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Introduction

• To operate, an e-business needs to query data owned 
by clients or other businesses

• The owners are concerned about privacy of their data, 
they will not ship all data to one server

• We want algorithms that efficiently evaluate multi-party 
queries while disclosing as little extra information as 
possible.
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• Yao [1986]: Any two-party data operation can be made computationally 
private, if the operation is converted into a Boolean circuit.
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Privacy Preserving Associations

• We have one server and many clients

• Each client has a private transaction (a set of items)
– Example: product preferences

• The server wants to find frequent subsets of items
– (aggregate statistical information)

• Each client wants to hide its transaction from the server 
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• Let T be the set of all transactions, and  t ∈ T be a 
transaction

• Any itemset  A  has support (frequency)  s  in T if

• Itemset  A  is frequent if  s ≥ smin

• Antimonotonicity:  if  A ⊆ B , then  supp (A) ≥ supp (B).

• Association rule: A ⇒ B holds when the union  A ∪ B is 
frequent and:  supp (A ∪ B) ≥ supp (A) ⋅ confmin

( ) { }
T

tATtAs ⊆∈== |#supp

Privacy Preserving Associations
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The Problem

• How to randomize transactions so that
– we can find frequent itemsets
– while preserving privacy at transaction level?



Randomization Example

A randomization may “look strong” but sometimes      
fail to hide some items of an individual transaction.

• Randomization example:  given a transaction,
– keep item with 20% probability,
– replace with a new random item with 80%

probability.
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Example: {a, b, c}

1% 
have

{a, b, c}

5% have
{a, b}, {a, c},
or {b, c} only

10 M transactions of size 10 with 10 K items:

94%
have one or zero
items of {a, b, c}

0.008%
800 ts.
98.2%

0.000128%
13 trans.

1.6%

less than 0.00002%
2 transactions

0.2%

After randomization:  How many have {a, b, c} ?

• 0.23 • 0.22 • 8 • 0.8/10,000
at most

• 0.2 • (9 • 0.8/10,000)2



Example: {a, b, c}
• Given nothing, we have only 1% probability that {a, b, c} 

occurs in the original transaction

• Given  {a, b, c}  in the randomized transaction, we have 
about 98% certainty of  {a, b, c} in the original one.

• This is what we call a privacy breach.

• The example randomization preserves privacy “on 
average,” but not “in the worst case.”



Privacy Breaches
• Suppose the “adversary” wants to know if  z ∈ t,  where

– t is an original transaction;

– t’ is the corresponding randomized transaction;

– A is a (frequent) itemset,  z ∈ A

• Itemset  A causes a privacy breach of level  β
(e.g. 50%) if:

Knowledge of  A ⊆ t’ makes a jump from Prob [z ∈ t] to
Prob [z ∈ t | A ⊆ t’] (in the adversary’s viewpoint).

[ ] β≥′⊆∈ tAtz |Prob
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Generalized Approach

• We want a bound for all privacy breaches
– not only for:  item ∈ t versus itemset ⊆ t’

• No knowledge of data distribution is required in advance
– We don’t have to know Prob [item ∈ t]

• Applicable to numerical data as well

• Easy to work with, even for complex randomizations



Our Model

y =  R (x)

Randomized data
Described by a random 

variable  Y =  R (X).

x y

Randomization 
operator

Original (private) data
Assumptions:
• Described by a random variable X.
• Each client is independent.



Let  P (x) be any property of client’s private data;
Let  0 < α < β < 1  be two probability thresholds.

α-to-β Privacy Breach
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P (x)  =  “transaction  x contains {a, b, c}”

α = 1%  and  β = 50%
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P (x)
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Let  P (x) be any property of client’s private data;
Let  0 < α < β < 1  be two probability thresholds.

Client
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SERVER

Prob [P (X)]  ≤ α

α-to-β Privacy Breach
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Let  P (x) be any property of client’s private data;
Let  0 < α < β < 1  be two probability thresholds.

Client

X =  x

SERVER

y =  R (x)y =  R (x) Prob [P (X)]  ≤ α

Prob [P (X) | Y = y]  ≥ β

α-to-β Privacy Breach

Disclosure of  y causes an α-to-β privacy breach 
w.r.t. property  P (x) .

0% 100%



Checking for α-to-β privacy breaches:

• There are exponentially many properties  P (x) ;

• We have to know the data distribution in order to check whether
Prob [P (X)]  ≤ α and Prob [P (X) | Y = y]  ≥ β .

Is there a simple property of randomization operator  R
that limits privacy breaches?

α-to-β Privacy Breach
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Amplification Condition
Definition:
• Randomization operator  R is called “at most      

γ-amplifying” if:

– Transition probabilities  p [x → y]  = Prob [R (x) = y]
depend only on the operator  R and not on data.

– We assume that all y have a nonzero probability.

• The bigger  γ is, the more may be revealed    
about  x.

