
A COMPREHENSIVE SIMULATION PLATFORM FORINTRUSION DETECTION IN DISTRIBUTED SYSTEMSK. Mantha, R. Chinchani & S. Upadhyaya K. KwiatDepartment of Computer Science & Engineering Air Force Research LaboratoryState University of New York at Bu�alo 525 Brooks RoadBu�alo, New York 14260 Rome, New York 13441shambhu@cse.bu�alo.edu kwiatk@rl.af.milKEYWORDSComputer security, distributed systems, intrusion de-tection, simulation ABSTRACTThis paper1 describes the simulation of an attackrecognition system in a distributed environment. Theunderlying technique of attack recognition is based onassertion checking. An auxiliary process called watch-dog queries the users for a scope-�le, from which an as-sertable plan called Sprint plan is generated. The sprintplan consists of carefully derived assertions, which formsthe basis for attack monitoring. Two environments aresimulated for the purpose of testing and evaluation of theintrusion detection system. First, a general academic en-vironment with limited security restrictions is simulated.Second, a virtual banking environment with stringent se-curity requirements is simulated. Di�erent attack scenar-ios are simulated for the purpose of testing the recognitionsystem.1 INTRODUCTIONAs today's commercial applications are becomingmore and more distributed, they also become vulnera-ble to attacks across the network. This di�culty raisesthe need for concurrent intrusion/anomaly detection.Though a variety of techniques exist, the detection la-tency of these systems remains high, since most of themrely on audit trail analysis as the base-line approach. Un-fortunately intrusion detection schemes based on audittrail analysis do not o�er much in terms of damage con-tainment, as they are passive, after-the-fact solutions [1].1The work was supported, in part, by the 1999 Summer Re-search Extension Program, AFOSR Contract F49629-93-C-0063

This paper describes the simulation of an on-line attackrecognition system in a distributed environment. Theunderlying technique is described in detail in a previouspaper [2]. In this scheme, prior to starting a session ona computer an auxiliary process called a watchdog �rstqueries the users for a scope-�le and then generates a ta-ble called Sprint plan. The sprint plan is composed ofcarefully derived assertions that can be used as a basisfor concurrent monitoring of user commands. The planis general enough to allow a normal user to perform histask without much interference from the watchdog andis speci�c enough to detect intrusions both external andinternal. The focus of current paper is the simulation oftwo environments for the purpose of testing and evaluat-ing this intrusion detection system. First, a general aca-demic environment with limited security restrictions issimulated. Second, a virtual banking environment withstringent security requirements is simulated. Di�erentattack scenarios, both internal abuse and external at-tacks are simulated and tested.Some background and related work are given in Sec-tion 2. An overview of the concurrent intrusion detectionsystem is given in Section 3. Section 4 describes the im-plementation of the watchdog monitor. The simulationof the test environments is described in Section 5. Ex-periments and results are given in Section 6. The paperconcludes with a brief discussion.2 BACKGROUNDIntrusion detection is a critical phase of informationsurvivability. A model for intrusion detection was �rstgiven by Denning [3], which uses audit trail analysis asa basis of detection. The existing intrusion detectionssystems (IDS) are frequently classi�ed into misuse andanomaly detection models [4]. The anomaly detectionapproach is based on the idea that an attack on a systemwill be di�erent from the normal activity and an intruder

