Conditionals and Control Flow

CSE 220: Systems Programming

Ethan Blanton & Carl Alphonce

Department of Computer Science and Engineering

University at Buffalo

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary

Advice: Time Management

The Carnegie Rule: 2-3 hours of work outside class per credit
That’s why 12 credits is full timel

Plan accordingly:
m Schedule ~1.5 hours per lecture in a block

m Too long: hard to focus
m Too short: lost time to overhead

m Work every day, not all at once
m Schedule the other 0.5-1.5 hours as needed

tﬁﬂniversityat Buffalo The iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 2

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Advice: Time Management

Keep a TODO!
m Don’t lose time to “what do | do next?”
m Don’t miss deadlines

For every course:
m 10-15 minutes every week for TODO management
m Make a list of 5-7 items you can just do
m If the list gets short, curate it!

Example items:
m Good: Read Chapter 5 through 5.4
m Good: PA1: Check command line arguments for validity
m Bad: PA1

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 3

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary

Administrivia 1

Deadlines for the following items are imminent:

m PAO
m Lab 01
m Al Quiz

If you aren’t current on your readings, you are behind.

If you are struggling with deadlines, or are shy to ask for help,
don’t be. Our job is to help you learn.

Impostor Syndrome is real!

If you already knew all of this, we wouldn’t make you take it.

tﬁﬂniversityat Buffalo The iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 4

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Don’t abuse!

Our shared compute server emon.cse.buffalo.edu
m There are 250+ of you, all using the same computer!

m Don’t run VS Code on emon, or use VS Code remote
access

Autolab
m 5 submissions is fine, 10 is questionable, 20 is too many

Office hours

tﬁﬂniversityat Buffalo The iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 5

Review Question

TopHat review question

t]éuniversityat Buffalo The state University of New York ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 6

Live Coding Introduction 3¢ fole][e Control Flow Summary

what is truth?

ftinclude <stdio.h>
void printTruthValue(int);
int main() {
for (int i=-2; i<=2; i++) {
printTruthValue(i);
}

return 8;
}
void printTruthValue(int x) {
printf("x has value %d, which is ",x);
if (x) { printf("true\n"); }
else { printf("false\n"); }

tﬁﬂniversityat Buffalo The stat for ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 7

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary

stdbool

ftinclude <stdio.h>
ftinclude <stdbool.h>
void printTruthValue(bool);
int main() {
for (int i=-2; i<=2; i++) {
printTruthValue(i);
}

return 8;
}
void printTruthValue(bool x) {
printf("x has value %d, which is ",x);
if (x) { printf("true\n"); }
else { printf("false\n"); }

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

8

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary

operators yield bool

#tinclude <stdio.h>
#include <stdbool.h>

int main() {
int x = 2;
printf("x has value %d, !x has value %d, !!x has
value %d\n",x,!x,!!x);

bool r = true;

printf("r has value %d, !r has value %d, !!'r has
value %d\n",r,!r,!!r);

return B8;

tﬁuniversityat Buffalo The state University of New York ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Live Coding Introduction 3¢ fole][e Control Flow Summary

short circuiting

ftinclude <stdio.h>
ftinclude <stdbool.h>
bool f(int x, int y) {
printf("f(%d,%d) called\n",x,y);
return x < y;
}
bool g(int z) {
printf("g(%d) called\n",z);
return z < 20;
}
int main() {
if (f(2,3) &% g(5)) { puts("main: true"); }
else { puts("main: false"); }
return 8;

tﬁuniversityat Buffalo The state University of New York ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 10

Conditionals in C

Truth in C is simple but possibly non-intuitive:
m Bit-wise 0 is false
m anything else is true

However, boolean expressions and true and false are less
unpredictable:

m true and true resulis are exactly 1
m false and false resulis are exactly 0

%Universityatl%uffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 1

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary

Control Flow

We have discussed only the for loop in C.
Required readings in K&R have covered other control flow.
We will look at if and its implementation.

There are other control flow statements (discussed in K&R), but
they behave similarly.

tﬁﬂniversityatlmffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 12

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Boolean Operators

C uses the following Boolean operators:
m !: Logical not; inverts the following expression
m &&: Logical and; true iff the LHS and RHS are both true
m ||: Logical or; true if either the RHS or LHS is true

Do not confuse these with the similarly-named bitwise operators!
(We will discuss those later.)

tﬁﬂniversityatlmffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 13

Boolean Logic in C

C uses short circuit evaluation for Boolean logic.

This means that evaluation of a Boolean sentence stops
as soon as its final truth value is known.

For example:
X && vy

If x is false, then this sentence is false.

In that case, y will never be evaluated.

%Universityatl%uffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 14

Short Circuit Consequences

The consequences of short-circuit evaluation can be surprising.

If terms in the sentence have side effects, those side effects
may not run.

This can be very useful, but also surprising!

if (i < len &% array[i] == SOMEVAL) {
/* Useful! If array[i] is past the end of the
array, the illegal access never happens. */

%Universityatl%uffalome sta for ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 15

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary

Equality Operators

There are two equality operators:
==: Compares value equality, returns true if equal
m !=: Compares value equality, returns false if equal

Note that these operators compare values, not logical truth!
In particular, note that many values are “true”, but true is 1!

