Dynamic Memory Allocation

CSE 220: Systems Programming

Ethan Blanton & Carl Alphonce

Department of Computer Science and Engineering

University at Buffalo

Lab Exam 2

Lab Exam 2 is this week!
It will use pointer-based data structures.
Look over your PA2!

Be on time!

%Universityat Buffalo The iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 2

Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

Dynamic Memory Allocation

We have discussed two kinds of memory allocation:

m Static allocation

m Global variables
m Static local or global variables

m Dynamic allocation

m Automatic variables
m Manually allocated memory

We covered automatic variables in depth, now it’s time for
manual allocations!

tﬁﬂniversityat Buffalo The iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 3

Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary

The Dynamic Allocator

The interface to the dynamic allocator is malloc() et al.
However, the underlying mechanism is more complex.

The operating system kernel provides only large allocations.
Its minimum allocation on x86-64 is typically 4 KB.

The dynamic allocator must efficiently parcel out these
allocations.

tﬁﬂniversityat Buffalo The iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 4

Lecture Question

Let’s ask a lecture question!

%Universityat Buffalo The iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 5

Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary

The System Break

The OS h ies th ” Kernel
be > esg gccuples e memory Process Stack
above the . |
To the OS, it is one large block of Unmapped
memory.
—————— T -----f+brk
The dynamic allocator must manage it. Heap
BSS
The OS provides one tool for this: Data
the system break. (T;r";gram code)
0x0 (NuLL)[Unmapped

tﬁﬂniversityat Buffalo The iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 6

Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

Managing the System Break

The system break marks the boundary of the heap.
It is the address of the first byte that isn’t on the heap.

It can be moved with two system calls:

m brk(): set the break to an address
m sbrk(): move the break a relative number of bytes

A dynamic allocator can use this to request memory from the
OS.

tﬁﬂniversityat Buffalo The state sity of Ney ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

7

Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary

sbrk()

The sbrk() system call moves the system break:
void *sbrk(intptr_t increment);

It returns the old location of the system break.
A positive break value expands the heap.

This means sbrk() works a little bit like malloc:
void *mem = shrk(size);

tﬁﬂniversityat Buffalo The iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 8

Allocation API

The original Unix allocator required explicit sizes:
both allocating and freeing memory took a size.

The malloc() allocator does not.
This means that it must store that size somewhere!

There are many allocation strategies with different solutions to
this problem.

%Universityat Buffalo The iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 9

Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

Metadata

Vetadatal is stored for heap allocations.

This metadata allows for:

m |dentifying available memory on the heap

m Determining the size of allocated memory for free()
m Locating regions of memory that make up the heap
...

How this metadata is stored and managed can vary.

"Metadata is data about data.

tﬁﬂniversityatlmffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 10

Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary

Allocation Blocks

Assume that the dynamic allocator allocates blocks of memory.

Each block contains:

m Any metadata that is required for the allocator
m Memory available to the user to serve an allocation

The set of all of these blocks makes up the heap.

tﬁﬂniversityatlmffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 1

Managing the Heap

Explicit Metadata

When explicit metadata is in use, the block might contain:

m An integer containing the size of the block
m A flag indicating whether it is free or in use

This data is stored adjacent to, or nearby, the user memory:'"

Application Memory

Heap Block

%Universityatl%uffalome state sity of Ney ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 12

Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary

Free Lists

A common allocation management technique is:

m Blocks containing explicit sizes
m Free blocks placed on a linked list

Sometimes allocated blocks may also be on a list.

When the user asks for memory, available memory is located on
this list.

tﬁﬂniversityatlmffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Sharing Space
Sometimes metadata is required only when a block is free.

This metadata can be stored inside the application memory
portion of the block.

Since the block is not in use, this memory is available.

This reduces the overhead of free memory blocks.

Application Memory

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 14

Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary

Overhead

Allocators have overhead.
This is extra memory used only by the allocator.
It is important to minimize this overhead.

There are two primary sources of overhead:

m Metadata
m Fragmentation

tﬁﬂniversityatl%uffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 15

Metadata and Overhead

Fragmentation

Fragmentation is space used by the allocator that is not useful to
the application.

Sometimes metadata is included in fragmentation.

There are two kinds of fragmentation:

m [nternal: unused memory inside a heap block
m Exiernal: unused memory between heap blocks

%Universityatl%uffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 16

Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary

Internal Fragmentation

Internal fragmentation is like packing in a structure.
It is memory that is required by the allocator, but not useful.

It often arises because allocator blocks either:

m Must be aligned
m Have limited possible sizes

For example: an allocator only creates blocks of size 2", but the
user asks for 2K — 1 bytes of memory.

tﬁﬂniversityatkuffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 17

Metadata and Overhead

External Fragmentation

External fragmentation is due to user allocation patterns.

The allocator has free blocks, but they are not suitable.

32B 32B

v | [
What if:

m this is the entire heap
m the user wanis a 64B block?

tévniversityatl%uffalome state for ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 18

Summary

Exploration

Let’s explore some of these concepts in diagrams.

University at Buffalo The state Blanton Systems Programi

Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary

Summary

m The OS notion of the heap is very simplistic.
m The dynamic allocator has to manage the heap.
m Vletadata is required for management.

m The heap can become fragmented:

m Internal fragmentation is inside heap blocks.
m External fragmentation is between heap blocks.

tﬁﬂniversityatl%uffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

References |

Required Readings

[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s
Perspective. Third Edition. Chapter 9: 9.9, 9.11. Pearson, 2016.

té University at Buffalo The state University of New York © 2025 Ethan Blanton & Carl Alph

Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

License

Copyright 2020-2025 Ethan Blanton, All Rights Reserved.
Copyright 2024 Eric Mikida, All Rights Reserved.
Copyright 2022—-2025 Carl Alphonce, All Rights Reserved.
Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 22

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	The OS ``Heap''
	Managing the Heap
	Metadata and Overhead
	Summary
	References