will exhibit a pattern of behavior di�erent from the nor-mal user [5]. In the misuse detection approach, the IDSwatches for indications of speci�c, precisely representableactivities of system abuse. The IDS includes a collectionof known intrusion signatures, which are encapsulationsof identifying characteristics of speci�c intrusion tech-niques. If a new attack comes in, the system is mostlikely to fail to detect it. USTAT is a Unix based real-time intrusion detection tool developed by Ilgun et al.[6]. It uses state transition analysis where penetration isidenti�ed as a sequence of state changes from a knowninitial state to a �nal compromised state. Several real-time network-monitoring tools have been developed overthe past years. NADIR [7] is a Network Anomaly Detec-tor and Intrusion Report tool. DIDS [8] is DistributedIntrusion Detection System, which looks and correlatesmultiple machine connections to the initial login. Theproject called EMERALD (Event Monitoring EnablingResponse to Anomalous Live Disturbances) [9] aims atdeveloping a distributed monitoring scheme, which usesa combination of signature engine and pro�ler enginewithin the monitor. The research team at Purdue is de-veloping an adaptive network monitoring technique usingautonomous agents [10].3 OVERVIEW of CIDSOur concurrent intrusion detection system (CIDS)uses veri�able assertions similar to the notion of controlow checking in fault tolerance [11], [12]. In this scheme,the user starts a session on a computer in a standard wayby logging in. The system's watchdog then queries theuser for a session-scope. This is the summary of the in-tended system usage in that particular session. Once thescope-�le is submitted, the user is allowed to continuewith his session. Before the user starts his session thewatchdog does the monitoring of the user. This involvesthe translation of the scope-�le into a sprint (SignaturePowered Reasonable Instruction Table) plan. This givesa mechanism for monitoring the user behavior. Whenthe user is in session, the watchdog monitors the usercommands and checks if the command is the one he origi-nally intended to execute. Any signi�cant deviation fromthe plan is an indication of potential intrusion. Figure 1shows the basic block diagram of the CIDS.To implement this scheme in a distributed computingenvironment, a watchdog process is set up for each useron a given node. However, the process remains dormantuntil a user starts a session on a node. These watch-dogs are essentially instances of the same process, mon-itoring the various sessions. They remain restricted tolocal nodes, but once operational interact with a masterwatchdog which is responsible for the coordinated dis-

Tolerance limits
Counters

Thresholds etc.

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

Intrusion Signal

Sprint-Plan

Watchdog
Runtime

EngineGenerator
Assertion

Commands
Runtime

User

Effort

One-Time
Effort

Run-Time

Session
Scope Plan GeneratorFilter

Figure 1. Flow Diagram of CIDStributed system monitoring. Figure 2 shows the overallarchitecture for the network of computers consisting Nnodes and a �le server.

UserUser User

WatchdogWatchdogWatchdog
1 2 n

Master

File Server

Secure
Files

Watchdog
File

Network

Master
Watchdog 1 Watchdog 2

Node 1 Node 2
Master

Watchdog N

Node N

Figure 2. Architecture of Distributed CIDSEach local area network has a separate watchdogcalled a �le watchdog. The function of the �le watch-dog is to monitor access to secure �les on the �le serveras shown in the �gure.4 IMPLEMENTATION OF CIDSThe session-scope can be fed into the system in a va-riety of ways. We use a graphical user interface (GUI) tosimplify the process of the user input. With the help ofthe GUI a few simple checks are done while logging intothe system. Figure 3 shows the owchart of the stepstaken by the watchdog when the user logs in. If the loginis valid, the watchdog queries the user about the applica-tion the user is going to work in that particular session.Based on the application a preselected list of inputs con-taining the system resources available for the user is pro-vided in a GUI, where the user can select the scope of

the session. The watchdog queries the user about hismultiple login intent. If the user wishes to open multiplesessions, a list of all the hosts a user can connect to inthe network is generated. The scope �le thus obtainedis given to a converter, which is built into the watch-dog. The converter converts the scope-�le into a sprintplan consisting of veri�able assertions. A veri�able asser-tion is a quadruple of the form: (Subject, Action, Object,Period) where subject is a user (along with additionalidenti�ers such as terminal ID, IP address etc.), action isan operation performed by the subject such as login, lo-gout, read, execute and object is a receptor of actions suchas �les, programs, messages, records, terminals, printersetc. A temporal characteristic called period signi�es thetime interval for the usage of a given user command. Aformatter formats this spring plan into a format that canbe used for comparison.It is possible that a user's scope exceeds the pre-selected system resources input list and so the watchdogprovides the user with a text area, where the user cantype his intent. This text is sent to an intelligent andlearning software agent to convert it into the sprint plan.The architecture of this agent is shown in Figure 4.The watchdog sends the user-de�ned text to the soft-ware agent using the watchdog/agent interface. This isthen passed on to a parser, which parses the text lookingfor known keywords. These are then sent to the executionmodule. The job of the execution module is to schedulethe inputs coming from individual watchdogs as thereis one software agent per master watchdog even thoughthere is one watchdog per user, to reduce the overheadon the system. The execution module then looks into theagent database to generate the appropriate mapping forthe keywords. If it is not available in the database thenit tries to do its job by communicating with other agentson the network doing similar work. The communicationbetween the agents is achieved using KQML (KnowledgeQuery and Manipulation Language), a protocol that ex-tends these agents to share their knowledge and worktowards cooperative problem solving. This is achievedusing the agent/agent interface. Once the mapping isdone, it is formatted into the sprint plan.Once the one-time monitoring e�ort is complete i.e.,the sprint plan is generated, the user is allowed to pro-ceed with his normal operation. Every user activity onthe system is converted to an atomic operation by thewatchdog's preprocessor. The output of the preprocessoris similar to the sprint plan, and is used by the watchdogfor comparison with the actual sprint plan. Site-speci�cdetails, if any, are also given to the comparator. Anyviolation is reported to the master watchdog. The ar-chitecture of the monitor/comparator unit is shown in

 FTP, rlogin, telnet etc.

