# Trust-based Privacy Preservation for Peer-to-peer Data Sharing



The work is supported by NSF ANI-0219110 and IIS-0209059



#### Problem statement

- Privacy in peer-to-peer systems is different from the anonymity problem
- Preserve privacy of requester
- A mechanism is needed to remove the association between the identity of the requester and the data needed



## Proposed solution

- A mechanism is proposed that allows the peers to acquire data through trusted proxies to preserve privacy of requester
  - The data request is handled through the peer's proxies
  - The proxy can become a supplier later and mask the original requester



#### Related work

- Trust in privacy preservation
  - Authorization based on evidence and trust, [Bhargava and Zhong, DaWaK'02]
  - Developing pervasive trust [Lilien, CGW'03]
- Hiding the subject in a crowd
  - K-anonymity [Sweeney, UFKS'02]
  - Broadcast and multicast [Scarlata et al, INCP'01]



## Related work (2)

- Fixed servers and proxies
  - Publius [Waldman et al, USENIX'00]
- Building a multi-hop path to hide the real source and destination
  - FreeNet [Clarke et al, IC'02]
  - Crowds [Reiter and Rubin, ACM TISS'98]
  - Onion routing [Goldschlag et al, ACM Commu.'99]



## Related work (3)

- $p^5$  [Sherwood *et al*, IEEE SSP'02]
  - p<sup>5</sup> provides sender-receiver anonymity by transmitting packets to a broadcast group
- Herbivore [Goel et al, Cornell Univ Tech Report'03]
  - Provides provable anonymity in peer-to-peer communication systems by adopting dining cryptographer networks



## Privacy measurement

- A tuple <requester ID, data handle, data content> is defined to describe a data acquirement.
- For each element, "0" means that the peer knows nothing, while "1" means that it knows everything.
- A state in which the requester's privacy is compromised can be represented as a vector <1, 1, y>, (y ∈ [0,1]) from which one can link the ID of the requester to the data that it is interested in.



## Privacy measurement (2)

For example, line *k* represents the states that the requester's privacy is compromised.





## Mitigating collusion

An operation "\*" is defined as:

$$< c_1, c_2, c_3 > = < a_1, a_2, a_3 > * < b_1, b_2, b_3 >$$

$$c_i = \begin{cases} \max(a_i, b_i), & a_i \neq 0 \text{ and } b_i \neq 0; \\ 0, & \text{otherwise.} \end{cases}$$

- This operation describes the revealed information after a collusion of two peers when each peer knows a part of the "secret".
- The number of collusions required to compromise the secret can be used to evaluate the achieved privacy



#### Trust based privacy preservation scheme

- The requester asks one proxy to look up the data on its behalf. Once the supplier is located, the proxy will get the data and deliver it to the requester
  - Advantage: other peers, including the supplier, do not know the real requester
  - Disadvantage: The privacy solely depends on the trustworthiness and reliability of the proxy



- To avoid specifying the data handle in plain text, the requester calculates the hash code and only reveals a part of it to the proxy.
- The proxy sends it to possible suppliers.
- Receiving the partial hash code, the supplier compares it to the hash codes of the data handles that it holds. Depending on the revealed part, multiple matches may be found.
- The suppliers then construct a bloom filter based on the remaining parts of the matched hash codes and send it back. They also send back their public key certificates.



- Examining the filters, the requester can eliminate some candidate suppliers and finds some who may have the data.
- It then encrypts the full data handle and a data transfer  $k_{Data}$  with the public key.
- The supplier sends the data back using  $k_{\it Data}$  through the proxy
- Advantages:
  - It is difficult to infer the data handle through the partial hash code
  - The proxy alone cannot compromise the privacy
  - Through adjusting the revealed hash code, the allowable error of the bloom filter can be determined



#### Data transfer procedure after improvement 1

## Requester Proxy of Supplier



R: requester S: supplier

Step 1, 2: *R* sends out the partial hash code of the data handle

Step 3, 4: *S* sends the bloom filter of the handles and the public key certificates

Step 5, 6: R sends the data handle and  $k_{\it Data}$  encrypted by the public key

Step 7, 8: S sends the required data encrypted by  $k_{Data}$ 



- The above scheme does not protect the privacy of the supplier
- To address this problem, the supplier can respond to a request via its own proxy







## Trustworthiness of peers

- The trust value of a proxy is assessed based on its behaviors and other peers' recommendations
- Using Kalman filtering, the trust model can be built as a multivariate, timevarying state vector



## Experimental platform - TERA

- Trust enhanced role mapping (TERM) server assigns roles to users based on
  - Uncertain & subjective evidences
  - Dynamic trust
- Reputation server
  - Dynamic trust information repository
  - Evaluate reputation from trust information by using algorithms specified by TERM server

#### Trust enhanced role assignment architecture (TERA)





#### Conclusion

- A trust based privacy preservation method for peer-to-peer data sharing is proposed
- It adopts the proxy scheme during the data acquirement
- Extensions
  - Solid analysis and experiments on large scale networks are required
  - A security analysis of the proposed mechanism is required



## Related publication

- B. Bhargava and Y. Zhong, "Authorization based on evidence and trust," in *Proc. of International Conference on Data* Warehousing and Knowledge Discovery (DaWaK), 2002
- B. Bhargava, "Vulnerabilities and fraud in computing systems," in *Proc. of International Conference on Advances* in Internet, Processing, Systems, and Interdisciplinary Research (IPSI), 2003.
- L. Lilien and A. Bhargava, "From vulnerabilities to trust: A road to trusted computing," in *Proc. of International Conference on Advances in Internet, Processing, Systems, and Interdisciplinary Research (IPSI)*, 2003.
- L. Lilien, "Developing pervasive trust paradigm for authentication and authorization," in *Proc. of Third Cracow Grid Workshop (CGW)*, 2003.