Statistical Privacy For Privacy Preserving Information Sharing

Johannes Gehrke

Cornell University http://www.cs.cornell.edu/johannes

Joint work with: Alexandre Evfimievski, Ramakrishnan Srikant, Rakesh Agrawal

Introduction

- To operate, an e-business needs to query data owned by clients or other businesses
- The owners are concerned about privacy of their data, they will not ship all data to one server
- We want algorithms that efficiently evaluate multi-party queries while disclosing as little extra information as possible.

Introduction

Cornell

Introduction

Privacy and Disclosure

Privacy and Disclosure

• Yao [1986]: Any two-party data operation can be made computationally private, if the operation is converted into a Boolean circuit.

Privacy and Disclosure

Talk Outline

- Introduction
- Randomization and privacy for association rules
 - Amplification: upper bound on breaches
 - Experimental results
 - Conclusion

Privacy Preserving Associations

- We have one server and many clients
- Each client has a private transaction (a set of items)
 Example: product preferences
- The server wants to find frequent subsets of items
 (aggregate statistical information)
- Each client wants to hide its transaction from the server

Privacy Preserving Associations

Privacy Preserving Associations

- Let T be the set of all transactions, and $t \in T$ be a transaction
- Any itemset A has <u>support</u> (frequency) s in T if

$$s = \operatorname{supp} (A) = \frac{\#\{t \in T \mid A \subseteq t\}}{|T|}$$

- Itemset A is frequent if $s \ge s_{\min}$
- Antimonotonicity: if $A \subseteq B$, then $\operatorname{supp} (A) \ge \operatorname{supp} (B)$.
- <u>Association rule:</u> $A \Rightarrow B$ holds when the union $A \cup B$ is frequent and: supp $(A \cup B) \ge \text{supp } (A) \cdot conf_{\min}$

The Problem

- How to randomize transactions so that
 - we can find frequent itemsets
 - while preserving privacy at transaction level?

Randomization Example

A randomization may "look strong" but sometimes fail to hide some items of an individual transaction.

- Randomization example: given a transaction,
 - keep item with 20% probability,
 - replace with a new random item with 80% probability.

10 M transactions of size 10 with 10 K items:

1%	5% have	94%
have	$\{a, b\}, \{a, c\},\$	have one or zero
$\{a, b, c\}$	or { <i>b</i> , <i>c</i> } only	items of { <i>a</i> , <i>b</i> , <i>c</i> }

10 M transactions of size 10 with 10 K items:

After randomization: How many have $\{a, b, c\}$?

Cornell

10 M transactions of size 10 with 10 K items:

1% have { <i>a</i> , <i>b</i> , <i>c</i> }	5% have { <i>a</i> , <i>b</i> }, { <i>a</i> , <i>c</i> }, or { <i>b</i> , <i>c</i> } only	94% have one or zero items of { <i>a</i> , <i>b</i> , <i>c</i> }	
• 0.2	$2^3 \qquad \qquad$	at most 3 • 0.8/10,000 ↓ • 0.2 • (9 • 0.8/10,000	0)²
0.008% 0.000128% 800 ts. 13 trans.		less than 0.00002% 2 transactions	

After randomization: How many have $\{a, b, c\}$?

10 M transactions of size 10 with 10 K items:

	1% have { <i>a</i> , <i>b</i> , <i>c</i> }	5% have { <i>a</i> , <i>b</i> }, { <i>a</i> , <i>c</i> }, or { <i>b</i> , <i>c</i> } only	94% have one or zero items of { <i>a</i> , <i>b</i> , <i>c</i> }	
	• 0.2	$2^3 \qquad \int \bullet 0.2^2 \bullet 8$	at most • 0.8/10,000 • 0.2 • (9 • 0.8/10,0)00) ²
(0.008% 800 ts 98.2%	0.000128% 13 trans. 1.6%	less than 0.00002% 2 transactions 0.2%	

After randomization: How many have $\{a, b, c\}$?

- Given nothing, we have only 1% probability that {*a*, *b*, *c*} occurs in the original transaction
- Given {*a*, *b*, *c*} in the randomized transaction, we have about 98% certainty of {*a*, *b*, *c*} in the original one.
- This is what we call a privacy breach.
- The example randomization preserves privacy "on average," but not "in the worst case."

Privacy Breaches

- Suppose the "adversary" wants to know if $z \in t$, where
 - -t is an original transaction;
 - -t' is the corresponding randomized transaction;
 - -A is a (frequent) itemset, $z \in A$
- Itemset A causes a privacy breach of level β (e.g. 50%) if:

$$\operatorname{Prob}\left[z \in t \mid A \subseteq t'\right] \geq \beta$$

Knowledge of $A \subseteq t'$ makes a jump from Prob $[z \in t]$ to Prob $[z \in t | A \subseteq t']$ (in the adversary's viewpoint).