 Validate
Multiple Logins

No

Hosts allowed in
the users domain
based on the user
profile
(Presented in a GUI)

Yes

Session Scope

No

Subject

 Object

Preselected Action

Period

 Formatter

SPRINT Plan

More
Text

Yes

Login / Password

Verify
Password Counter Intrusion

Select Application

Research E-Commerce Multimedia

Preselected List
presented as a GUI
Examples:

 Simulators
 Design Tools
 Operating System
 Programming/Scripts
 Documentation
 Miscelaneous like

Specify Approx.
Session Time

User defined Input
 (Text Area)

Software Agent

SPRINT plan from the
User defined text input

Converter

Figure 3. Flowchart of Sprint Plan Generation
Agent/Agent Interface

SPRINT plan
to Formatter

Agent DatabaseParser

Watchdog/Agent Interface

Execution Module

Figure 4. Software Agent Architecture

Monitoring
 Unit

Activity

Preprocessor

Comparison Unit

Logic Unit

Comparator

SPRINT plan

Site-specific
details

Violation Flag to
Master watchdog

 User

Figure 5. Monitor/Comparator UnitFigure 5.The comparator consists of a comparison unit and alogic unit. The comparison unit does all the comparisonsand if there is a mismatch then it is passed to the logicalunit, which determines the violation ag level, by whichthe counters are to be raised. For instance, if the userselects a Unix system and types \I want to work on myresearch paper", then the software agent resolves the textinto a set of atomic operations. In this case, these atomicoperations can be treated as commands that are typed atthe Unix prompt. If the agent knows that this particularuser uses LaTeX software, the output from the agent willbe latex#bibtex#slitex#ispell#text-editor. This is basedon the fact that the user will use a text-editor to type inthe contents of the paper, and later will invoke the La-TeX software by typing the command latex at the Unixprompt. If he uses latex then he probably will use bib-tex and so on. The # here is just a separator betweendi�erent commands.5 TEST ENVIRONMENTSWe chose two distinctive test environments for simula-tion. The �rst one is a student/faculty user environmentin a university setting with limited security constraints.The second one is a virtual banking environment withstringent security requirements.5.1 Simulating a University EnvironmentThe basic architecture is client-server based. Such asetup allows us to derive some test cases from the pub-lished descriptions of well known attacks and in develop-ing site-speci�c test cases based on the security policy.It also helps us to consider both sequential and concur-rent intrusions. In a sequential intrusion, a single per-son issues a single sequence of commands from a singleterminal or a workstation window. In concurrent intru-sion, one or more intruders issue sequences of commandsfrom several terminals, computers or windows. The com-mand sequences work cooperatively to carry out an at-

Figure 6. Choice of Simulators on a Systemtack. For example an intruder can open multiple win-dows on a workstation and connect to a target computerfrom each window and try to distribute the suspicious be-havior among them. The platform allows us to simulatebasic sessions such as telnet, ftp etc. Synchronizationcan be achieved which lets us specify a �xed executionorder of events.When the student/faculty user logs in with auserid/password submission, password veri�cation isdone �rst. If the user is authenticated to login he willbe provided with a series of GUI windows to specify thescope of the session. The user selects the application he isgoing to work on. If, say, the user selects Research as theapplication, the user is provided with a preselected in-put list containing various categories such as simulators,design tools, operating systems, programming languages,scripts, documentation and miscellaneous items such asftp, rlogin etc. Figure 6 shows the screen image of theGUI illustrating the simulator choices.The user just needs to check the tasks he intends toperform. Once this is done the watchdog queries the userif he intends to perform any other activities that are notpresent in the predetermined list. The user is also queriedif he intends to open multiple sessions.The various components of the sprint plan (not shown)are combined together by a formatter to obtain the �nalsprint plan. Figure 7 shows a run-time monitoring setupfor a 1-user, 2-hosts system on a single server.The sprint plan generated for the user is stored at asecure location on the server. As soon as the user logs into a host, the watchdog checks to see if there is a sprintplan already existing for the user, if there is none, itgenerates a new one. If a sprint plan already exists, theuser is allowed to proceed with his normal activity. Thewatchdog continuously monitors the user and compares

