POSIX Threads and Synchronization

CSE 220: Systems Programming

Ethan Blanton & Carl Alphonce

Department of Computer Science and Engineering

University at Buffalo

POSIX Threads

The POSIX threads AP adds threading to Unix.

You will also see this API called Pthreads or pthreads.

Early Unix provided only the process model for concurrency.
POSIX threads look like processes, but share more resources.

Every POSIX thread starts with a function.

%Universityat Buffalo The state sity of Ney ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 2

Introduction Threads Live Coding Mutexes Condition Variables Semaphores Summary

POSIX Synchronization

Pthreads also provides synchronization mechanisms.

In fact, it provides a rather rich set of options!

m Mutexes

m Semaphores

m Condition variables
m Thread joining

m Memory barriers’

Only semaphores are covered in detail in CS:APP.

TWe won't talk about these.

tﬁﬂniversityat Buffalo The iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 3

Introduction Threads Live Coding Mutexes Condition Variables Semaphores Summary References

Compilation with Pthreads

Pthreads may require extra compilation options.

On modern Linux, use -pthread both when compiling and
linking.

On some other systems, other options may be required:

m Provide a different compiler or linker option (such as
-pthreads)

m Compile with some preprocessor define (e.g., -DPTHREAD,
-D_REENTRANT)

m Link with a library (e.g., -1pthread)
m ...read the documentation!

tﬁﬂniversityat Buffalo The state sity of Ney ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

4

Introduction Threads Live Coding

Thread Creation

Mutexes Condition Variables

Semaphores Summary

Threads are created with the pthread_create() function:
ftinclude <pthread.h>

int pthread_create(pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_function)(void *), void *arg)

The created thread will:

m begin at the given start_function function argument
m have the given data arg passed in as an argument

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

5]

Threads Live g Mu

Condition

Pthread Object Declarations

Summary Re

Threads (and other Pthread objects) are declared as values.
They are often used as pointers.

For example:

pthread_t thread;
pthread_create(&thread, NULL, thread_function, NULL);

This allows them to be created without dynamic allocation.

tﬁ University at Buffalo The stat

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Introduction Threads Live Coding Mutexes Condition Variables Semaphores Summary

Thread Functions

The thread start function has the following signature:

void *(*start_function) (void *);

This is a function that:
m Accepts a single void * argument
m Returns void *

Example:

void *thread_main(void *arg) {
return NULL;
}

tﬁﬂniversityat Buffalo The iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 7

Thread Semantics

When pthread_create() is called, it:
m Creates a new execution context, including stack
m Creates a concurrent flow using that stack and context

m Causes the new flow to invoke the provided function and
passes the provided argument

The separation of thread start function and its argument allows
one function to perform multiple tasks based on its argument.

The new thread appears to be scheduled independently.

It can do anything the original thread could.

%Universityat Buffalo The state sity of Ney ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 8

Thread Attributes
The function pthread_create() accepts a thread attribute object.
This object has type pthread_attr_t.

Passing NULL for this argument will use default atiributes.

Thread attributes include:
m Processor affinity
m The desired scheduler for the thread and its configuration
m The detach state of the new thread
m The thread’s stack location and size

We will not use thread attributes this semester.

tﬁﬂniversityat Buffalo The state sity of Ney ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 9

Introduction Threads Live Coding Mutexes Condition Variables Semaphores Summary

Thread Termination

POSIX threads can terminate in several ways:
m The application can exit
m By calling pthread_exit()
m By returning from the thread start function

m |t can be canceled by another thread using
pthread_cancel()

tﬁﬂniversityatlmffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 10

Introduction Threads Live Coding Mutexes

Condition Variables

Semaphores Summary

Joining

A thread can be joined, which is a synchronous operation.
ftinclude <pthread.h>

int pthread_join(pthread_t thread, void **retval);

Joining a thread:

m blocks the caller until the thread exits
m retrieves the thread’s exit status

tﬁ University at Buffalo The

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

11

Introduction Threads Live Coding Mutexes Condition Variables Semaphores Summary

Examples

m counter.c - mutexes protecting critical section
m deadlock.c - deadlock scenario

m odds_evens.c - condition variables

m printer.c - thread scheduling and joining

tﬁﬂniversityatlmffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 12

Introduction Threads Live Coding Mutexes Condition Variables Semaphores Summary

POSIX Mutexes

POSIX mutexes are of type pthread_mutex_t.

