Network Log Anonymization: Application of Crypto-PAn to Cisco Netflows

Adam Slagell, Jun Wang and William Yurcik,

National Center for Supercomputing Applications (NCSA) University of Illinois at Urbana-Champaign

Motivation for Sharing Logs

- Share for
 - Security Research
 - Create better detection tools and test them
 - Security Operations
 - Network Measurements
- Who says its important?
 - DHS with Information Sharing and Analysis Centers
 - National Strategy to Secure Cyberspace
- Why Netflows?

IP Anonymization Techniques

- Black Marker Effect
 - Great information loss
 - Cannot correlate attacks against machine X
- Truncation
 - Finer grained control of information loss
 - Used for Source Report at ISC
 - Origins of scans
- Random Permutations
 - Injective Mapping, a type of pseudonymization
 - Allows correlation but destroys structure

Prefix-Preserving

Anonymization

- Let P be a permutation of the set of IP addresses
- P is a prefix-preserving anonymization function if and only if for all IP addresses x and y:
 - x and y match on exactly the same length prefix as P(x) and P(y)
- Preserves subnet structures and relationships
- Structure can of course be exploited by attackers

Prefix Preserving Tools

- Crypto-PAn
 - Key based solution
- TCPdpriv
 - Table based solution for TCPdump files
- Ip2anonip
 - A filter to anonymize IP addresses based off TCPdpriv
- Ipsumdump
 - Summarizes TCP/IP dumps
 - Optionally performs prefix-preserving anonymization based off TCPdpriv

What We Have Done

- The problem:
 - Our visualization tools use netflows
 - We need students to work on these projects
 - Information is sensitive
- Subnet structure is vital to tools. Thus Crypto-PAn is ideal.
- No key generator in Crypto-Pan
- Created a pass-phrase based key generator without extra libraries

Key Generator

- Input passphrase (unechoed), max 256 bytes
- Wrap till buffer filled
- CBC encrypt with fixed key
 - This combines data to create an intermediate key
 - Why can't we just XOR blocks?
 - Cannot stop here, processes is reversible
- Use the intermediate key to re-encrypt the original buffer
 - Take the last 32 bytes as the end key
 - Even without dropping 244 bytes, this is irreversible

Performance

- Work on binary logs
 - Avoids extra conversions
- On laptop still less than 20 minutes for 2 Gigabytes of flows

MACHINE (GHz)	Records/Second	Total Time (min)
Dual 2.4 Xeon	75015.342	10.45
Single 2.4 Xeon	42686.279	18.37
1.7 Pentium M	40113.674	19.55

Conclusions & Future Work

- Feasible solution for even large universities
 - Provides high utility, but lower security
- Many attacks on anonymization schemes
 - Inference attacks, chosen plaintext, structure exploitation
- Need new options to balance utility & security
 - Different levels of anonymization
 - Means considering more fields
 - Different types of logs

Thank You

- Email: slagell@ncsa.uiuc.edu
- Links of Interest
 - <u>http://www.ncassr.org/projects/sift/</u>
 - http://www.ncsa.uiuc.edu/
 - <u>http://slagellware.com/</u>
 - <u>http://www.cc.gatech.edu/computing/Telecomm/cry</u>
 <u>ptopan/</u>