[ ]
[ ] γ≤

→
→

yxp
yxp

yxx
2

1

,
maxmax

21



The Bound on α-to-β Breaches
Statement:

• If randomization operator  R is at most  γ-amplifying, 
and if:

• Then, revealing  R (X) to the server will never cause 
an α-to-β privacy breach.

See proof in [PODS 2003].

β
α

α
βγ

−
−⋅<

1
1



Examples:
• 5%-to-50% privacy breaches do not occur for  γ <  19:

• 1%-to-98% privacy breaches do not occur for  γ <  4851:

• 50%-to-100% privacy breaches do not occur for any 
finite  γ.

19
5.01

05.01
05.0
5.0 =

−
−⋅

4851
98.01
01.01

01.0
98.0 =

−
−⋅

The Bound on α-to-β Breaches



Amplification: Summary
• An α-to-β privacy breach w.r.t. property  P (x) occurs 

when
– Prob [P is true]  ≤ α
– Prob [P is true | Y = y]  ≥ β.

• Amplification methodology limits privacy breaches by 
just looking at transitional probabilities of randomization.
– Does not use data distribution:

[ ]
[ ] γ≤

→
→

yxp
yxp

yxx
2

1

,
maxmax

21



Amplification In Practice
• Given transaction  t of size  m, construct  t’ = R (t):

a, b, c, d, e, f, u, v, wt =

t’ =



Definition of select-a-size
• Given transaction  t of size  m, construct  t’ = R (t):

– Choose a number  j   ∈ {0, 1, …, m} with distribution {p [j]}0..m ;

j = 4

a, b, c, d, e, f, u, v, wt =

t’ =



Definition of select-a-size
• Given transaction  t of size  m, construct  t’ = R (t):

– Choose a number  j   ∈ {0, 1, …, m} with distribution {p [j]}0..m ;
– Include exactly  j items of t into  t’ ;

b, e, u, w
j = 4

a, b, c, d, e, f, u, v, wt =

t’ =



Definition of select-a-size
• Given transaction  t of size  m, construct  t’ = R (t):

– Choose a number  j   ∈ {0, 1, …, m} with distribution {p [j]}0..m ;
– Include exactly  j items of t into  t’ ;
– Each other item (not from t ) goes into  t’ with probability  ρ.

The choice of {p[j]}0..m and  ρ is based on the desired privacy level.

œ, å, ß, §, ψ, €, א, ъ, ђ, …
j = 4 items inserted with prob.  ρ

t =

t’ = b, e, u, w

a, b, c, d, e, f, u, v, w
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Lowest Discoverable Support
• LDS is s.t., when predicted, is  4σ away from zero.
• Roughly, LDS is proportional to 

LDS vs. number of transactions
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LDS vs. Breach Threshold α*
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LDS vs. Transaction Size
5%-50% privacy breaches are the worst allowed, | T | = 5 M

• Longer transactions are harder to use in support recovery
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Real datasets: soccer, mailorder
• Soccer is the clickstream log of WorldCup’98 web site, 

split into sessions of HTML requests.
– 11 K items (HTMLs),  6.5 M transactions
– Available at http://www.acm.org/sigcomm/ITA/

• Mailorder is a purchase dataset from a certain on-line 
store
– Products are replaced with their categories
– 96 items (categories),  2.9 M transactions

A small fraction of transactions are discarded as too long.

– longer than 10 (for soccer) or 7 (for mailorder)



Restricted Privacy Breaches

• Real data experiments used older approach [KDD 2002]
– We constrained only  z ∈ t versus A ⊆ t’ privacy breaches

– Restrictions in the form Prob [z ∈ t | A ⊆ t’] < β
– Older approach used some (minimal) information about data 

distribution to choose randomization parameters



Modified Apriori on Real Data
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False Drops False Positives
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Actual Privacy Breaches

• Verified actual privacy breach levels

• The breach probabilities  Prob [z ∈ t | A ⊆ t’]  are counted 
in the datasets for frequent and near-frequent itemsets.

• With the right choice of randomization parameters, even 
worst-case breach levels fluctuated around 50%
– At most 53.2% for soccer,
– At most 55.4% for mailorder.



Ongoing Research
• Using randomization and traditional secure multiparty 

computation together
– Privacy preserving two-party join size computation with 

sketches

• What if we cannot guarantee amplification condition?
– Probabilistic privacy breaches and amplification “on average”

• Information theory and statistical privacy
– A slightly modified information measure that provably bounds 

privacy breaches



Future Work
Tolerated 
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Future work

• Can statistical privacy be extended so that we can prove 
“orthogonality” between disclosure and sensitive questions?



Conclusion
• We defined privacy using statistics, not computational 

hardness

• Randomization can guarantee statistical privacy
– Demonstrated for association mining

• A simple property of randomization operators provably 
bounds privacy breaches



Thank You!

Questions?