Talk Outline

- Introduction
- Randomization and privacy for association rules
- Amplification: upper bound on breaches
 - Experimental results
 - Conclusion

Generalized Approach

- We want a bound for <u>all</u> privacy breaches
 - not only for: item $\in t$ versus itemset $\subseteq t$?
- No knowledge of data distribution is required in advance
 We don't have to know Prob [item ∈ *t*]
- Applicable to numerical data as well
- Easy to work with, even for complex randomizations

Original (private) data Assumptions:

- Described by a random variable *X*.
- Each client is independent.

Randomized data

Described by a random variable Y = R(X).

Let P(x) be any property of client's private data; Let $0 < \alpha < \beta < 1$ be two probability thresholds.

 $\alpha = 1\%$ and $\beta = 50\%$

Let P(x) be any property of client's private data; Let $0 < \alpha < \beta < 1$ be two probability thresholds.

	SERVER	
($\operatorname{Prob}\left[\boldsymbol{P}\left(\boldsymbol{X}\right)\right] \leq \boldsymbol{\alpha}$	

Let P(x) be any property of client's private data; Let $0 < \alpha < \beta < 1$ be two probability thresholds.

Let P(x) be any property of client's private data; Let $0 < \alpha < \beta < 1$ be two probability thresholds.

Disclosure of y causes an α -to- β privacy breach w.r.t. property P(x).

α -to- β Privacy Breach

Checking for α -to- β privacy breaches:

- There are exponentially many properties P(x);
- We have to know the <u>data distribution</u> in order to check whether Prob [P(X)] $\leq \alpha$ and Prob [P(X) | Y = y] $\geq \beta$.

Is there a simple property of randomization operator *R* that limits privacy breaches?

Definition:

 Randomization operator *R* is called "at most γ-amplifying" if:

$$\max_{x_1, x_2} \max_{y} \frac{p[x_1 \to y]}{p[x_2 \to y]} \le \gamma$$

- Transition probabilities $p [x \rightarrow y] = \text{Prob} [R (x) = y]$ depend only on the operator R and not on data.
- We assume that all y have a nonzero probability.
- The bigger γ is, the more may be revealed about *x*.

The Bound on α -to- β Breaches

Statement:

• If randomization operator R is at most γ -amplifying, and if:

$$\gamma < \frac{\beta}{\alpha} \cdot \frac{1-\alpha}{1-\beta}$$

• Then, revealing R(X) to the server will never cause an α -to- β privacy breach.

See proof in [PODS 2003].

The Bound on α -to- β Breaches

Examples:

- 5%-to-50% privacy breaches do not occur for $\gamma < 19$: $\frac{0.5}{0.05} \cdot \frac{1 - 0.05}{1 - 0.5} = 19$
- 1%-to-98% privacy breaches do not occur for γ < 4851:

$$\frac{0.98}{0.01} \cdot \frac{1 - 0.01}{1 - 0.98} = 4851$$

• 50%-to-100% privacy breaches do not occur for any finite γ .

Amplification: Summary

- An α -to- β privacy breach w.r.t. property P(x) occurs when
 - Prob [*P* is true] $\leq \alpha$
 - Prob [**P** is true $| Y = y] \ge \beta$.
- Amplification methodology limits privacy breaches by just looking at transitional probabilities of randomization.
 - Does not use data distribution:

$$\max_{x_1, x_2} \max_{y} \frac{p[x_1 \to y]}{p[x_2 \to y]} \le \gamma$$

Amplification In Practice

• Given transaction t of size m, construct t' = R(t):

$$t = a, b, c, d, e, f, u, v, w$$

Definition of select-a-size

- Given transaction t of size m, construct t' = R(t):
 - Choose a number $j \in \{0, 1, ..., m\}$ with distribution $\{p[j]\}_{0,m}$;

$$t = a, b, c, d, e, f, u, v, w$$
$$t' =$$
$$j = 4$$

Definition of select-a-size

- Given transaction t of size m, construct t' = R(t):
 - Choose a number $j \in \{0, 1, ..., m\}$ with distribution $\{p[j]\}_{0..m}$;
 - Include exactly j items of t into t';

$$t = a, b, c, d, e, f, u, v, w$$

 $t' = b, e, u, w$
 $j = 4$

Definition of select-a-size

- Given transaction t of size m, construct t' = R(t):
 - Choose a number $j \in \{0, 1, ..., m\}$ with distribution $\{p[j]\}_{0..m}$;
 - Include exactly j items of t into t';
 - Each other item (not from t) goes into t' with probability ρ .