Legend :

User Login to Host 1

 User Login to Host 2

Sprint plan

Server

at a secure place
Sprint plan stored

User Activity Watchdog 1

on Host 1 for

User 1
Sprint Plan

Compare with

Host 2

File Watchdog

User Activity

Check with

server if Sprint

Plan exists for

User 1

Yes

Watchdog 2

on Host2 for

User 1

No

Sprint Plan

Counterand

Analyzer

Dialog InitiatorTo User 1

Check with

server if Sprint
Plan exists for

User 1

Yes

No

Exception Generator

Intrusion signal to Master Watchdog

Sprint Plan Conversion

Host 1

User 1

Sprint plan conversion

Refer to Figure 3

Refer to Figure 3

Figure 7. Run-time Monitoring Setupit with the sprint plan.5.2 Virtual Banking Test EnvironmentThe second test platform is a virtual banking envi-ronment with stringent security requirements. The mainfocus here is on the employees in the bank who are theusers of the banking software. Misuse intrusions can betested in detail here. The employees in a bank mighthave access to sensitive data and there is always a possi-bility of misusing privileges. The environment supportsmultiple banks with multiple accounts, with multiple ac-cess to all the accounts. The virtual banking system canbe accessed by a wide variety of employees starting fromthe president of the bank to the teller in a bank. Asession-scope is provided by the employees who login tothe system with an authenticated userid and passwordwith the help of a GUI. Once the user submits his scope�le, the watchdog converts it into a sprint plan. Oncethis conversion is complete, the user gets the access tothe bank system.The employees can work in di�erent areas of the bank-ing system such as bank operations, business banking,credit/lending division, e-commerce, investment bank-ing, monitoring etc. If the user is working in the bankoperations division then some of the features provided tothe employee are creating new accounts, opening existingaccounts etc. It also supports a variety of accounts suchas checking, savings, loan, mortgage, etc. The system al-lows the user to do things such as pro�tability analysis,generate reports etc. The system contains two databases,which the user can access. A transfer tool is provided for

transferring balances for one account to another and fromone database to another.The watchdog continuously monitors the user activityin the system. The �le watchdog is built into the systemsdatabase, which monitors the database accesses and com-municates with the master watchdog to report any illegaltransactions or access violations. The system is writtenin Java [13] and uses SQL queries to query the database.The database is custom made and is also implemented inJava. JDBC has been used for the connectivity betweenthe bank system and the bank database. All the GUIcomponents are light-weight, built using JFC Swing [14].6 EXPERIMENTAL RESULTSWe report the results of our simulation on the univer-sity environment only. The metrics used are detectioncoverage and performance.There is usually no simple procedure to identify appro-priate test cases for an intrusion detection system. A va-riety of intrusion scenarios are considered based on somecommon practices of system usage. These scenarios aregrouped into four categories, viz., one-user without mul-tiple logins, one-user with multiple logins, multiple userswithout multiple logins and multiple users with multiplelogins. Two set of experiments are performed in each ofthese categories, �rst with the worst case, where a userselects all the entities provided in the session-scope GUIby the watchdog and the second where a user selects onlya few entities. The tests are performed by treating thelogins as four di�erent cases, with up to two users at agiven time. The �rst case is where both logins are le-gitimate. In the second case, the �rst login is from alegitimate user and the second login is from an intruder.In the third case, the �rst login is from the intruder andthe second login is from the user and �nally the fourthcase where both logins are from intruders.Some of the selections of the intrusive activity simu-lated are transferring the /etc/passwd �le from one hostto another, password-cracking by comparing the entriesin the /etc/passwd �le to entries in another �le, usinga dictionary �le for the same, exploiting the vulnerabil-ities such as rdist. The system is able to detect all theintrusive activities and terminate the connection for thelogins of intrusive users except in the worst case scenariosof one-user with multiple logins and multiple users withmultiple logins, where a small number of intrusive activ-ities was not detected. The system has also generateda few false positives, agging an intrusion when normaluser activity is taking place. This happens when the userselects only a few entities from the session-scope.Since Java is used for implementation, moderate im-pact on system performance is expected. When new con-

