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I/O Kernel Services

We have seen some text I/O using the C Standard Library.

m printf()
m fgetc()
...

However, all 1/O is built on kernel system calls.

In this lecture, we’ll look at those services vs. standard 1/O.
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Everything is a File
These services are particularly important on Unix systems.
On Unix, “everything is a file”.

Many devices and services are accessed by opening device
nodes.

Device nodes behave like (but are not) files.

Examples:
m /dev/null: Always readable, contains no data. Always
writable, discards anything written to it.

m /dev/urandom: Always readable, reads a cryptographically
secure stream of random data.
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File Descriptors

All access to files is through file descriptors.

A file descriptor is a small integer representing an open file in a
particular process.

There are three “standard” file descriptors:
m O: standard input
m 1: standard output
m 2. standard error

..sound familiar? (stdin, stdout, stderr)
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System Call Failures

Kernel 1/0O (and most other) system calls return -1 on failure.
When this happens, the global variable errno is set to a reason.
Include errno.h to define errno in your code.

The functions perror() and strerror() produce a
human-readable error from errno.
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Lecture Question

Ask a review question!
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Opening Files
There are two' calls to open a file on a POSIX system:

ftinclude <fcntl.h>

int open(const char *path, int flags, mode_t mode);
int creat(const char *path, mode_t mode);

The creat() system call is exactly like calling:
open(path, O_CREAT|O_WRONLY|O_TRUNC, mode);

Both functions return a filedescriptor on success.

1...OK, three.
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Open Flags

int open(const char *path, int flags, mode_t mode);

The flags parameter controls how open() behaves:
m 0_RDONLY: Open read-only
m 0_WRONLY: Open write-only
m 0_RDWR: Open for reading and writing
m 0_CREAT: When writing, create the file if it doesn’t exist
m 0_EXCL: When creating a file, fail if it already exists
m 0_APPEND: When writing, start at the end of the file
m 0_TRUNC: When writing, truncate the file to 0 bytes
m 0_CLOEXEC: Close this file on exec()
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0_CREAT|0_EXCL

The combination of flags 0_CREAT|0_EXCL allows for exclusive
access among cooperating processes.

The kernel will create the file if and only if it doesn’t already exist.
This is an atomic action.

If every process uses 0_CREAT|0_EXCL for a file, the file can be
used as a lock.

Removing the file (also atomic) is the unlock operation!

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming



Introduction Unix /0 Standard 1/O Buffering Summary

Reading

#tinclude <unistd.h>

int read(int fd, void *buffer, size_t bytes);

The read() system call reads data from an open file.

It reads raw bytes with no translation;
In particular, it may not read a NUL-terminated string.

Its return value is:
m 0: end of file
m > (: bytes read; EOF if < bytes
m —1: error
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Writing

#tinclude <unistd.h>

int write(int fd, const void *buffer, size_t bytes);

The write() sytem call writes raw binary data to an open file.

Its return value is:
m > 0: bytes written; full disk / efc. if < bytes
m —1: error
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Closing File Descriptors

ftinclude <unistd.h>
int close(int fd);
An open file can be closed with the close() system call.

Using a descriptor after close is an error.

A closed descriptor may be reused by subsequent opens.
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Unix 1/O Example

#finclude <unistd.h>
#include <fcntl.h>

int main(int argc, char *argv[]) {
char buf[1024];
int fd, bytes;

if ((fd = open(argv[1], O_RDONLY)) < 8)
{ return -1; }

while ((bytes = read(fd, buf, sizeof(buf))) > 8)
{

if (write(1, buf, bytes) < 8) {
return -1;
}

}

return bytes < 0;
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Standard 1/0? What Standard?

If Unix 1/O is part of the POSIX Standard ...
Standard 1/O is part of the C Standard.
Non-POSIX systems will still have standard 1/0O!

On Unix systems, the standard 1/O functions wrap Unix [/O.
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Opening Streams

An open file in standard /O is called a stream.

On Unix, a stream wraps a file descriptor.

#include <stdio.h>

FILE *fopen(const char *path, const char *mode);
FILE *fdopen(int fd, const char *mode);

fopen() opens a file, fdopen() wraps an open file descriptor.

The mode parameter here confusingly corresponds to open
flags.
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Stream Modes

FILE *fopen(const char *path, const char *mode);
FILE *fdopen(int fd, const char *mode);

A stream can be opened for various purposes, according to mode:
m '"'r'": reading

] : writing, with truncation

[ . writing, without truncation (append)

m '"r+": reading and writing, without truncation

m "w+": reading and writing, with truncation

Write modes always create the file if necessary.
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Binary 1/O

Unlike Unix I/O, standard 1/0 may perform transformations.
They may assume that they operate on text files.

