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Abstract

One of the biggest obstacles faced by user command
based anomaly detection techniques is the paucity of data.
Gathering command data is a slow process often spanning
months or years. In this paper, we propose an approach
for data generation based on customizable templates, where
each template represents a particular user profile. These
templates can either be user-defined or created from known
data sets. We have developed an automated tool called
RACOON, which rapidly generates large amounts of user
command data from a given template. We demonstrate that
our technique can produce realistic data by showing that
it passes several statistical similarity tests with real data.
Our approach offers significant advantages over passive
data collection in terms of being non-intrusive and enabling
rapid generation of site-specific data. Finally, we report the
benchmark results of some well-known algorithms against
an original data set and a generated data set.

1 Motivation

Anomaly detection techniques have been applied at var-
ious levels such as network packets, system calls and user
commands. Network level anomaly detection [20] attempts
to detect network attacks based on packet patterns. Pro-
gram behavior modeling approaches [4, 5] establish base-
line behavior by observing the system call sequences and
any malicious activity is captured through deviations from
this baseline behavior. User profiling techniques study user
behaviors through commands [11, 23, 15] that are issued
by a user and these are used to make a distinction between
legitimate users and masqueraders. An ample and com-
patible test data set is central to an in-depth evaluation of
any anomaly detection algorithm. The nature of data used
by network, program and user profiling based anomaly de-

tection techniques is different, and consequently, so are the
data availability and collection issues. We first compare and
contrast some of these issues to provide an insight into the
motivation of our work. Table 1 presents a summary of the
issues and challenges faced.

IDS research has traditionally focused on network level
intrusion detection and this is reflected in the number and
variety of network level security tools available. One of
the first evaluations of intrusion detection systems was per-
formed using network audit data from DARPA/MIT Lin-
coln Labs [13, 12]. This data was collected over a few
weeks by deploying a sniffer, and simulating normal and
attack traffic over a testbed network. It was realized that
although extensive as the data sets were, they were still lim-
ited, and they could not be deemed to cover all possible
scenarios and network environments. On the other hand,
evaluation of an IDS in an actual environment could cause
problems in terms of being intrusive to the users on the net-
work. For example, honeypots first require legal clearance
and user cooperation before they can be deployed in a net-
work. In view of these issues, MIT Lincoln Labs has de-
veloped a next generation IDS evaluation framework called
LARIAT[21], wherein highly customizable test scenarios
can be played with ease. Some of the recent research efforts
have also focused on program execution based anomaly de-
tection. Data availability and collection are not serious is-
sues in this context. This is mainly because every program
can be executed in isolation and a wealth of data can be
generated simply by varying the inputs. Moreover, program
behavior can be easily replicated as long as the versions and
the inputs are identical.

User level intrusion detection deals with user command
data, which is closely tied to user behaviors. The process
of collecting or generating data suffers from similar issues
as network level data if not worse. Obtaining a represen-
tative data set for each user takes months or some times
years. Lane et al. reported [8] that their data collection pro-
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Network Program User
Nature of Data Network packets System call traces User commands
Collection process Sniffer deployment Program execution Command monitoring
Duration of collection Days Seconds or minutes Months or years
Intrusive To Users Possibly No Yes
Data generation tools Yes Not required No

Table 1. A summary of data availability and collection issues of different categories of anomaly
detection techniques

cess took nearly two years for only eight users. Not all of
this data could be used because of errors and requirement of
anonymization. As a result, the data set had to be sanitized.
In general, the data collection process involves setting up a
command monitoring tool on the user’s computer and this
could be looked upon as being intrusive to the user. Also,
it doesn’t guarantee good data because the user’s behavior
may alter if he is aware of the fact that his commands are
being monitored. The closest research effort we have found
that develops synthetic data based on user profiles is the ef-
fort by Lundin et al. [1] although their application domain
was not intrusion detection per se.

