Information Theoretic Model for Inference Resistant Knowledge Management in RBAC Based Collaborative Environment

Manish Gupta Sivakumar Chennuru

- Model to reveal inference vulnerabilities
- Need for the model
- Description of the model
- Results
- Benefits

Introduction

- Information key organizational resource
 - Dissemination and Sharing
- Current Access Control Methods
 - Segregation techniques
 - Direct Access Control
- Are these sufficient?

Need for the model

- Indirect Access Mechanisms
 - Individual knowledge
 - On the role knowledge acquisition
 - Informal communication channels
- Framework for identifying and analyzing
 - Data (information)
 - Roles
 - Roles' direct access to data
 - Association among roles prone to inference

Prior work

- Database design
 - Uncover secondary paths leading to inferences
 - Functional dependencies
 - Conceptual structures
 - Semantic data modeling

Why Information Theory?

- Mathematical theory to quantify the concept of information
- Measure for the Entropy and Information
- Mutual information
 - Amount of information obtained by observing another information
- Channel
 - Interaction between employees with different roles
 - Continuous transfer over a variable length of time

Model Description

Data Units

- ORG = $\{D_1, D_2, ..., D_N\}$; where N is total number of data units in the organization.
- Each data unit D_i will have some information content I_i
- Each data unit may or may not be linked with other data units.
- The information revealed is additive if the data units are statistically independent.

Model Description

Data Units (contd)

The mutual information of a data unit I(i;j) is the difference in the uncertainty of D_i and the remaining uncertainty of D_i after observing D_i .

Data Inputs

- For each data unit Di, all data units in set ORG which are not statistically independent
- For each data unit Di, all proper subsets of ORG which are not statistically independent

Model Description

Roles

- Set of Roles in the organization, $R = \{R_1, R_2, \dots, R_M\}$; where M is total number of roles in the organization
- Relationship between Data units and Roles
- Relationship between Roles
- Degree of Proximity of Roles

4

Roles and Data Units

Relation between roles

RLINK1
$$[R_1] = \{ R_2, R_3, R_4, R_5 \}$$

RLINK2 $[R_1] = \{ R_6, R_7 \}$

Role-Data unit direct access

RSET
$$[D_1] \Box \{ R_1, R_2, R_3 \}$$

RSET $[D_2] \Box \{ R_1, R_4, R_5 \}$
RSET $[D_3] \Box \{ R_5, R_6, R_7 \}$

Role-Data unit Indirect Access

$$R_4 \longrightarrow D_3 \text{ (path } P_2)$$

 $R_1 \longrightarrow D_3 \text{ (path } P_1)$

Strength of inference depends upon mutual information.

Proposed ER Model

Inference Extraction

- Select a role (r) from MASTER_ROLE
- Select all the data units (d_i) linked to the above role from RSET_DSET
- Select all the roles linked to the above role from RLINK
- Select the data units (d_k) accessed by the linked roles and the mutual information of these data units (d_k;d_i) from data units accessed by the role (r)
- The results are stored in INFER_TABLE

Results

Role centric views
 Roles and Role associations that can be exploited for inference attacks.

Scenario 1

Scenario2

 Data centric views
 List of data units most vulnerable to design with the given role structure.

- Identifying possible inference attacks
- Assignment of individuals to the roles
- Greater assurance against insider attacks

Questions

Thank You