You can open for binary I/O using "b" after the mode character:
fopen("somefile", "rb");

On POSIX systems, the "b" is ignored.

This is a feature of the C Standard that is unused on POSIX
systems.
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Reading and Writing
size_t fread(void *dest, size_t size, size_t nmemb,
FILE *fp);
size_t fwrite(const void *buf, size_t size, size_t
nmemb, FILE *fp);

These functions read and write binary data.
(This is in contrast to the string I/O functions.)

Both write in terms of items of size bytes.

The return value is:
m the number of items read/written (up to nmemb)
m 0 on error or EOF
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Errors and EOF

Unlike Unix I/O, errors and EOF return the same value.

There are two functions provided to detect errors and EOF:
m int feof (FILE *fp);
m int ferror(FILE *fp);

These functions return non-zero if EOF or an error has occurred.

clearerr() will reset the error/EOF status of a stream:
m void clearerr(FILE *fp);
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Standard I/O Example

#finclude <stdio.h>

int main(int argc, char *argv[]) {
char buf[1824];
FILE *fp;
int bytes;

if ((fp = fopen(argv[1], "r")) == NULL)
{ return -1; }
while (!feof(fp) &&
(bytes = fread(buf, 1, sizeof(buf), fp)) > 0) {
if (fwrite(buf, 1, bytes, stdout) == 8) {
return -1;
}

}
return ferror(fp) || ferror(stdout);
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Lecture Question

Ask a lecture question!
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System Call Overhead

The overhead of calling a system call is often not small.

This overhead is due to the cost of:
m Changing protection domains
m Validating pointers
m Adjusting memory maps
...

It is better to make fewer system calls that do more work.
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Standard 1/0O Buffering

The standard I/O functions use buffering to reduce overhead.
For example, fread() for 1 byte might read a full VM page.
This has important implications for correctness!

For example, device |/O may require very precise 1/O sizes.

Write buffering can cause short writes.
Buffer flushing fixes this short write problem:
int fflush(FILE *fp);
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Buffering and Performance: Unix 1/O

int fd = open("megabyte.dat", O_RDONLY);
int total = 0;
unsigned char c;

while (read(fd, &c, 1) == 1) {
total += c;
}

Time: .
Real time elapsed: 0:00.89
System time used : 0.49

User time used . 0.40
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Buffering and Performance: Standard I/O

FILE *fp = fopen("megabyte.dat", "rb");
int total = 0;
unsigned char c;

while (!ferror(fp) && fread(&c, 1, 1, fp) == 1) {
total += c;
}

Time: .
Real time elapsed: 0:00.04
System time used : 0.00

User time used . 0.03
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What's the Difference?

read():

% time seconds usecs/call calls errors syscall

1e0.08  5.130764 4 1048578 read
0.00 0.000000 9 2 close

166.00  5.130764 R total

fread():

% time seconds usecs/call calls errors syscall

'97.35  e.eee220 o 258  read
2.65 0.0000806 3 2 close

le6.08  ©.080226 o 28 total
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Buffering Mechanism

When the user requests a small read, the standard library
makes a larger read.

For example, our reads of one byte turn into 4 kB reads.
The standard library buffers the remaining data in memory.
Future reads for buffered data read from memory.

Reads for data not in the buffer cause a new buffer to be fetched.
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Summary

Introduction Unix I/0 Standard 1/O Buffering

Buffer Example

fread(&len, sizeof(len), 1, fp);
data = malloc(len);
fread(&data, 1, len, fp);

Standard I/O buffer for fp:

28
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Buffer Example

|fread(&len, sizeof(len), 1, fp);|
data = malloc(len);
fread(&data, 1, len, fp);

Standard I/O buffer for fp:

First, fread reads a buffer of data from fp.
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Buffer Example

|fread(&len, sizeof(len), 1, fp);|
data =| malloc(len);
fread (Rdata, 1, len, fp);

Standard I/O buffer for fp:

Then it returns sizeof (size_t) bytes from that buffer.
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Buffer Example
fread(&len, sizeof(len), 1, fp);

data = malloc(len);
| fread(&data, 1, len, fp);|

Standard I/O buffer for fp:

The next read reads only from the buffer.
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Summary

m Unix I/O is defined by the POSIX Standard

m Standard I/O is defined by the C Standard

m The kernel tracks open files with file descriptors
m All file /0 goes through the kernel

m The standard I/O library is buffered
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