To summarize, there are simulation tools available in the
networking domain such as OPNET [18] and ns2 [17] and
data generation tools such as LARIAT to aid researchers,
and none are available for user command data. In view of
these issues, we propose a user command data generation
tool called RACOON to expedite the process of develop-
ment and evaluation of user level intrusion detection. The
two main aspects of our approach are:

• Job-centric approach
RACOON works on the assumption that a user’s com-
putational behavior is a causal process indicated by the
commands he uses to accomplish a job or task. No-
table works such as that by Lane et al. [10] have used
this assumption as the basis of most of their work; we
just restate it here. There could be different classes of
users such as programmers, scientists and system ad-
ministrators, each with different job preferences and
peculiarities in user command usage. In our approach,
we use the notion of jobs as a second order descrip-
tion of user behavior; the first order being the com-
mands itself. We first describe this model to capture
user behavior and then show that data generated using
this model is very similar to an actual user command
data set.

• Customizable templates
One of the important aspects of any data generation
tool is the support for “tunability” of data. Data of

varying quality not otherwise seen in the wild can be
generated, and used to evaluate and expose the blind
spots of an IDS. A template in RACOON represents a
particular user profile. It contains the parameters used
to replicate user behavior. Since these parameters are
user-controlled, it is possible to customize each tem-
plate to reflect a particular user profile. Subsequently,
one can generate data which is pertinent to a particu-
lar computational environment and with required noise
levels.

1.1 An Overview of RACOON

Figure 1 shows the overview of RACOON. There are two
paths for generating user command data. In the first path,
a user specified template is created and provided as input
to the data generation module. Manual specification can be
a onerous process and we have implemented a front-end to
assist the user. In the second path, an available data set can
be processed to create the template, which then follows the
first path. Several user-controlled parameters such as data
size allow the generation of data of desired size and qual-
ity. In order to evaluate our tool, we have generated data
sets resembling Schonlau’s data set (750,000 commands)
[22] in a matter of a few seconds, and performed statisti-
cal similarity tests between the two data sets - generated
data and Schonlau’s data. Finally, we have also duplicated
some well-known anomaly detection algorithms and bench-
marked the two data sets.

2 Related Work

Our work finds great relevance in techniques which use
user command data to perform anomaly detection. So first
we mention some well-known works in this area and the
progress that continues to be made towards better detection
algorithms. Then, we describe some of the publicly avail-
able user command data sets, which the current anomaly
detection systems have relied on. Finally, we discuss our
work in the context of data generation and simulation tools
available both in academic and commercial domains.
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Figure 1. Overview of RACOON’s data generation process

2.1 User Command Based Anomaly Detection

Lane et al. [9, 10] emphasized that a user’s behavior is
causal in nature and used a sequence matching algorithm
to capture user actions. In a follow up work, they showed
that a Hidden Markov Model [7] is a good approximation
of user command behavior. In RACOON, we also use the
fundamental Markov model to capture temporal properties.
Schonlau et al. [23] compared several statistical techniques
(“Uniqueness”, “Bayes one-step Markov”, “Hybrid mul-
tistep Markov”, “Compression”, “IPAM” and “Sequence-
Match”) to evaluate their effectiveness in masquerade de-
tection. Maxion et al. [15] used the Naive Bayes Clas-
sifier on a data set containing truncated user commands
and showed that their technique improved detection signif-
icantly with very low false positive rate. Later, they ar-
gued [14] that valuable information was lost when truncated
command line data was used. They showed that by using
enriched command data, the detection rates were further
improved. A recent research effort [24] used data mining
techniques to detect masqueraders. We have chosen some
of these algorithms to benchmark the data that is gener-
ated through RACOON. Also, we would like to point out
that there is only rudimentary support for generating com-
mand line arguments in RACOON. However, considering
that Maxion et al.’s effort showed that enriched command
lines provide more information, we are currently working
on enhancing RACOON to support this feature in a more
meaningful manner.

2.2 User Command Data Sets

There are three publicly available user command data
sets - Greenberg data set (GDS) [6], Purdue’s MILLENIUM
data set (PMDS) [8] and Schonlau data set (SDS) [22]. Ta-
ble 2 is a brief survey of research efforts and the data sets
used for their empirical studies.

