If no majorityexists,thenthevoterdoesnothing.

6. If a new majority exists (or if another, perhapsfaulty,
voter commitsa new result), then the voter returnsto
step1.

Theinterfacemodulewill follow thesesteps:

1. Oncea commit is received, the result is storedin the
buffer andthetimer is started.Thetimer is setto allow
time for all thevotersto checkthecommittedvalueand
dissentif necessary.

2. If a new commit is received beforethe timer runsout,
the new result is written over the old onein the buffer,
andthetimer is restarted.

3. If no commitoccursbeforethe timer runsout, thenthe
interfacemodulesendstheresultin its buffer to theuser,
andthealgorithmis terminated.

4. DISCUSSION

Authentication

For thecorrectexecutionof thevoting algorithmit is neces-
sarythat the commitssentto the timed-buffer modulefrom
thevariousvotersbeauthenticated.Any known sophisticated

authenticationtechniquescanbeusedto enforcesecurecom-
munication,but it shouldbedonewithoutincreasingthecom-
plexity of the buffer module. For illustrative purposeswe
describea simpleauthenticationtechniquethat doesn’t em-
ploy standardcryptographicmethodssuchaspublic key en-
cryption [19]. The techniquedescribedhereis calledSKEY
authentication[19], which is simpleto implementbut is ca-
pableof strongauthenticationwith minimal communication
betweenthevotersandthe interfacemodule. This approach
allows the implementationof our secureand fault tolerant
voting on the existing platformswithout any modifications
to theunderlyingprotocols.

The SKEY authenticationis basedon a one-way function.
The voter and the hoston which the buffer moduleis built
first agreeon a commonrandomnumber# prior to thestart
of the voting algorithm. A setof numbers$&%(')$�*+'�,-,.,-'/$10 is
generatedat a givenvoteraswell asthehostby applyingthe
one-way function � on # as $ %32 �546#879'/$ *:2 �546�546#87/7 , and
so on. The hostalsocalculatesandstores$ 0<;=% . The voter
sendsits commitby appending$ 0 to its vote. Thehostwill
calculate�54>$ 0 7 andcompareit with $ 0<;=% . If thesenumbers
match,thecommunicationis treatedasauthentic.Thevoter
will delete$ 0 anduse$ 0�?@% next time whenit hasto commit
to thetimed-buffer module.

Since the SKEY method requiresonly an occasionalex-
changeof a randomnumberbetweenthevotersandthehost
computerin which the timed-buffer resides,a reasonable
level of securitycanbemaintainedon theexchangeof votes.

The Interface Module

The function of the interfacemoduleis to recorda commit
from avoter, setupa timerandwait until thetimeoutexpires
anddeliver thecorrectresultto theuser. It is possiblethatthe

timermayberesetseveraltimesbeforepassingthefinal result
to theuser. In addition,theinterfacemoduleshouldhave the
capabilityto authenticatevotersprior to their committalsso
that it cantrack thevotersto ensurethata votercancommit
only oncein agivenvotingcycle. In orderto reducethelike-
lihood of attackson the interface,it shouldbe isolatedfrom
the rest of the voter complex and be built to have minimal
interactionwith theoutsideworld.

Dependinguponthe level of voting, the designof the inter-
facemodulemay vary. Voting may proceedat eitherhard-
wareor softwarelevels. It essentiallydependson thevolume
of data,complexity of computation,approximationandcon-
text dependency of the voting algorithms. If low level, high
frequency voting is to bedone,ahardwareimplementationis
preferred;if high level voting with low frequency is desired,
a software implementationof the interfacemodulemay be
suitable.This is becausethe voting is generallymuchmore
complex athigherlevelsof abstraction.Weassumelow level,
highfrequency voting in hardwareanddiscussahardwarear-
chitecturefor theinterfacemodulebelow.