They provide basic mutex functionality with several features:
m Optional recursive lock detection

m A try lock operation that will return immediately whether or
not the mutex could be locked

It is an error to unlock a POSIX mutex on a different thread than
the thread that locked it.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 13

Re

Introduction Threads Live g Mutexes Condition Variables Semaphores Summary

Mutex Initialization
POSIX mutexes have static and dynamic initializers:

ftinclude <pthread.h>

pthread_mutex_t fastmutex =
PTHREAD_MUTEX_INITIALIZER;

int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *mutexattr);

In older POSIX specifications, the static initializer could be used
only for compile-time initializers.

The dynamic initializer accepts atiributes to configure the mutex.
(Pass NULL to get default behavior.)

tﬁﬂniversityat Buffalo The stat for ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Introduction Threads ding Mutexes Condition Variables Semaphores Summary Re

Mutex Operations

A mutex can be locked or unlocked:
ftinclude <pthread.h>
int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

The lock and unlock functions operate exactly as expected.
pthread_mutex_trylock() will always return immediately.

m If the mutex is already locked, it will return EBUSY.
m If the mutex is unlocked, it will lock it and return O.

tﬁﬂniversityat Buffalo The stat for ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Destroying Mutexes

When you are finished with a mutex, you should destroy it.

On Linux, destroying a mutex is essentially no-op.

However, other platforms may associate resources with a mutex.
Destroying the mutex allows those resources to be released.

Destroying a locked mutex is an error.
Destroying a mutex being waited upon? is an error.

2More on this later...

%Universityatl%uffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 16

Introduction Threads Live g Mutexes Condition Variables Semaphores Summary Re

Default Mutex Behaviors
The default mutex may not allow recursive locks.

The following code could deadlock (and will on Linux!):

void deadlock () {
pthread_mutex_t mutex =
PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_lock (&mutex);
pthread_mutex_lock (&mutex);

}

Mutexes can be initialized with a recursive atiribute.

Recursive mutexes maintain a lock count, and the above would
simply require unlocking twice.

tﬁl!niversityat Buffalo The state University of New York ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Introduction Threads Live Coding Mutexes Condition Variables Semaphores Summary

Condition Variables

POSIX condition variables work in conjunction with mutexes.
A thread must hold a mutex to wait on a condition variable.

Waiting on a condition variable atomically:
m Unlocks the mutex
m Puts the thread o sleep until the condition is signaled

A thread can signal one or all threads sleeping on a condition
variable.

tﬁﬂniversityatl%uffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 18

Introduction Threads Live g Mutexes Condition Variables S Summary Re

Creating a Condition Variable

Condition variables are created like mutexes:
ftinclude <pthread.h>
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

int pthread_cond_init(pthread_cond_t *cond,
pthread_condattr_t *cond_attr);

The Linux implementation of Pthreads recognizes no condition
variable attributes.

tﬁﬂniversityat Buffalo The stat for ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Introduction Threads Live Coding Mutexes Condition Variables Semaphores Summary

Waiting on Condition Variables

A thread can wait on a condition variable.
ftinclude <pthread.h>

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex);

Note that there is an associated mutex.
The mutex should protect the condition state.

As previously discussed, threads can spuriously wake.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Introduction Threads Live Coding Mutexes Condition Variables Semaphores Summary

Waiting Example

extern pthread_mutex_t lock;
extern pthread_cond_t cond;
extern bool done;

void *block_until_done(void *ignored) {
pthread_mutex_lock (&lock);
while (!done) f{
pthread_cond_wait (&cond, &lock);
}

pthread_mutex_unlock (&lock);
return ignored;

tﬁl!niversityat Buffalo The state University of New York ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Condition Variables Semaphores Summary

Introduction Threads Live g Mu

Signaling Condition Variables

Condition variables can signal:
m one waiting thread
m all waiting threads

ftinclude <pthread.h>

int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

Signaling a variable if no threads are waiting does nothing.