The Greenberg data set consists of user commands col-
lected from 168 users. The command format is very rich,
consisting of the command along with command line argu-
ments, aliases if any, current working directory and whether

Research Effort Data Set Used
Lane et al. PMDS
Schonlau et al. SDS
Maxion et al. SDS, GDS
Stolfo et al. SDS

Table 2. Recent user command based
anomaly detection research efforts and data
sets used

the command execution was a success or failure. The users
came from four user groups categorized as novice pro-
grammers, experienced programmers, computer scientists
and non-programmers. Purdue MILLENIUM data was col-
lected by Lane et al. over a period of up to two years for
eight users. The data set consists of 15,000 to 100,000 com-
mands. The Schonlau data set consists of command sets
belonging to 50 users, where each command set contains
15,000 truncated command lines. The Schonlau data set has
been the most popular data set among the research commu-
nity. Therefore, for our evaluation purposes, we have also
used this data set. We agree that this data set is flawed by
nature as it contains several invalid or obsolete commands.
However, choosing this data set allows us to compare our
benchmark results with known results in the user level in-
trusion detection community.

2.3 Simulation and Data Generation Tools

With extensive research efforts being invested in the net-
working domain over the last four decades, there have been
significant advances in technology and large scale commu-
nication networks is already a reality. On the downside, the
sheer size of modern networks makes it impossible to test
realistic deployments. Instead, several simulation testbeds
such as OPNET and ns2 which serve as a substitute for the
real-world scenarios. In the context of intrusion detection
systems, the situation has been very similar. Following the
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lessons learnt from the data generated during the 1998/1999
DARPA evaluation, it was soon realized that a testbed for
intrusion detection systems was necessary to conduct large
scale evaluations and experiments. LARIAT was one such
tool that was developed, which allows highly customizable
scenarios to be played over a test network. Some of the driv-
ing directions of RACOON have been inspired by tools like
LARIAT. Debar et al. proposed and implemented an exper-
imentation workbench [2] for intrusion detection systems.
The workbench used a combination of techniques to sim-
ulate user interaction with various network services. One
important research effort which is very similar to our work
is Lundin et al. [1]. Their data generation methodology
closely mirrors Path II of RACOON. The audit data which
was used to seed the data generation process consisted of
user actions and their side-effects. However, their applica-
tion domain was fraud detection. In their future work sec-
tion, they do conjecture that some of their techniques could
be used for synthetic data generation for intrusion detec-
tion. RACOON could be considered as a positive proof-of-
concept of that conjecture.

2.4 Known Critiques of Simulated Data

McHugh et al. [16] voiced some concerns over the
DARPA offline intrusion detection evaluation experiments
using data from MIT Lincoln Labs. Like all statistical data,
there could be inherent biases which could skew the results
obtained. Although noise was introduced in the data, it fol-
lowed a known model at best. This may be a significant de-
parture from the noise seen in the wild. In order to circum-
vent the privacy and sensitivity issues of real intrusion data,
the evaluation was performed with synthetic data. This data
set is very limited and its authenticity is questionable. Too
much information about the evaluation process has been left
out which prevents researchers from replicating the exper-
iment. In the context of our data generation process, some
of these concerns are very relevant and we try to address
them. First, our tool is primarily intended to solve the prob-
lem of paucity of user command data sets. Using our tool,
researchers can create a variety of data sets and perform
evaluations. Privacy of user command data is definitely a
serious issue and our tool alleviates that problem. Finally,
we agree that RACOON like other simulation tools cannot
generate real data, but rather acts as a good substitute.

3 Job-Centric Approach

User behavior is a causal process, and the key to our
technique is identifying some key features which can be
used to approximately reproduce that behavior. We describe
these features and their role in the data generation process.