Sinceonly onecopy of thevote needsto be bufferedbefore
giving it to theuser, theamountof memoryrequiredis small.
The actualsizedependson the datathat is votedupon. The
trackingof voterscanbe implementedusinga flag register.
Onebit flagpervoteris sufficient. Theflagwill besetassoon
asacommitis receivedfrom avoterandwill beresetafterthe
expiry of thetimer. If multiplecommitsarereceivedfrom the
samevoterduringtheflagsetstate,they will beignored.

A smallamountof additionalmemorymustbebuilt into the
interfacemoduleto supporttheSKEY authenticationof com-
municationbetweenthe votersand the timed-buffer as de-
scribedbefore. This memoryis neededto storea sequence
of � numbersfor eachof thevotersasrequiredby theSKEY
methodof authentication. Control logic must be designed
into theinterfacemoduleto stepdown thesequenceeachtime
acommitis receivedfrom avoter. Re-initializationof these-
quencefor a specificvoter is necessarywhen the sequence
reducesto zero,over time. This canbe doneby requesting
thehostcomputerto receive a new randomnumberfrom the
voterandcomputinganew sequence.Anothercapabilitythat
needsto bebuilt into theinterfacemoduleis thesynchroniza-
tion of resultdeliverywith theexpiry of thetimer.

Thoughtheinterfacemodulemaybeviewedasasinglepoint
of failure,it is far lessvulnerableto failurethanavoterwould
bedueto thedecreasedlevel of complexity comparedto the
voter/processormodule.Theinterfacemodulehasnorequire-
mentto runany algorithm(code).It is isolatedfrom thevoter
complex andis designedto haveminimal hardwareandmin-
imal interactionwith the outsideworld. Thus,it is lessvul-

nerableto attacksaswell.

Correctness

Thealgorithmdescribedherehasbeenformally specifiedin
Lamport’sTemporalLogic of Action [20], andverifiedto be
correct.Theproofof thisresult,however, is beyondthescope
of this paper.

Performance

Besidesthe securityand fault-toleranceattributesof the al-
gorithm,anotherimportantcharacteristicis its performance.
A detailedanalysiswasperformedin [21], andshowed that
this algorithmhaddefiniteperformanceadvantages.To sum-
marizethe conclusionsof thatpaper, it wasdeterminedthat
this algorithmhadan averageAB4C
D7 performancein relation
to the numberof votersused– i.e., the algorithmscalesex-
tremelywell to systemswith large numbersof voters. This
resultis especiallyimportantgiventhatthesecurityandfault-
tolerance(asopposedto performance)of a systemusingthis
algorithmriseslinearly with thenumberof votersin thesys-
tem.

Intrusion Tolerance

Anotherbenefitof thisalgorithmthatwehaveyet to fully ex-
ploreis its applicabilityto theproblemof intrusiontolerance.
Any voterthatcommitsanincorrectvaluecanbepartitioned
from thenetwork andflaggedfor review by a higherauthor-
ity (eitherautomatedor human)asapossiblesecuritybreach.
Assumingthatall votersaredeniedaccessto covertchannels
(a strongassumption),we canalsohave eachvoter monitor
all othervoters,andin a similar mannerflagany voterthatis
releasingconfidentialinformation.Wewill befurtherexplor-
ing thesepossibilitiesandwhatbenefitthey canbring to the
securityof thesystemasa whole.

5. WIDE-AREA NETWORKS

Thissectiondiscussessomepreliminarywork onsecureinex-
actvoting in a wide-areanetwork, wheretheassumptionsof
atomicbroadcastandboundedmessagedelayarenot practi-
cal. Wetakeadvantageof Lamport’sresultsdescribedin [22],
where he concludesthat Byzantine fault-tolerancecan be
muchsimplifiedthroughtheuseof digital signatures.Again,
the uniqueaspectof this algorithm,just asfor the previous,
is the way it juxtaposesthe requirementsfor security, fault-

tolerance,andperformancein inexactvoting.

