
A Control Flow Integrity Based
Trust Model

Ge Zhu
Akhilesh Tyagi
Iowa State University

Trust Model

� Many definitions of trust.
� Typically transaction level trust

propagation/policy.
� Self-assessment of trust.
� A trust policy & security policy specification.
� Compiler level support for embedding

security/trust policy monitoring.

Program level trust

� Traditional trust
– Static (w.r.t. program, potentially dynamic w.r.t.

information)
– Transaction level

� Program level trust
– Real-time
– Program level

Architecture/Hardware Trust Support

� TCPA (TCG) Trusted Platform Module
– Crypto co-processor (RSA -512, 768, 1024, 2048

bits; SHA-1; HMAC)
– Components for asymmetric key generation, RNG,

IO.
– TPM may use symmetric encryption internally.
– May implement other asymmetric components

such as DSA or elliptic curve.
– Endorsement keys/Attestation keys

Architecture/Hardware Trust Support

� TPM allows for a trust layer in a PDA, PC,
Cell Phone.

� e.g. Integrity of the boot-up process.
� Allows for protection of intellectual property

(keys, other data, programs).

a. Get Kp
+ and using KC

+ decrypt
HASH{Kp

+}
b. Validate HASH{KP

+} == MD
c. Generate KS
d. Encrypt KS{S/w} and KP

+{KS}

Chip Man.

Trusted Component

S/w VBob’ CPU

tr
us

te
d

K C
+

2: KP
+ , KC

-{HASH{KP
+ }}

a. Get KS using KP
-

b. Decrypt S/w using KS
c. Validate HASH{S/w} == MD

Software distribution model

3: KS{S/w}, KP
+{KS},

HASH{S/w}

H/W System Level Trust

� Devdas et al use VLSI process variations to
generate a signature of each hardware
component.

� Develop a trust engine that composes
system level trust?

� Trusted Circuits?

Back to Program Level Trust

� The underlying thesis is that control flow
integrity of a program is a good indicator of
its trustworthiness.

� Our hypothesis is that any program behavior
compromise whether through data
contamination or control contamination
eventually is visible as control flow anomaly.

Basic scheme (cont.)

� We associate a dynamite trust level, a value
in the range [0,1] with a subset of monitored
entities in a program, which could be data
structures or control flow edges.

� At runtime, the trust value will change
according to embedded checks in the control
flow.

� Trust here is an estimation of the likelihood
of not breaching a given trust policy.

Control flow checking framework

� McCluskey et al. proposed to use control flow
signatures for fault tolerance in a processor.

� The signature model contains:
– Each basic block i assigned a unique ID
– Invariant: global register GR contains ID of the

current block at exit.
– Difference value for incoming edge (j,i) where j is

the parent node for i,
– Check for the consistency at i.

iID

ijij IDIDD ⊕=,

Travel over one edge

� Suppose control flow
travels through (a,b). At
block a, we have

� At block b, we need to
check:

a

b c

d

aIDGR =

} {)(
,

errorthenIDGRif

DGRGR

b

ba

≠
⊕=

Control Flow Checking
(CFC)`Framework

� The integrity of any subset of control flow edges
can be dynamically monitored.

� Which ones should be monitored? How to
specify these sets (ones that are monitorable)?

� Schnieder: security automata; Ligatti et al: Edit
automata.

CFC Integrity Framework

Monitored program
P

Security
Automata

(DFA)

Enforcement actions

CFC Integrity Framework

� A predefined set of monitored program
events form : each malloc call, access to
the private key, buffer overflow – control flow
edge after the procedure call return.

� What kind of finite sequences specify a
safety property?

� Security and edit automaton.

Control flow checking automata

� An automaton is defined by the quintuple

where
is a finite set of states,
is a finite set of symbols called the input alphabet,
is the transition function,
is the initial state,
is a finite set of final states.

),,,,(FqQM sδΣ=

Q
�

δ
sq

F

CFC automata (cont.)

� A CFC automata is a security automaton
which satisfies:

))),((,()2(

. ofpartition set a forms,and

},),'(|{and},{

where,)()1(

|

|

s

saa

aass

a
sa

qaqaQq

QQQ

qaqqQqQ

QQQ

→�∈∃∈∃¬

→==

=

�∈

�∈

�∈

δ

δ

� �

CFC DFA Example

� Build a control flow checking automaton for a
simple program:

int main(int argc, char **argv){

if (argc>5) { printf("argc>5\n"); }

else { printf("argc<5\n"); };

return;

}

Example (cont.)

bb 1:
 if (argc>5)

bb 2:
 printf(“argc>5”);

bb 3:
 printf(“argc<5”)

bb 4:
 return;

1

4

2 3

Example (cont.)

� The CFC DFA is defined by
where:

� Notice that en is the event generated by
control flow entering a new basic block.