The mutex protecting shared state should be used appropriately!

tﬁﬂniversityat Buffalo The stat for ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Introduction Threads Live Coding Mutexes Condition Variables Semaphores Summary

Signaling Example

extern pthread_mutex_t lock;
extern pthread_cond_t cond;
extern bool done;

void signal_done() {
pthread_mutex_lock (&lock);
done = true;
pthread_mutex_unlock (&lock);
pthread_cond_signal(&cond);

tﬁl!niversityat Buffalo The state University of New York ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Introduction Threads g Mutexes Condition Variables Semaphores Summary

Putting it Together

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
bool done;

int main(int argc, char *argv[]) {
pthread_t t;

pthread_create(&t, NULL, block_until_done, NULL);
usleep (1060000) ;

signal_done();

pthread_join(t, NULL);

return B8;

tﬁﬂniversityat Buffalo The stat for ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 24

Introduction Threads Live Coding Mutexes Condition Variables Semaphores Summary

Destroying Condition Variables

Like mutexes

m Condition variables should be destroyed
m Destroying condition variables does nothing on Linux

ftinclude <pthread.h>

int pthread_cond_destroy(pthread_cond_t *cond);

Destroying a condition variable with waiting threads is an error.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 25

Introduction Threads Live Coding Mutexes Condition Variables Semaphores Summary

POSIX Semaphores

POSIX semaphores can operate between either threads or
processes.

They provide counting semaphore semantics.

They obsolete System V semaphores, which you may also see.

POSIX semaphores:
m Do not begin with pthread_
m Are not found in pthread.h

tﬁﬂniversityatkuffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

POSIX Semaphore Creation

ftinclude <semaphore.h>

int sem_init(sem_t *sem, int pshared,
unsigned int value);

There is no static initializer for POSIX semaphores.

If pshared is true:
m The semaphore can be used between processes
m Vust be located in shared memory for this to work

The given value is its initial count.

%Universityatl%uffalome sta for ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Introduction Threads ive Condition Variables Semaphores Summary

POSIX Semaphore Manlpulatlon

ftinclude <semaphore.h>

int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);
int sem_post(sem_t *sem);

The wait operation corresponds to Dijkstra’s P(), and post to V().

sem_trywait() is like pthread_mutex_trylock():

m It will return immediately even if it cannot decrement the
semaphore

m If it succeeds it returns zero
m If it does not, it returns EAGATN

tﬁﬂniversityat Buffalo The stat for ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 28

Introduction Threads Live Coding Mutexes Condition Variables Semaphores Summary

Summary

m The POSIX threads (pthreads) API provides a thread
abstraction on Unix
m POSIX provides many synchronization primitives:

m Mutexes

m Semaphores

m Condition variables
m Thread joining

m CS:APP and OSTEP cover POSIX semaphores in detail

tﬁﬂniversityatl%uffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 29

Live Coding Mutexes Condition es Semaphores Summary References

References |

Required Readings

[1] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Systems: Three
Easy Pieces. Chapters 26, 27. Arpaci-Dusseau Books. URL:
https://pages.cs.wisc.edu/~remzi/0STEP/.

Optional Readings

[2] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Systems: Three
Easy Pieces. Chapters 30, 31. Arpaci-Dusseau Books. URL:
https://pages.cs.wisc.edu/~remzi/0STEP/.

[3] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s
Perspective. Third Edition. Chapter 12: 12.3, 12.5-12.7. Pearson, 2016.

G University at Buffalo e state Univerity of New York ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 30

https://pages.cs.wisc.edu/~remzi/OSTEP/
https://pages.cs.wisc.edu/~remzi/OSTEP/

References

References I

[4] IEEE and The Open Group. The Open Group Base Specifications Issue 7. 2017. URL:
http://pubs.opengroup.org/onlinepubs/9699919799/.

[5] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads Programming.
O'Reilly & Associates, Inc., 1996.

t]éuniversityat Buffalo The state University of New York ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 31

http://pubs.opengroup.org/onlinepubs/9699919799/

Introduction Threads Live Coding Mutexes Condition Variables Semaphores Summary References

License

Copyright 2018-2025 Ethan Blanton, All Rights Reserved.
Copyright 2024 Eric Mikida, All Rights Reserved.
Copyright 2022—-2025 Carl Alphonce, All Rights Reserved.
Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 32

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Threads
	Live Coding
	Mutexes
	Condition Variables
	Semaphores
	Summary
	References