Motivation

Distributingdataandcomputationoverawideareanetwork is
becomingastandardpractice.Critical databaseshavealready
beenreplicatedanddispersedto variousgeographicalsitesto
increasetheir longevity [23, 24]. Redundantcomputations
arealsodistributedin orderto combatlocalizednetwork fail-
uresandattacks,increasingbothsecurityandfault-tolerance.
As aconsequence,redundantcomputationsonreplicateddata
at remotelocationsmustsomehow coordinatetheir resultsin
order to presenta majority result to the user. Oneexample
of this requirementis gatheringdatafrom distributedsensors
with overlappingareasof coverage. Determininga major-
ity result from thesesensorsproducesthe lowest probabil-
ity of error for the widestrangeof observationprobabilities
[25]. Dataneednot be identical. It may even be madedif-
ferentdeliberately:datadiversity[26] is a softwarefault tol-
erancestrategy wherea relatedsetof points in a program’s
dataspaceareobtained,executeduponusingthe samesoft-
ware,and thena decisionalgorithm(i.e., voter) determines
theresultingoutput.

Centralizedvoting(having adistinguishedcoordinatorwhich
collectsthevotesfrom all votersandthendeterminesthema-
jority) is a simple solution to the problemof resolvingthe
outputof redundantvotersin a wide areanetwork. However,
as networking becomesmore ubiquitousthe advantagesof
distributed(i.e. decentralized)votingbecomeclear.

Use of a centralizedcoordinator, which may be quite dis-
tantfrom theparticipatingvoters,couldconsumemuchmore
bandwidththandistributedvoting, in which the votersneed
only communicateamongthemselves. Transmittingresults
from thevotersto thecoordinatormayinvolvemany network
hopsand accruemore overall delay than having the voters
communicateamongthemselves. Designatinga nodethat is
closeto theredundantvotersto actasa’delegate’coordinator
maynot bepossiblebecauseit entailsplacingcompletetrust
in that delegateandassuringthat a dependablecommunica-
tionslink existsbetweenit andtheresult’s final destination.

Another problem with centralizedvoting is the possibility
of link failure which may partition the network, rendering
communicationbetweeneitherthevotersandthecoordinator
or the coordinatorandthe userimpossible. In a distributed
scheme,aslong asa majority of thevoterscancommunicate
a final resultcanbe calculated;andas long as the usercan
communicatewith any of the participatingvotersit canob-
tain thatresult.

Thefactthatthecoordinatoris receiving messagesfrom each

and every voter makes network congestionin its vicinity
likely, especiallyif it is responsiblefor many redundanttasks
carriedoutat thesametime(andhenceis receiving messages
from many votersat once). Decentralizedvoting distributes
the messagetraffic attendanton eachtaskandthustendsto
confineit to theparticipatingvoters.

Decentralizedvoting alsoallows the necessarycomputation
for determiningthemajority to bedistributedandcalculated
in parallelamongthe voters. Insufficient computingcapac-
ity of the coordinatorcan restrict the usefulnessof central-
izedvoting. Researchhasbeendonein the areaof software
agentsthatperformcentralizedvoting [27], but no consider-
ation hasbeengivento agentsthat maynot be ableto com-
putethemajority, but only apply it. Such“boundedrational
agents”have limited decisioncapabilitiesdueto restrictions
placeduponthemregardingthecomputationalresourcesthey
can consume[28]. This may be a problemwhen the task
of comparingtwo votesinvolvescomplex calculations,such
aswhenthevotesmaybesomewhatdifferent,yet still be in
agreement.Determiningthemajority of correct-yet-different
resultscalls for “inexact voting” that, being potentially far
more complex than a mere bit-wise comparisonof results
[29], canreadily exceedan agent’s limited decisionmaking
power. Requiringthecoordinatorto correctlydecideamong
resultsthat can differ but still be correct is understandable
whenoneconsiders,e.g., the tolerancesof sensorreadings.
Beingunableto computea majority result,anagentthatob-
tainstheresultfrom elsewherecouldnonethelessuseit to, for
example,manipulateanactuatorthroughamicrocontroller.

