A Control Flow Integrity Based
Trust Model

Ge Zhu
Akhilesh Tyagi
lowa State University

Trust Model
-

e Many definitions of trust.

e T[ypically transaction level trust
propagation/policy.

e Self-assessment of trust.

e A trust policy & security policy specification.

e Compiler level support for embedding
security/trust policy monitoring.

Program level trust
S

e [raditional trust

— Static (w.r.t. program, potentially dynamic w.r.t.
iInformation)

- Transaction level
e Program level trust

- Real-time

- Program level

Architecture/Hardware Trust Support

o000 |
e TCPA (TCGQG) Trusted Platform Module

— Crypto co-processor (RSA -512, 768, 1024, 2048
bits; SHA-1; HMAC)

- Components for asymmetric key generation, RNG,
0.

- TPM may use symmetric encryption internally.

- May implement other asymmetric components
such as DSA or elliptic curve.

- Endorsement keys/Attestation keys

Architecture/Hardware Trust Support

e TPM allows for a trust layer in a PDA, PC,
Cell Phone.

e e.g. Integrity of the boot-up process.

e Allows for protection of intellectual property
(keys, other data, programs).

distribution model

2 Ky , Ko {HASH{K,* }}

3 Ko{Sw}, K.+KL},
HASH{S/w} '

a. GetK,*and using K¢* decfypt
HASH{K*}

b. Validate HASH{K*} == ML

c. Generate Kq

d. Encrypt Ks{S/w} and K,*{Kg}

*
O

<
S
S

Suovar,

sted Component

H/W System Level Trust
"

e Devdas et al use VLSI process variations to
generate a signature of each hardware
component.

e Develop a trust engine that composes
system level trust?

e [rusted Circuits?

Back to Program Level Trust
—

e The underlying thesis is that control flow
integrity of a program is a good indicator of
its trustworthiness.

e Our hypothesis is that any program behavior
compromise whether through data
contamination or control contamination
eventually is visible as control flow anomaly.

Basic scheme (cont.)
7

e We associate a dynamite trust level, a value
in the range [0,1] with a subset of monitored
entities in a program, which could be data
structures or control flow edges.

e At runtime, the trust value will change
according to embedded checks in the control
flow.

e Trust here is an estimation of the likelihood
of not breaching a given trust policy.

Control flow checking framework

e McCluskey et al. proposed to use control flow
signatures for fault tolerance in a processor.

e The signature model contains:
- Each basic block i assigned a unique ID ID,

— Invariant: global register GR contains ID of the
current block at exit.

— Difference value for incoming edge (j,i) where j is
the parent node for i, D, =ID, ®ID,

— Check for the consistency at i.

Travel over one edge

e Suppose control flow
travels through (a,b). At
block a, we have GR=1ID,

e At block b, we need to

check:
GR=GR®D,,

if (GR#ID,)then{ error}

Control Flow Checking
(CFC) Framework

e The integrity of any subset of control flow edges
can be dynamically monitored.

e Which ones should be monitored? How to
specify these sets (ones that are monitorable)?

e Schnieder: security automata; Ligatti et al: Edit
automata.

CFC Integrity Framework

Enforcement actions

CFC Integrity Framework
]

e A predefined set of monitored program
events form 2. each malloc call, access to
the private key, buffer overflow — control flow
edge after the procedure call return.

e What kind of finite sequences specify a
safety property?

e Security and edit automaton.

Control flow checking automata
]

e An automaton is defined by the quintuple
M =(Q72957qs9F)

where
Q is a finite set of states,
2. is a finite set of symbols called the input alphabet,
O is the transition function,
q, is the initial state,
F is a finite set of final states.

CFC automata (cont.)
S

e A CFC automata is a security automaton
which satisfies:
O o=(Jo)UQ,, where

ac.
0,=1{q,}, and Q,.s={ql0(q',a)— q},

and Q,.s.0, formsa setpartitionof Q.
(2) —(3g€ Q,3ac 2(o(g,a) > q,))

CFC DFA Example
N

e Build a control flow checking automaton for a
simple program:

int main(int argc, char **argv){
if (argc>5) { printf("argc>5\n"); }
else { printf("argc<5\n"); };

return,

Example (cont.)

-

|
bol:
if (arg=>5)

AN

bb2:

pantf(age>5");

bb3:
pintf(arge<y”)

~.

bb4:
ety

Example (cont.)