The choice of $\{p[j]\}_{0..m}$ and ρ is based on the desired privacy level.

$$t = a, b, c, d, e, f, u, v, w$$

Talk Outline

- Introduction
- Randomization and privacy for association rules
- Amplification: upper bound on breaches
- Experimental results
 - Conclusion

Lowest Discoverable Support

- LDS is s.t., when predicted, is 4σ away from zero.
- Roughly, LDS is proportional to $1/\sqrt{\# \text{ trans.}}$

|t| = 5, 5%-50% privacy breaches are the worst allowed

LDS vs. number of transactions

LDS vs. Breach Threshold α^*

• Reminder: α -to-50% breach occurs when $\operatorname{Prob} [P(t)] \leq \alpha$ and $\operatorname{Prob} [P(t) | R(t) = t'] \geq 50\%$.

LDS vs. Transaction Size

5%-50% privacy breaches are the worst allowed, |T| = 5 M

• Longer transactions are harder to use in support recovery

Real datasets: soccer, mailorder

- <u>Soccer</u> is the clickstream log of WorldCup'98 web site, split into sessions of HTML requests.
 - 11 K items (HTMLs), 6.5 M transactions
 - Available at <u>http://www.acm.org/sigcomm/ITA/</u>
- <u>Mailorder</u> is a purchase dataset from a certain on-line store
 - Products are replaced with their categories
 - 96 items (categories), 2.9 M transactions

A small fraction of transactions are discarded as too long.

- longer than 10 (for soccer) or 7 (for mailorder)

Restricted Privacy Breaches

- Real data experiments used older approach [KDD 2002]
 - We constrained only $z \in t$ versus $A \subseteq t'$ privacy breaches
 - Restrictions in the form $\operatorname{Prob} [z \in t | A \subseteq t'] < \beta$
 - Older approach used some (minimal) information about data distribution to choose randomization parameters

Modified Apriori on Real Data

Breach level $\beta = 50\%$. Inserted 20-50% items to each transaction.

Soccer:	Itemset Size	True Itemsets	True Positives	False Drops	False Positives
$s_{\min} = 0.2\%$	1	266	254	12	31
$oldsymbol{\sigma} pprox 0.07\%$ for	2	217	195	22	45
3-itemsets	3	48	43	5	26

Mailorder:	Itemset	True	True	False	False
	Size	Itemsets	Positives	Drops	Positives
$s_{\min} = 0.2\%$	1	65	65	0	0
$oldsymbol{\sigma} pprox 0.05\%$ for	2	228	212	16	28
3-itemsets	3	22	18	4	5

False Positives False Drops Soccer

Pred. supp%, when true supp $\geq 0.2\%$ True supp%, when pred. supp $\geq 0.2\%$

Size	< 0.1	0.1-0.15	0.15-0.2	≥0.2
1	0	2	10	254
2	0	5	17	195
3	0	1	4	43

Size	< 0.1	0.1-0.15	0.15-0.2	≥0.2
1	0	7	24	254
2	7	10	28	195
3	5	13	8	43

Mailorder

Pred. supp%, when true supp $\geq 0.2\%$ True supp%, when pred. supp $\geq 0.2\%$

Size	< 0.1	0.1-0.15	0.15-0.2	≥0.2
1	0	0	0	65
2	0	1	15	212
3	0	1	3	18

Size	< 0.1	0.1-0.15	0.15-0.2	≥0.2
1	0	0	0	65
2	0	0	28	212
3	1	2	2	CORNELL

Actual Privacy Breaches

- Verified actual privacy breach levels
- The breach probabilities $\operatorname{Prob} [z \in t | A \subseteq t']$ are counted in the datasets for frequent and near-frequent itemsets.
- With the right choice of randomization parameters, even worst-case breach levels fluctuated around 50%
 - At most 53.2% for soccer,
 - At most 55.4% for mailorder.

Ongoing Research

- Using randomization and traditional secure multiparty computation together
 - Privacy preserving two-party join size computation with sketches
- What if we cannot guarantee amplification condition?
 - Probabilistic privacy breaches and amplification "on average"
- Information theory and statistical privacy
 - A slightly modified information measure that provably bounds privacy breaches

Future Work

• Can statistical privacy be extended so that we can prove "orthogonality" between disclosure and sensitive questions?

Conclusion

- We defined privacy using statistics, not computational hardness
- Randomization can guarantee statistical privacy
 Demonstrated for association mining
- A simple property of randomization operators provably bounds privacy breaches

Thank You!

Questions?