A final considerationwhen using centralizedvoting is the
possibility of an adversaryobservingthe network. Suchan
adversarycould,usingnetwork traffic analysis,easilydeter-
mine the importanceof thecoordinatorfrom thesheernum-
berof messagesit wasreceiving. Beingdistinguishedin this
mannermakes the coordinatora temptingtarget for attack.
Oncethecoordinatorhasbeencompromised,theattackerhas
completecontrolover theresultsseenby theuser. In decen-
tralized voting, no voter is more important than any other.
Donecorrectly, anattackerwould have to compromisea ma-
jority of the votersbeforebeing able to control the results
seenby theuser, greatlyincreasingthecostof any successful
attack.

Issuesconcerningnetwork congestion,the inability to des-
ignate alternatetrustworthy coordinators,link failures, the
potentiallycomplex computationfor determininga majority,
and securityall motivate the useof distributed voting in a
wideareanetwork.

Assumptions

While the underlyingwide-areanetwork itself may be un-

reliable,we assumethat this algorithmoperateson top of a
reliabletransportprotocol,guaranteeingeventualdelivery of
messages(althoughthe messagesarenot necessarilydeliv-
eredin theorderthey weresent). On top of this layer is an-
otherlayerwhich guaranteeseventualdelivery of valid mes-
sages- messageswhich have beendigitally signedandcor-
rectly verifiedasdescribedin the next paragraph.Messages
which cannotbeverifiedarediscarded.We assumethepres-
enceof a public-key infrastructure[19], in which eachvoter
hasa privatekey andeachvoterknows (or cansecurelyob-
tain) the public key of every othervoter. Eachvoter knows
a priori who the othervotersare. We further assumethat a
majority of thevotersarefault-freeandwill correctlyfollow
the protocol (i.e., they are trustworthy). As before,no as-
sumptionsaremadeaboutthe remainingvoters.Thereis no
interfacemodulein thissystem– justthevotersandtheclient.
Theultimategoalof thealgorithmis to haveeachtrustworthy
voteragreewith everyothertrustworthyvoterononefinal re-
sult,andto haveproof thatits resultis thatwhichwasagreed
on.

Two differentfunctionsareemployedin thealgorithm: one-
way hashes anddigital signatures. A one-wayhashis a func-
tion thatmapsan argumentto a uniquefixed-widthvaluein
sucha way that it is impossibleto recover the original ar-
gumentfrom that value. A digital signaturecanbe accom-
plishedin severalways;onemechanismis encryptinga mes-
sage(or the hashof a message)with a privatekey. Thesig-
naturecan be verified by decryptingthe signaturewith the
correspondingpublic key. This providesa securemethodof
authentication.All signaturesincludea timestampto guard
againstreplayattacks.

Description

Each(correct)voterwill follow thestepsbelow:

1. Computea result.

2. Computethehashof theresultandsave thatvalue.

3. Signtheresultandsendit to all theothervoters.

4. For all thesignedresultsreceivedfrom theothervoters:

(a) Make surethat this resultisn’t a repeat(i.e., there
is only oneresultpervoter).

(b) Verify thesignatureto makesureit is avalid result.

(c) If theresultagreeswith thisvoter’sresult(usingin-
exactcomparisonif necessary),thenhashtheother
voter’sresult,signthehash,andsendit backto the
othervoter (this signedhashis calledanendorse-
ment).

5. For all endorsementsreceivedfrom theothervoters:

(a) Makesuretheendorsementisn’t arepeat(i.e.,only
oneendorsementpervoter).

(b) Verify thesignatureandcomparethehashvalueto
thevaluesavedin step2 in orderto makesureit is
avalid endorsement.

6. Oncea majority of endorsementshasbeenreceived,the
algorithmis terminated.

Thevotersendup with a majority of endorsementsfor their
result,andonceamajority votehasbeendeterminedthevot-
erscan,if necessary, transmittheresultto any interestedhost
alongwith the relevant endorsements.The hostcanaccept
the first suchresultaccompaniedby a majority of endorse-
mentswhich areall verifiedcorrectly, knowing thatthatvote
is the result agreedto by a majority of the voters. We are
guaranteedthata majority of endorsementswill be received
by correctvotersbecauseof theassumptionthatamajorityof
thevoterswill operatecorrectly.