3.1 Preliminaries

Command. The basic unit of execution by a user is a com-
mand. Typical user behavior on a computer is a causal pro-
cess, where a user attempts to achieve a certain goal by is-
suing relevant commands. Examples of a command are vi
and emacs.
Meta-command. A higher level description of a command
is called a meta-command. Commands producing the same
effect are grouped together and such groupings form meta-
commands. For example, the commands vi and emacs
are both used for editing a file, and their corresponding
meta-command is editor . The terms command and meta-
command can be used interchangeably for all practical pur-
poses, since a meta-command is merely a place-holder for
an actual command. We use this notion of a meta-command
during the data generation process.
Job. A user executes meta-commands to accomplish some
system job. The goal that we speak of can be character-
ized as a job that a user wishes to accomplish. In gen-
eral, no single meta-command accomplishes everything a
user requires and a combination of them must be used. For
example, a program development job requires the use of
meta-commands such as editor , compiler , linker
and perhaps a debugger .
Meta-command Sequence. A job is accomplished by a
meta-command sequence. Meta-commands belonging to a
job are typically executed in a sequence and the same se-
quence occurs whenever that particular job is being accom-
plished. Hence, there exists sets of meta-commands which
demonstrate strong temporal and spatial properties. Refer-
ring to the previous example of the program development
job, an executable binary cannot be produced without the
use of an editor , compiler and a linker in some
definite sequence.
Job Hopping. Intermittent switching between jobs is called
job hopping. Realistically, a user may accomplish multiple
jobs and he spends a finite time on each job before switching
to another.
Session Scope. The set of jobs which a user may accom-
plish is called a session scope.

Figure 2 shows the hierarchical relationship between
commands, meta-commands, jobs and session scope. To
summarize, commands that perform the same kind of task
are grouped together as a meta-command, meta-commands
(or commands) can be combined to perform a job, and one
or more jobs form a user’s session scope.

3.2 Simulating A User Profile

The hierarchical structure in Figure 2 only captures the
semantics of a user’s activity. The scope of a user’s ses-
sion combined with the statistical properties of jobs forms
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Figure 2. Hierarchical relationship between
commands, meta-commands, jobs and ses-
sion scope

.

the user’s profile. We define the following statistical prop-
erties (shown in Figure 3), which along with the semantic
structure forms a RACOON template.

• A meta-command is a set containing 2-tuples describ-
ing command instantiation. It is defined as M =
{(c, p) | c is a command ∧ p = Pr(c |M)}. For each
M , the sum of probabilities p is 1. For example,
editor = {(vi , 0.5), (emacs , 0.5)}.

• A job is essentially a sequence of meta-commands.
It is defined in terms of the transitions and sequence
length, both being probabilistic. The meta-command
sequence is modeled as a Markov chain and the se-
quence length is captured using a Gaussian distri-
bution. More formally, a job is defined as J =
(SM , PM , QM , N(µ, σ), n), where SM is the set of
meta-commands, PM is the transition probability ma-
trix, QM is the initial probability vector, the sequence
length is a normally distributed random variable N

with mean µ and standard deviation σ, and n is the
total number of commands associated with the job.

• Finally, at the highest level, we have the session scope.
A session scope can be viewed as a sequence of jobs
in conformity with the phenomenon of job hopping.
Job hopping is also modeled as a Markov chain. It is
defined as S = (SJ , PJ , QJ ), where SJ is the set of
jobs, PJ is the transition probability matrix and QJ is
the initial probability vector. Note that the diagonal of
the matrix PJ is empty because a job hopping from a
job to itself collapses to the same job.

4 RACOON Template

Templates are central to RACOON’s data generation
process. They can either be specified manually or created
from an available data set. Each path has its pros and cons.
Site-specific data can be generated from manually created
templates and this data would provide a more meaningful
evaluation rather than using known data sets. However,
template specification could be a very tedious process. On
the other hand, template generation from known data sets
is a completely automatic process and subsequently certain
parameters of the template can be tweaked to generate dif-
ferent versions of the data set, but the data that is generated
still reflects the environment where the original data set was
collected. We now describe both paths.