S
e The CFC DFA is defined by M =(0,%,6.,q,,F)
where: Q={q,.1,2,3,4}
2. ={en,,en,,en,en,}
0={(q,,en)—>1,(1,en,) > 2,(1,en,) — 3,
(2,en,) > 4,(3,en,) = 4}
F =1{4}

e Notice that enis the event generated by
control flow entering a new basic block.

Embed CFC automata into
program

e The input to our algorithm would be a CFC
DFA and a program Prog that needs to obey
the security automaton. The output of our
algorithm is a program Prog'with CFC DFA
embedded into source code.

e We assume:
— P: The set of program states
- Q: The set of automaton states
— S: The set of code insertion spots in the program

Embed (cont.)

.
Jop:Q—>P

for :Q— P, where Q:(UQG)UQS

acy,
1s the predicate which maps automaton states

into program states. We assume f,, has the
following two properties :

(I)Forge Q, and pe Q,, f,p(q) = fop (D).
(2)Forge Q,and pe Q,,a#b= f,,(q) # fpp(P)

Embed (cont.)
"

frg : P— S

fpg : P — S 1s the predicate which maps program
states 1nto code spots. For simplicity reason, we assume that :
(3)Foru,ve P, u#zv= f,,(u) # fp(v)
In complex situation, wehre (1) 1s not held, we could use
conditional branch to decide what 1s the current program

state at certain program spot.

Parent set
]

Parent, ={q'1 0(q',a) —> q}is the parent set for

g € Q. And we have the following theorem.

Theorem 1:Fora CFC DFAM =(Q,2.,0,q,,F),

where we have p,ge Q and p # g and p, g are mapped

into a same program spot, then we have

Parent () Parent, =

Theorem 1 proof
S

Suppose the contrary stands, i.e., Parent (| Parent, # ,
and we assume that r € Parent () Parent,,.

Assume thatu = f,,(p)and v = f,,(g). As we know,
fog(m) = fps(v).From (3), we know that u = v, 1.e.,
Jor(P) = fop(q). From (1),(2), we know that there exists

ac2:peQ,qe O, Asre Parent () Parent , we then

know O(r,a) — g and O(r,a) — p. This contradicts with the
fact that M 1sa CFC DFA.Done.

Example 1
S

e Electronic commerce example (F. Bession et
al., "Model checking security properties of
control flow graphs”)

e The security automaton ensures that either
there are no writes or all the codes leading to
write have Debit permission.

e Ewrite stands for the action of write.
e Pdebit stands for the permission to debit.

Example 1 (cont.)

| Irue

Irue

Example 1 (cont.)

Irue

Example 2
S

e F. Schneider, “Enforceable security policies’

e The following security automaton specifies
that there can be no send action after a file
read action has been performed.

Example 2 (cont.)

not FileRead not Send

-

/@ FileRead 0

Example 2 (cont.)

not FileRead not Send

=

s not FileRead Anfr FileRead not Send

Example 2 (cont.)

FileRead

FileRead

Send

Trust Policy

e We view frust with respect to a specified
security policy.

e If a security policy is violated, trust w.r.t. that
attribute is lowered.

e Trust policy just an enhancement of security
policy accounting for updates of the trust
value.

Trust Automaton
]

Trust automaton: M =(0Q,X,0,t,q. ,F)

e [is the trust update function: t(qg,a) = val
e (Could be a multi-dimensional update.
e \When trust is lowered below a certain threshold, an

exception could be raised.

Exception could call an appropriate service such as
intrusion detection system or trust authentication
service.

Experimental results
—

e We have compiled and run two of the
SPEC2000 benchmarks gzip and mcf to
evaluate both static and dynamic system
overhead.

Experimental results (cont.)

c
e Static system overhead

Program | Old New Increased | Old New | %Increase
blocks | blocks Insns | Insns

gzip 1730 | 3945 128.03% | 17429 | 73047 | 319.11%

mcf 395 962 143.54% | 4565 | 17937 | 292.92%

e Dynamic system overhead

Program Number of dynamic Reference | Base Base
checks (billion) Time Runtime | ratio

164.gzip 128 1400 11969 11.7

181.mcf 22 1800 1611 112

Architecture Level support
.

e The performance overhead will be
significantly reduced if the architecture
manages the trust attributes.

- Associate extra attributes with branch instructions:
- BEQ R1, target, BBID, D
- Being implemented in SimpleScalar.

Trust Engine Based processor

Conclusions
«]

e We proposed a control flow integrity based
trust model.

e program's self assessment of trust.
e compiler driven approach.
e performance overhead.

e Trust engine based architecture for higher
efficiency.