nections are made or more users login, the system load in-creases. However, this increase is only marginal becausethere is no need to maintain any large data structures foreach user or connection. The main server on which CIDSis running is a Sun Ultra Enterprise 450 Model 4400 andthe clients are Sun Ultra 5's running Solaris 2.7.A normal user in a university environment is assumedto have about six to eight processes running on the sys-tem at a given time. There is one watchdog dedicated foreach user which makes it one more process per user onthe system. This watchdog process does not use manyrun-time resources and hence may not become an over-head to the system.In order to quantify the overhead of the CIDS, we elim-inated all unrelated activities in the test environment,started the CIDS and allowed the users to login. We an-alyzed the average load per minute (no. of jobs in the runqueue on Unix) and the storage overhead in kB againstthe number of users on the system. At this particularstage of implementation without much optimization, theoperation is very stable for about 15 users. The load onthe system tends to increase as the number of monitoredusers increases beyond 15. The storage overhead (325kB for a single user) increases at a constant rate withthe number of users. When the session-scope is large,the watchdog maps it to a huge sprint plan. The storageused by the CIDS in our study corresponds to the worstcase scenario where a user selects all the entities from thesession-scope provided by the watchdog in a GUI.7 CONCLUSIONThe concurrent intrusion detection prototype de-scribed in this paper is in its preliminary stage and theexperiments reported are very basic. Our simulationshows that on-line intrusion detection using assertionchecking is feasible, that is, low performance overheadand good detection coverage. This approach is an alter-native to conventional audit trail analysis based intrusiondetection schemes.More detailed experiments with complex intrusion sce-narios are planned. This requires further enhancementsto the sprint plan generation and consideration of struc-tural and temporal sequence checking. Similar experi-ments will also be conducted on the virtual banking ap-plication.References[1] J. Feldman, J. Giordano, and J. Palmer, \Informa-tion survivability at Rome laboratory," 1997 IEEEInformation Survivability Workshop, 1997.

[2] S. Upadhyaya and K. Kwiat, \A distributed con-current intrusion detection scheme based on asser-tions," SCS Int. Symp. on Perf. Eval. of Com-put.and Telecom. Systems, pp. 369{376, July 1999.[3] D. Denning, \An intrusion-detection model," IEEETransactions on Software Engineering, vol. SE-13,pp. 222{232, February 1987.[4] S. Kumar and E. Spa�ord, \A pattern match-ing model for misuse intrusion detection," Proceed-ings of the 17th National Computer Security Conf.,pp. 11{21, October 1994.[5] H. Javitz and A. Valdes, \The sri ides statisticalanamoly detector," Proc., IEEE Symp. on Researchin Security and Privacy, pp. 316{371, May 1991.[6] K. Ilgun, R. Kemmerer, and P. Porras, \State tran-sition analysis: A rule-based intrusion detection ap-proach," IEEE Trans. on Software Eng., vol. 21,pp. 181{199, March 1995.[7] J. Hochberg, K. Jackson, C. Stallings, J. McClary,D. DuBois, and J. Ford, \NADIR: An automatedsystem for detecting network intrusions and mis-use," Computers & Security, vol. 12, pp. 253{248,May 1993.[8] S. Snapp, S. Smaha, T. Grance, and D. Teal,\The DIDS Distributed intrusion detection systemprototype," USENIX, 1992 Technical Conference,pp. 227{233, June 1992.[9] P. Porras and P. Neumann, \EMERALD: Eventmonitoring enabling responses to anomalous live dis-turbances," National Information Systems SecurityConf., pp. 353{365, Oct. 1997.[10] J. Balasubramaniyan, J. Omar, G. Fernandez,E. Spa�ord, and D. Zamboni, \An architecture forintrusion detection using autonomous agents," De-partment of Computer Sciences, Purdue University,Coast TR 98-05, 1998.[11] M. Namjoo, \Techniques for concurrent testing ofVLSI processor operation," Proc. International TestConference, pp. 461{468, November 1982.[12] S. Upadhyaya and B. Ramamurthy, \Concurrentprocess monitoring with no reference signatures,"IEEE Transactions on Computers, vol. 43, pp. 475{480, Apr. 1994.[13] P. Deitel and H. Deitel, Java How to Program. Pren-tice Hall, 1999.[14] S. Pantham, Pure JFC Swing. SAMS, 1999.