4.1 Path 1: Manual Template Creation

A RACOON template represents the personality of a par-
ticular user. We have used XML for specification of se-
mantic and statistical information. The manual template
creation process uses a top-down approach. We start with
the session scope definition. First, the jobs that a user
wishes to accomplish are identified. Depending on how
much a user focuses his actions on each job, the initial
and job-to-job hopping probabilities are specified. Each job
is characterized by a set of meta-commands and their se-
quences. Parameters of each job are specified in terms of
meta-commands and their transition probabilities. A single
meta-command represents a small task and a user may have
a preference in terms of the commands he chooses to ac-
complish this task. This is captured as command instantia-
tion probabilities. At this point, the session scope specifica-
tion is complete for a particular user. Since, each parameter
is user-controlled, it results in highly customized templates.
However, manual template creation is a very cumbersome
data-entry process, and we hide this behind a front-end.

4.2 Path 2: Template Creation From a Data Set

Alternatively, a RACOON template can be created auto-
matically given a data set containing user commands. Per-
turbations can be introduced in these templates to create dif-
ferent user profiles. We now describe an algorithm called
RACOON-TEMPLATE-GEN (see Table 3), which reads a
stream of user command data and generates the template.

RACOON-TEMPLATE-GEN tries to identify jobs and
their corresponding commands on the basis that commands
belonging to a job show very strong cohesion to that job. It
takes a command stream and calculates the initial and tran-
sition probabilities among commands assuming a Markov
model, where each command is a state/node. High tran-
sition probabilities in excess of a pre-specified threshold
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Figure 3. Statistical properties of interest - (a) command instantiation, (b) meta-command transitions,
(c) meta-command sequence length, and (d) job transitions

RACOON-TEMPLATE-GEN(D, size)
1 I[size]← zero matrix
2 T [size, size]← zero matrix
3 while data in D

4 do For each command occurrence ci, increment I[ci]
5 For each command transition ci → ci+1, increment T [ci, ci+1]
6 Convert frequencies to probabilities in I and T

7 A[size, size]← zero matrix
8 for each T [i, j]
9 do if T [i, j] >= α

10 then A[i, j]← A[j, i]← 1
11 J ← φ

12 for each unvisited non-zero entry A[i, j]
13 do list← DEPTH-FIRST-SEARCH(A[i, j])
14 For SM , associate a unique meta-command to each command
15 Calculate PM and QM from T and I respectively
16 Calculate µ and δ from D

17 Calculate n from D

18 Append list to J For session-scope S, calculate PJ and QJ from D and J

19 Convert S to a RACOON template

Table 3. RACOON template generation algorithm from a known data set

α between any two commands indicates a relationship be-
tween these commands. Based on this principle, we con-
struct an adjacency graph, where an edge is assumed in
both directions between the two corresponding nodes. At
the end of this process, the adjacency matrix represents a
forest of trees and each tree corresponds to a job. By run-
ning a depth first search algorithm on each unvisited entry
in the adjacency matrix, we are able to isolate these trees
or equivalently, the jobs. Once the jobs have been identi-
fied, the remaining parameters which completely describe
a job are calculated by revisiting the command stream. At
the end of the algorithm, all the information is converted

into XML. XML was chosen only for convenience and the
template could very well have been represented in another
form.

5 Data Generation

Data is generated from a RACOON template by walk-
ing down the tree and applying the relevant statistics on
the way. Roughly speaking, data generation is the inverse
procedure of the template creation algorithm. However, it
is not as involved as the template creation algorithm. The
main algorithm (RACOON-DATA-GEN) for the data gener-
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ation process is provided in Table 4 and a helper routine
(EXPAND-META-COMMAND) is shown in Table 5.