Discussion

Thegoalof the algorithm,asstatedearlier, is to enablevot-
ersto agreeon a commonresultand provide proof that their
result is the one that was agreedon. It must do this in an
environmentwhereall messagesmustpassthroughunknown
(andpossibleuntrustworthy) intermediarynodes,andwhere
all of thevotersarenot themselvesnecessarilytrustworthy.

Themechanismthatmakesthispossibleis thepublic-key dig-
ital signature.With this,votersareableto determinetheorig-
inatorof a messageandverify thatno-onetamperedwith the
messagebeforeit wasreceived.Thismeansthattheinterme-
diarynodescannotinfluenceany of thevoters– they canonly
relaymessages(notethatbecauseof thestatedassumptionof
a reliable transportprotocol, intermediatenodescannotin-
definitelydelaymessageseither). It alsomeansthatno voter
canmasqueradeasanothervoter, nor canany voter fake an
endorsementfrom any othervoter.

In thesecondroundof the inexactvoting algorithm,signing
thehashratherthantheresultitself is a convenience.There-
sultmaybeof any sizefrom asimplenumberto amulti-field
recorddependingon the application,while the hashwould
alwaysbe a constantsize(e.g. 160 bits). If the result itself
weregoing to be signedasproof of correctness,then there
would be oneof two options. Onewould be that the voters
couldexchangesignedvotes,in whichcaseeachvoterwould
haveto storemultiplecopiesof thesamevote,eachsignedby
adifferentvoter. In orderto proveto ahostthattheresultwas
correct,avoterwouldhaveto transmiteachof thevotesto the
host,which would in turn have to verify andcomparethem
all. The otheroption would be that the voterscouldeachin
turn sign a vote,so that eachvote would be signedmultiple

Advantages Disadvantages
Centralized simpleto implement single point-of-failure; rigid archi-

tecture
Distributed no single point-of-failure; flexible

architecture
complex to implement;relianceon
committingvoter

Table1: ComparisonChartfor CentralizedandDistributedVoting.

times. This would necessitatethat the vote from eachvoter
be sentto a majority of the othervoters,greatlyexpanding
the numberof messagesnecessary. A side-benefitof using
thehashis that the intermediarynodescannotdeterminethe
valueof thevariousvotesthey arerelaying,sincethereis no
way to de-hasha one-wayhash(hencethename).Of course,
an untrustworthy voter canrelay its own result to anyoneit
wishes,sothis doesnot provideabsoluteconfidentiality.

The requirementfor timestampsfor eachsignatureis there
in order to guardagainstresendattacks. An attacker could
recordthe messagessentin a previous run of the algorithm
andresendthemto the votersin a subsequentrun. If there
wasno wayof determiningthatthesewereold messages,the
voterscouldbefooledinto acceptingthemasvalid votes.But
sincethe hashesof thesevoteswould not matchthe hashes
of the voters’ results,the voteswould be discardedand the
voterswouldn’t be ableto agreeon a majority result– even
thougha majorityof themmaybefunctioningcorrectly.

Performance

Performanceof the algorithmcanbe measuredby the com-
plexity of theoperationsrequiredof eachvoterandthenum-
berof messagesrequiredto besentover thenetwork. In the
following analysis,� is thenumberof voters.

Thefirst stepfor eachvoter is to calculateits resultandsign
andhashthat result. Sinceeachvoter doesthis only once,
and in parallel, this canbe taken asa constant.Eachvoter
will thenreceiveonesignedvotefrom every othervoter. For
eachsignedvotethevotermustverify it andcompareit with
its own result. Sincethis is inexact voting, this comparison
may be computationallyexpensive. If the vote agreeswith
thevoter’s result,thevoterhashesandsignsthevote(a trivial
operationrelativeto thecomparison).Eachvoterwill thenre-
ceiveamaximumof oneendorsementfrom everyothervoter,
which they will have to verify andcomparewith thehashof
their own result. The complexity for eachvoter is thereforeAB4>�E7 . Everyvotersendsonesignedvoteto everyothervoter,
resultingin �F4>�HGI
(7 messages.Eachvoter thensendsat a
maximumoneendorsementto every othervoter, causingan-
other �F4>�JGK
D7 messages,for a total of LM�F4>�JGK
D7 messages.
Thereforethecomplexity of thealgorithmwith regardsto the

numberof messagesis AB4>� * 7 .