),,,,(FqQM sδΣ=

}4{

}4),3(,4),2(

,3),1(,2),1(,1),{(

},,{

}4,3,2,1,{

44

321

4,321

=
→→

→→→=
=�

=

F

enen

enenenq

enenenen

qQ

s

s

δ

Embed CFC automata into
program

� The input to our algorithm would be a CFC
DFA and a program Prog that needs to obey
the security automaton. The output of our
algorithm is a program Prog' with CFC DFA
embedded into source code.

� We assume:
– P: The set of program states
– Q: The set of automaton states
– S: The set of code insertion spots in the program

Embed (cont.)

)()(, and For)2(

).()(, and For (1)
:properties twofollowing

 thehas assume Westates. program into
statesautomaton maps which predicate theis

)(where,:

:

pfqfbaQpQq

pfqfQpQq

f

QQQPQf

PQf

QPQPba

QPQPaa

QP

a
saQP

QP

≠�≠∈∈

=∈∈

=→

→

�∈
� �

Embed (cont.)

spot. programcertain at state
programcurrent theis what decide branch to lconditiona

 use could weheld,not is (1) wehresituation,complex In

)()(,,For (3)
: thatassume wereason, simplicityFor spots. code into states

program maps which predicate theis :

:

vfufvuPvu

SPf

SPf

PSPS

PS

PS

≠�≠∈

→
→

Parent set

∅=

≠∈
�=

∈

→=

qp

s

q

ParentParent

qpqpQqp

FqQM

Qq

qaqqParent

�
have then wespot, program same a into

mapped are , and and , have wewhere

),,,,,(DFA CFC aFor :1 Theorem
 theorem.following thehave weAnd .

forset parent theis }),'(|'{

δ

δ

Theorem 1 proof

Done. . a is fact that
 with thescontradict This .),(and),(know

 then we, As .,:

exists e that therknow we(2),(1), From).()(

 i.e., , that know we(3), From).()(

know, weAs).(and)(that Assume

. that assume weand

, i.e., stands,contrary theSuppose

DFACFCM

parqar

ParentParentrQqQpa

qfpf

vuvfuf

qfvpfu

ParentParentr

ParentParent

qpaa

QPQP

PSPS

QPQP

qp

qp

→→

∈∈∈�∈

=
==

==

∈

∅≠

δδ
�

�

�

Example 1

� Electronic commerce example (F. Bession et
al., "Model checking security properties of
control flow graphs")

� The security automaton ensures that either
there are no writes or all the codes leading to
write have Debit permission.

� Ewrite stands for the action of write.
� Pdebit stands for the permission to debit.

Example 1 (cont.)

0

1

2 3

writeE¬

writeE

writeDebit EP ¬∧

writeE

true

true

writeDebit EP ¬∧¬

Example 1 (cont.)

0

1

2 3’

writeE¬

writeE
writeDebit EP ¬∧

writeE

true

true

writeDebit EP ¬∧¬

1’ true

qs
writeDebit EP ¬∧

2’
writeE¬

3
true

Example 2

� F. Schneider, “Enforceable security policies”
� The following security automaton specifies

that there can be no send action after a file
read action has been performed.

Example 2 (cont.)

qnfr qfr

not FileRead not Send

FileRead

Example 2 (cont.)

qnfr qfr

not FileRead not Send

FileRead
qs not FileRead

qfr not Send

Example 2 (cont.)

qs

q1 FileRead
qf

q2

Send

FileRead

Send

Send

Trust Policy

� We view trust with respect to a specified
security policy.

� If a security policy is violated, trust w.r.t. that
attribute is lowered.

� Trust policy just an enhancement of security
policy accounting for updates of the trust
value.

Trust Automaton

� Trust automaton:

� t is the trust update function: t(q,a) = val
� Could be a multi-dimensional update.
� When trust is lowered below a certain threshold, an

exception could be raised.
� Exception could call an appropriate service such as

intrusion detection system or trust authentication
service.

),,,,,(FqtQM sδΣ=

Experimental results

� We have compiled and run two of the
SPEC2000 benchmarks gzip and mcf to
evaluate both static and dynamic system
overhead.

Experimental results (cont.)

� Static system overhead

� Dynamic system overhead

292.92%179374565143.54%962395mcf

319.11%7304717429128.03%39451730gzip

%IncreaseNew
Insns

Old
Insns

IncreasedNew
blocks

Old
blocks

Program

1121611180022181.mcf

11.7119691400128164.gzip

Base
ratio

Base
Runtime

Reference
Time

Number of dynamic
checks (billion)

Program

Architecture Level support

� The performance overhead will be
significantly reduced if the architecture
manages the trust attributes.
– Associate extra attributes with branch instructions:
� ��������	
��
	���������

– Being implemented in SimpleScalar.

Trust Engine Based processor

Processor
Core

BEQ R1, target,
BBID, D

GR

XOR

=?

Yes, raise exception

Conclusions

� We proposed a control flow integrity based
trust model.

� program's self assessment of trust.
� compiler driven approach.
� performance overhead.
� Trust engine based architecture for higher

efficiency.