A session scope specification is provided as the in-
put to the RACOON-DATA-GEN. A job is first chosen
using the initial probability vector and a job chunk size
is generated using a normal distribution. These are fed
into the EXPAND-META-COMMAND routine, which does
the actual command data generation. These two routines
are almost identical and main differences are seen in the
data structures they operate on and the terminating condi-
tions. RACOON-DATA-GEN operates at the job level, while
EXPAND-META-COMMAND works at the meta-command
level. The data generation process terminates once the num-
ber of generated commands reaches the value specified dur-
ing the input stage.

5.1 Data Set Discretization

RACOON’s template generation process implicitly as-
sumes time invariant behavior when computing the various
statistics. For small original data sets from which templates
are created, this is not a serious issue, and the generated data
is similar to original data. However, user command data sets
are seldom small, and an assumption of time invariance in
the original data set will result in well-distributed and flat-
tened statistics in the generated data set. In order to capture
the localized statistical disturbances, we use a divide-and-
conquer approach. Instead of creating one template from
a large data set and then generating data from this single
template, we break up the original data set into smaller seg-
ments and multiple templates are created from these frac-
tional data sets. Eventually, piece-wise data generation in-
creases the similarity between the original and generated
data set. Figures 4 and 5 illustrate the different data gener-
ation strategies. For notational convenience, lets denote the
fraction to be λ, where 0 < λ ≤ 1.

Original
data set

Generated
data set

Template

Figure 4. RACOON’s original data generation
process

We evaluated the aforementioned strategy against
Schonlau’s data set which is quite large with 15,000 com-

Templates Generated
data set

Fragmented
original
data set

Figure 5. RACOON’s data generation process
modified to handle large input data sets

mands for each user. We generated data with various frac-
tion values of λ = {1, 1

3
, 1

15
, 1

30
}, which corresponds to

data blocks of sizes 15,000, 5000, 1000 and 500 commands
each respectively. We then performed several basic statisti-
cal similarity tests - 2 sample t-test (for equality of means),
F-test (for equality variances), Levene test (equality of vari-
ances) and Mann-Whitney test (equality of medians), with
a confidence interval of 99%. Each of these tests returns a
p-value, where 0 ≤ p ≤ 1. For strong similarity, the p-
value should be at least 0.05, and greater the value, more
similar the data sets. The effect of data discretization on a
randomly chosen data set is shown in Figure 6.

As the value of λ→ 0 , the individual block size→ 1. At
this point, the data set is identically replicated. When λ = 1,
the generated data set can be very different from the actual
one depending on whether a user’s command usage patterns
are uniform over the entire data set or not. The choice of
λ is important because it indirectly determines how much
local noise should be retained in the generated data set. For
our evaluation purposes, we have chosen a λ value of 1

30
.

We chose this value because reducing it any further resulted
in very small changes in the quality of data. So, we tried to
choose a value that was as far away as possible from 0 and at
the same time not compromise the quality of the generated
data.

6 Evaluation

Ideally, we would like to evaluate both data generation
paths of RACOON. However, since there is no mechanism
through which open-ended data sets can be benchmarked,
we evaluate only Path II using Schonlau’s data set. For the
evaluation process, we have used various metrics, and the
results obtained provided good insight into the quality of
data generated by RACOON.
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RACOON-DATA-GEN(S, size)
1 cmd_cnt← 1
2 Randomly choose job Ji using QJ from S

3 job_chunk_len← N(µ, δ)
4 EXPAND-META-COMMAND(Ji, job_chunk_len)
5 cmd_cnt = cmd_cnt + job_chunk_len

6 repeat
7 Randomly choose job Jj using PJ and Ji

8 job_chunk_len← N(µ, δ)
9 EXPAND-META-COMMAND(Jj , job_chunk_len)

10 cmd_cnt = cmd_cnt + job_chunk_len

11 until (cmd_cnt ≤ size)

Table 4. Data generation from a RACOON template

EXPAND-META-COMMAND(J, s_len)
1 cmd_cnt← 1
2 Randomly choose meta-command Mi using QJ