6. CONCLUSION

Faultspresentrisk to thesuccessof anaerospacemission,so
they will continuallybea concernof thefault tolerancecom-
munity. We have taken up the issueof securityin conjunc-
tion with fault tolerance. This motivatedus to devise new
approachesto distributedvoting. Within a LAN (andsome
casesa WAN) we replacedthe ubiquitous2-phasecommit
protocolwith onethatis light-weightandimprovesbothper-
formanceandsecuritywithout losing any of the traditional
fault coverage. Accompanying this algorithm is one that
we proposedfor resolvingcorrect-but-possibly-not-identical
voteswithin a WAN. Both of thesealgorithmsare usedto
uniquelyenhancetheintegrity of distributedinformationsys-
tems– protectingthemfrom faultsandhostileattacks. Ta-
ble 1 contraststhe advantagesanddisadvantagesof central-
ized and distributed voting. The contribution of the tech-
niquesdescribedin this paperis to remove someof the dis-
advantagesof distributedvotingevidentin thethird quadrant.
Applying thesealgorithmsto thosedistributedsystemsused
for aerospacemissionscansignificantlycontributeto thelike-
lihood thatthemissionwill succeed.

REFERENCES

[1] Orr, A. L., “NASA DeniesThat Hacking Endangered
Shuttle,” Government Computer News, July10,2000.

[2] von Braun,W., Whipple,F. L., andLey, W., Conquest of
the Moon, Viking Press,1953.

[3] Eisner, W., America’s Space Vehicles, SterlingPublishing,
1962.

[4] Johnson,B. W., Design and Analysis of Fault-Tolerant
Digital Systems, Addison-Wesley Publishing,1989.

[5] Spector, A., and Gifford, D., “CaseStudy: The Space
ShuttlePrimaryComputerSystem,” Communications of the
ACM, Vol. 27,No. 9, September1984.

[6] Coulouris,G. F., andDollimore, J., Distributed Systems:
Concepts and Design, Addison-Wesley Publishing,1988.

[7]Harper, R. E., Lala, J.H., andDeyst, J.J., “Fault Tolerant
Parallel ProcessorArchitectureOverview,” Proceedings of

the 18th Fault-Tolerant Computing Symposium, June,1988,
pp. 252-257.

[8]Palumbo, D. L., Butler, R. W., “A PerformanceEval-
uation of the Software-ImplementedFault-ToleranceCom-
puter,” AIAA Journal of Guidance, Control, and Dynamics,
Vol. 9, No. 2, March-April 1986,pp. 175-180.

[9] Kieckhafer, R., Walter, C., Finn, A., Thambidurai,P.,
“The MAFT Architecturefor Distributed Fault Tolerance,”
IEEE Transactions On Computers, Vol. 37, No. 4, April
1988,pp. 398-405.

[10] Hariri, S., et al., ”Architectural Supportfor Designing
Fault-TolerantOpenDistributedSystems,” Computer, Vl 25,
No. 6, June1992.

[11] Castro,M., Liskov, B. “PracticalByzantineFault Toler-
ance,” it Proceedingsof theThird Symposiumon Operating
SystemDesignandImplementation,Feb1999.

[12] Reiter, M. “How to SecurelyReplicateServices,” ACM
Transactions on Programming Languages and Systems, Vol.
16,No. 3, May 1994,pp. 986-1009.

[13] Reiter, M., “The RampartToolkit for Building High-
Integrity Services,” Theory and Practice in Distributed Sys-
tems, LectureNotesin ComputerScience938,pp. 99-110.

