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Trust Model

� Many definitions of trust.
� Typically transaction level trust 

propagation/policy.
� Self-assessment of trust.
� A trust policy & security policy specification.
� Compiler level support for embedding 

security/trust policy monitoring.



Program level trust

� Traditional trust
– Static (w.r.t. program, potentially dynamic w.r.t. 

information)
– Transaction level

� Program level trust
– Real-time
– Program level



Architecture/Hardware Trust Support

� TCPA (TCG) Trusted Platform Module
– Crypto co-processor (RSA -512, 768, 1024, 2048 

bits; SHA-1; HMAC)
– Components for asymmetric key generation, RNG, 

IO.
– TPM may use symmetric encryption internally.
– May implement other asymmetric components 

such as DSA or elliptic curve.
– Endorsement keys/Attestation keys



Architecture/Hardware Trust Support

� TPM allows for a trust layer in a PDA, PC, 
Cell Phone.

� e.g. Integrity of the boot-up process.
� Allows for protection of intellectual property 

(keys, other data, programs).
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H/W System Level Trust

� Devdas et al use VLSI process variations to 
generate a signature of each hardware 
component.

� Develop a trust engine that composes 
system level trust?

� Trusted Circuits?



Back to Program Level Trust

� The underlying thesis is that control flow 
integrity of a program is a good indicator of 
its trustworthiness.

� Our hypothesis is that any program behavior 
compromise whether through data 
contamination or control contamination 
eventually is visible as control flow anomaly.



Basic scheme (cont.)

� We associate a dynamite trust level, a value 
in the range [0,1] with a subset of monitored 
entities in a program, which could be data 
structures or control flow edges.

� At runtime, the trust value will change 
according to embedded checks in the control 
flow.

� Trust here is an estimation of the likelihood 
of not breaching a given trust policy.



Control flow checking framework

� McCluskey et al. proposed to use control flow 
signatures for fault tolerance in a processor.

� The signature model contains:
– Each basic block i assigned a unique ID
– Invariant: global register GR contains ID of the 

current block at exit.
– Difference value for incoming edge (j,i) where j is 

the parent node for i,
– Check for the consistency at i. 
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Travel over one edge

� Suppose control flow 
travels through (a,b). At 
block a, we have 

� At block b, we need to 
check:
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Control Flow Checking 
(CFC)`Framework

� The integrity of any subset of control flow edges 
can be dynamically monitored.

� Which ones should be monitored? How to 
specify these sets (ones that are monitorable)?

� Schnieder: security automata; Ligatti et al: Edit 
automata.



CFC Integrity Framework

Monitored program
P

Security 
Automata

(DFA)

Enforcement actions



CFC Integrity Framework

� A predefined set of monitored program 
events form : each malloc call, access to 
the private key, buffer overflow – control flow 
edge after the procedure call return.

� What kind of finite sequences specify a 
safety property?

� Security and edit automaton.



Control flow checking automata

� An automaton is defined by the quintuple

where
is a finite set of states,
is a finite set of symbols called the input alphabet,
is the transition function,
is the initial state,
is a finite set of final states.
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CFC automata (cont.)

� A CFC automata is a security automaton 
which satisfies:
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CFC DFA Example

� Build a control flow checking automaton for a 
simple program:

int main(int argc, char **argv){

if (argc>5) { printf("argc>5\n"); }

else { printf("argc<5\n"); };

return;

}



Example (cont.)
 

bb 1: 
 if (argc>5) 

bb 2: 
 printf(“argc>5”); 

bb 3: 
 printf(“argc<5”) 

bb 4: 
 return; 
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Example (cont.)

� The CFC DFA is defined by
where:

� Notice that en is the event generated by 
control flow entering a new basic block.
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Embed CFC automata into 
program

� The input to our algorithm would be a CFC 
DFA and a program Prog that needs to obey 
the security automaton. The output of our 
algorithm is a program Prog' with CFC DFA 
embedded into source code.

� We assume:
– P: The set of program states
– Q: The set of automaton states
– S: The set of code insertion spots in the program



Embed (cont.)
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Embed (cont.)
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Theorem 1 proof
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Example 1

� Electronic commerce example (F. Bession et 
al., "Model checking security properties of 
control flow graphs")

� The security automaton ensures that either 
there are no writes or all the codes leading to 
write have Debit permission.

� Ewrite stands for the action of write.
� Pdebit stands for the permission to debit.



Example 1 (cont.)
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Example 1 (cont.)
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Example 2

� F. Schneider, “Enforceable security policies”
� The following security automaton specifies 

that there can be no send action after a file 
read action has been performed.



Example 2 (cont.)

 

qnfr qfr 

not FileRead not Send 

FileRead 



Example 2 (cont.)

 

qnfr qfr 

not FileRead not Send 

FileRead 
qs not FileRead 

qfr not Send 



Example 2 (cont.)
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q2 

Send 

FileRead 

Send 
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Trust Policy

� We view trust with respect to a specified 
security policy.

� If a security policy is violated, trust w.r.t. that 
attribute is lowered.

� Trust policy just an enhancement of security 
policy accounting for updates of the trust 
value.



Trust Automaton

� Trust automaton: 

� t is the trust update function: t(q,a) = val
� Could be a multi-dimensional update.
� When trust is lowered below a certain threshold, an 

exception could be raised.
� Exception could call an appropriate service such as 

intrusion detection system or trust authentication 
service.
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Experimental results

� We have compiled and run two of the 
SPEC2000 benchmarks gzip and mcf to 
evaluate both static and dynamic system 
overhead.



Experimental results (cont.) 

� Static system overhead

� Dynamic system overhead
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Architecture Level support

� The performance overhead will be 
significantly reduced if the architecture 
manages the trust attributes.
– Associate extra attributes with branch instructions:
� ��������	
��
	���������

– Being implemented in SimpleScalar.



Trust Engine Based processor

Processor
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Conclusions

� We proposed a control flow integrity based 
trust model. 

� program's self assessment of trust. 
� compiler driven approach.
� performance overhead. 
� Trust engine based architecture for higher 

efficiency.