3 Randomly choose command c from Mi

4 Output c

5 Increment cmd_cnt

6 repeat
7 Randomly choose meta-command Mj using PJ and Mi

8 Randomly choose command c from Mj

9 Output c

10 Increment cmd_cnt

11 until cmd_cnt ≤ s_len

Table 5. A helper routine to expand a meta-command

6.1 Statistical Similarity Measures

Commonly used statistical similarity measures [25, 3,
19] take two samples and verify whether they came from the
same population. The underlying hypothesis testing frame-
work requires that for strong similarity, both samples should
lie in the 99% (or more) confidence interval, or in other
words display a high degree of overlap. We show the re-
sults of four statistical measures, viz., 2 sample t-test, F-test,
Levene’s test and Mann Whitney test.

Figure 7 shows the p-values (indicated by the vertical
bars) obtained for both actual and generated data sets for
each test. We have used a very high confidence level of
99% for the statistical tests and a p-value of at least 0.05
indicates good evidence that both data sets are statistically
similar. In a typical run on which the tests were conducted,
7 users failed the 2 sample t-test, 14 users failed the F-test,
13 users failed the Levene’s test and only 2 users failed the

Mann-Whitney test. In order to understand the reason for
these failures, we visually inspected the histogram plots of
failed users. Figure 8 shows a comparison of actual and
generated data set of one such user. The two histograms are
identical except for an outlier spike (circled) which effec-
tively shifted the moments towards it and outside the 99%
confidence interval. This spike can be traced to RACOON’s
data generation routine which on occasion repeatedly gener-
ates the same command, although it didn’t occur with high
frequency in the actual data set.

6.2 Information Theoretical Measures

Lee et al. [26] showed that information theoretical mea-
sures such as entropy and relative entropy can be used for
anomaly detection. The main idea is that two similar data
sets will have the the same amount of randomness. We have
separately computed the entropy values of both actual and
generated data sets for all 50 users in a typical run and this
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Figure 6. Effect of data set discretization on similarity measures - (a) 2 sample t-test, (b) F-test, (c)
Levene test, and (d) Mann-Whitney test

is shown in Figure 9 (adjacent vertical bars). It can be seen
that both the data sets have very similar entropy values, dif-
fering only by 1.5 to 2.0 for almost all users. Furthermore,
the pair-wise relative entropy values of actual and generated
data sets (shown in Table 6) are very close to zero indicating
similarity from a information-theoretic point of view.

6.3 Anomaly Detection Algorithms

In our experiments, both the statistical and information
theoretical measures were generally in favor of strong sim-
ilarity. However, both these classes of tests are dependent
on command frequencies and the first few moments. There-
fore, for a true evaluation, we also compared the generated
data against actual data using algorithms which have been
shown to perform good masquerade detection; in particular,
Uniqueness [23] by Schonlau et al. and Naive Bayes Classi-
fier [15] by Maxion et al. Both these algorithms reportedly
perform very well on Schonlau’s data set with high detec-

tion rates or low false positive rates or both. We tried to
replicate the experimental design the best we could based
on the papers, and ran our implementations on the actual
and generated data sets.

Figure 10 shows the true and false positive rates obtained
when a user is masqueraded with the remaining 49 users.
We have chosen a user who is a representative of both the
best case and worst case scenario for the RACOON gener-
ated data set. In general, the true positive and false positive
rates for the actual and generated data set follow each other
closely. However, there are cases where we can see dras-
tic gaps. This is mainly because RACOON’s data genera-
tion parameters do not dynamically adapt to the actual data;
some users are extremely noisy, while others are not. Since
RACOON uses the same procedure for all users, these cases
stand out. This shows that RACOON is not perfect and we
are looking at ways to enable RACOON to handle diverse
cases differently. Note that in the figures we have used con-
nected lines because we found it a convenient way to show
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Figure 7. Statistical similarity tests: Plot of p-value for each pair of users from actual and generated
data set (a) 2 sample t-test, (b) F-test, (c) Levene’s test, and (d) Mann Whitney test

the gap between the results obtained in the two data sets,
and they are not meant to indicate any correlation behav-
ior. Also, we have not used ROC curves because we were
separately comparing false and true positive rates with the
values reported in the papers which describe the algorithms
used for evaluation.