This means that two logically true values may compare unequal.

tﬁﬂniversityatlmffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 16

ce&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary

Truthiness

bool x = true;

int y = 2;
if (x)

printf("x is true\n");
if (y)

printf("y is true\n");
if (x ==y)

printf("x and y are equal\n");

tﬁuniversityat Buffalo The state University of New York ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 17

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary

Truthiness

bool x = true;

int y = 2;
if (x)

printf("x is true\n");
if (y)

printf("y is true\n");
if (x ==y)

printf("x and y are equal\n");

Output:
x 1is true

y is true

tﬁuniversityat Buffalo The state University of New York ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 18

d{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary

stdbool

The header #iinclude <stdbool.h> defines some useful things.
m The type bool, which holds only 0 or 1
m The values true and false

Before C99, these things didn’t exist in the standard, but were
widely defined in programs.

Therefore they were standardized to require a header.

bool b = 2;
printf("%d\n", b);

Output:
1

tﬁﬂniversityat Buffalo The stat for ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary

Control Flow

Control flow is the path that execution takes through a program.
The C model is linear flow by default.

Control flow statements can change the order of execution.
This is how our programs make decisions.

We will examine how this flow is achieved.

tﬁﬂniversityatkuffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 20

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary

The if Statement

The simplest control statement in Cis if.

Its syntax is:

if (condition) {
body;
}

If the expression condition evaluates to any true value, body
runs.

Otherwise, body is skipped.

tﬁﬂniversityatl%uffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

21

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary

Implementing if

The if statement must be compiled to machine instructions.

Those machine instructions must encode the condition check
and jump.

This is normally implemented as a conditional branch instruction.

You don’t have to learn assembly for this course, but we will look
at some machine instruction concepts.

tﬁﬂniversityatl%uffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 22

A Simple Condition — C

int main(int argc, char *argv[])
{
if (argc == 2 &% argv[1][08] == '-') {
puts("negative");
}

return 8;

%Universityat Buffalo The stat for ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 23

Ad{vice&ministrivia}

Live Coding

Introduction

Boolean Logic Control Flow Summary References

A Simple Condition — Assembly

.L4:

.L8:

cmpl
je

xorl
ret

movq
cmpb
jne

leagq
subq
call

$2, %edi
.L8

fteax, %eax

7

’

8(%rsi), %rax ;

$45, (%rax)
.L4

’

.LCB(%rip), %rdi;

$8, %rsp
puts@PLT

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

compare argc to 2
jump to .L8 if ==

set up return value
return 8

load argv[1][8] to %rax
compare %rax to 45 ('-')
jump to .L4 if !=

load "negative" to %rdi
make room on stack

call puts("negative")
another return @ goes

here

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary

Conditional Instruction Flow

Note that the structure of the program was lost.
One of the advantages of high-level languages is siructure.

The computer can generally onIy:'IT
m Make simple comparisons (sometimes only to zerol!)

m Jump to a program location

Anything more complicated is a software construction.

tﬁﬂniversityatl%uffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 25

The else Clause

The else clause is simply either:

m The next instruction after a jump

m The jump destination (with the if body being the next
instruction)

Which layout the compiler uses depends on the code and
architecture.

%Universityat Buffalo The state sity of Ney ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 26

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary

else Gotchas

| strongly advocate always using blocks.
Here is a place where it really matters:

if (modify_x)
if (negate)
X = x * -1;
else
y = oox;

tﬁﬂniversityatkuffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 27

else Gotchas

| strongly advocate always using blocks.
What this actually means is:

if (modify_x)
if (negate)
X = x * -1;
else
A ¥

%Universityatl%uffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 28

else Gotchas

| strongly advocate always using blocks.
What you should use is:

if (modify_x) {
if (negate) {
X = x * -1;
}

} else {
y o= ox;
}

%Universityatl%uffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 29

Summary

m All nonzero values are true conditions in C.

m All Boolean expressions use 1 for true.

m The bool keyword holds only O or 1.

m C uses short-circuit evaluation of Boolean logic.

m Control flow is implemented with comparisons and jumps.
m Use blocks for if and else!

téﬂniversityatl%uffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 30

&ministrivia} Live Coding Introduction a C Control Flow Summary

Next Time ...

m POSIX memory model
m Pointer types
m Process layout

G University at Buffalo e state Univerity of New York ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 31

References |

Required Readings

[1] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Second
Edition. Chapter 2: 2.6; Chapter 3: Intro, 3.1-3.7. Prentice Hall, 1988.

té University at Buffalo The state University of New York © 2025 Ethan Blanton & Carl Alph

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

License

Copyright 2020-2025 Ethan Blanton, All Rights Reserved.
Copyright 2024 Eric Mikida, All Rights Reserved.
Copyright 2022—-2025 Carl Alphonce, All Rights Reserved.
Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 33

https://www.cse.buffalo.edu/~eblanton/

	Ad{vice&ministrivia}
	Live Coding
	Introduction
	Boolean Logic
	Control Flow
	Summary
	References