[14] Malkhi, D., Reiter, M., “ByzantineQuorumSystems,”
Proceedings of the 29th ACM Symposium on Theory of Com-
puting, May 1997.

[15] Kihlstrom, K., et al., “The SecureRingProtocolsfor
SecuringGroup Communication,” Proceedings of the 31st
Hawaii International Conference on System Sciences, Vol. 3,
pp. 317-326,Jan1998.

[16] Deswarte,Y., et al. “Intrusion Tolerancein Distributed
ComputingSystems,” Proceedings of the 1991 IEEE Sympo-
sium on Research in Security and Privacy, pp. 110-121,May
1991.

[17] Johnson,Barry W., Design and Analysis of Fault Toler-
ant Digital Systems, Addison-Wesley, 1989.

[18] Tanenbaum,Andrew Computer Networks PrenticeHall,
1989.

[19] Schneier, BruceApplied Cryptography, Second Edition,
JohnWiley & Sons,1996.

[20] Lamport, L., “The TemporalLogic of Actions,” ACM
Transactions on Programming Languages and Systems, Vol.
16,No. 3, pp. 872-923,May 1994.

[21] Hardekopf, B., andKwiat, K., “PerformanceAnalysis
of anEnhanced-SecurityDistributedVotingAlgorithm,” Pro-
ceedings of SCS Symposium on Performance of Computer

and Telecommunication Systems (SPECTS) 2000, July 2000.

[22] Lamport,L., et al., “The ByzantineGeneralsProblem,”
ACM Transactions on Programming Languages and Systems,
Vol. 4, No. 3, July1982.

[23] Herlihy, M. P., andTygar, J. D., “How to Make Repli-
catedDataSecure,” CMU-CS-87-143,August1987.

[24] Gifford, D. K., “WeightedVoting for ReplicatedData,”
Proceedings of the Seventh Symposium on Operating Systems
Principles, ACM SIGOPS,December1979.

[25] Varshney, P. K., Distributed Detection and Data Fusion,
Springer, 1997.

[26] Pullum,L., L., “Assessmentof theCurrentState-of-the-
Art in Data DiverseSoftwareFault ToleranceTechnology,”
RomeLaboratoryTechnicalReport,RL-TR-95-15,Vol. 2,
February1995.

[27] Schneider, F. B., “Towards Fault-tolerantand Secure
Agentry,” Proceedings of 11th International Workshop of
Distributed Algorithms, September1997.

[28] Hendler, J.,“UnmaskingIntelligentAgents,” IEEE Intel-
ligent Systems, IEEE ComputerSocietyPress,March/April
1999.

[29] Goel,A. L., andMansour, N., “SoftwareEngineeringfor
Fault-TolerantSystems,” RomeLaboratoryTechnicalReport,
RL-TR-91-15,March1991.

BenHardekopf is a lieutenantin theUnitedStatesAir Force,
stationedat theAir ForceResearchLaboratory. He received
theBSEin ElectricalEngineeringfrom Duke Universityand
is currently working towardsthe MS in ComputerScience
from theStateUniversityof New York atUtica/Rome.

Dr. Kevin A. Kwiat hasbeenwith the U.S. Air ForceRe-
searchLaboratoryfor over17 years.He is anadjunctprofes-
sorof ComputerScienceat theStateUniversityof New York
at Utica/Rome,andan adjunctprofessorof Mathematicsat
Utica Collegeof SyracuseUniversity. He receivedtheBS in
ComputerScience,theBA in Mathematics,theMS in Com-
puterEngineering,andthe Ph.D. in ComputerEngineering,
all from SyracuseUniversity. Heholds1 patent.

ShambhuUpadhyayareceived his Ph.D. in Electrical and
ComputerEngineeringfrom the University of Newcastle,
Australiain 1987. He is currentlyanAssociateProfessorof
ComputerScienceandEngineeringat theStateUniversityof
New York at Buffalo. His researchinterestsarefault-tolerant
computing,distributedsystems,andsecurity.