7 Conclusion and Future Work

In this paper, we have presented the technical details of
our user command data generation tool called RACOON.
This tool was mainly developed to answer the need for di-
verse and substantial data sets for user level anomaly de-
tection systems; an area where large scale data collection is
difficult and often impractical. RACOON is a specialized
tool to simplify this process. We summarize the expected
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Actual data Generated data

Figure 8. Comparison of histograms of user commands for a failed user

Figure 9. Entropy values for all 50 users of actual and generated data set

impact as follows.

• Rapid Data Availability
Passive data collection requires long-term cooperation
from multiple users. Collecting a large enough data
set will likely take months or even years. RACOON
makes it possible to generate user command data of
desired quality very rapidly.

• Non-intrusive Alternative
RACOON provides a non-intrusive alternative to user
command data collection, and all technical and non-
technical hurdles can be avoided.

• Accelerated Development and Evaluation Cycle
Data availability is a major obstacle for any IDS devel-
opment. So far the only option regarding user com-
mand data has been patient data collection or being
constrained by available data sets. We have shown that
not only can RACOON generate reasonably good data
sets, but also create these data sets very rapidly.

• Environment-specific Data
User behavior is largely governed by the computa-
tional resources available to a user. Therefore, user
command data is specific to a particular environment.
Hit and miss rates of an anomaly detection algorithm
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Figure 10. True positive and false positive rates 1v49 for both actual and generated data sets: (a)
Uniqueness true positive rate, (b) Uniqueness false positive rate, (c) Naive Bayes Classifier true
positive rate, (d) Naive Bayes Classifier false positive rate
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User pair Relative entropy User pair Relative entropy
1-1 0.004885 26-26 0.00812
2-2 0.005053 27-27 0.013434
3-3 0.006049 28-28 0.003726
4-4 0.010531 29-29 0.011378
5-5 0.005026 30-30 0.005978
6-6 0.003863 31-31 0.005897
7-7 0.006649 32-32 0.003849
8-8 0.001991 33-33 0.011544
9-9 0.007206 34-34 0.00393
10-10 0.031917 35-35 0.105776
11-11 0.002871 36-36 0.010511
12-12 0.009603 37-37 0.005099
13-13 0.008937 38-38 0.005677
14-14 0.003358 39-39 -0.039891
15-15 0.011122 40-40 0.007047
16-16 0.011062 41-41 0.006167
17-17 0.003946 42-42 0.017824
18-18 0.075082 43-43 0.006492
19-19 0.004035 44-44 0.005466
20-20 0.008113 45-45 0.009323
21-21 0.001495 46-46 -0.000117
22-22 0.007645 47-47 0.002272
23-23 0.008207 48-48 0.011631
24-24 0.003783 49-49 0.005915
25-25 0.003662 50-50 0.004892

Table 6. Relative entropy measures between actual and generated data sets

on one data set does not translate literally to another.
Moreover, the amount of noise also varies. RACOON
allows an analyst to generate a wide variety of data sets
using differently constructed user profile templates and
perform a comprehensive or site-specific evaluation.

Any synthetic data generation methodology is controver-
sial and looked upon with suspicion. However, with the
severe shortage of data in the field of intrusion detection,
there seems to be no other alternative. We emphasize again
that the most desirable aspect of such tools is the data gen-
eration process is highly tunable. RACOON’s templates,
either manually created or obtained from a known data set,
are the fundamental basis of its “tunability”. RACOON is
still a tool in its infancy and there are many areas of im-
provement. First, we want to integrate the support for en-
riched command lines to truly simulate a shell command.
Next, RACOON presently provides only offline user com-
mand data and it would be desirable to develop an API to in-
teract with the core engine to produce data in an on-demand
online manner.

We are planning on a public release of RACOON soon
to aid the research community in its efforts towards better

user command based anomaly detection techniques.
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