Input and Output

CSE 220: Systems Programming

Ethan Blanton & Carl Alphonce

Department of Computer Science and Engineering

University at Buffalo

Introduction Unix I/O Standard /0 Buffering Summary

I/O Kernel Services

We have seen some text I/O using the C Standard Library.

m printf()
m fgetc()
...

However, all 1/O is built on kernel system calls.

In this lecture, we’ll look at those services vs. standard 1/O.

tﬁﬂniversityat Buffalo The iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 2

Introduction Unix I/O Standard 1/0 Buffering Summary References

Everything is a File
These services are particularly important on Unix systems.
On Unix, “everything is a file”.

Many devices and services are accessed by opening device
nodes.

Device nodes behave like (but are not) files.

Examples:
m /dev/null: Always readable, contains no data. Always
writable, discards anything written to it.

m /dev/urandom: Always readable, reads a cryptographically
secure stream of random data.

tﬁﬂniversityat Buffalo The iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 3

Introduction Unix I/0 Standard I/0 Buffering Summary

File Descriptors

All access to files is through file descriptors.

A file descriptor is a small integer representing an open file in a
particular process.

There are three “standard” file descriptors:
m O: standard input
m 1: standard output
m 2. standard error

..sound familiar? (stdin, stdout, stderr)

tﬁﬂniversityat Buffalo The iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 4

Introduction Unix I/O Standard /O Buffering Summary

System Call Failures

Kernel 1/0O (and most other) system calls return -1 on failure.
When this happens, the global variable errno is set to a reason.
Include errno.h to define errno in your code.

The functions perror() and strerror() produce a
human-readable error from errno.

tﬁﬂniversityat Buffalo The iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 5

Lecture Question

Ask a review question!

t]éuniversityat Buffalo The state University of New York ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 6

Introduction Unix 1/0 Standard 1/0 Buffering Summary

Opening Files
There are two' calls to open a file on a POSIX system:

ftinclude <fcntl.h>

int open(const char *path, int flags, mode_t mode);
int creat(const char *path, mode_t mode);

The creat() system call is exactly like calling:
open(path, O_CREAT|O_WRONLY|O_TRUNC, mode);

Both functions return a filedescriptor on success.

1...OK, three.

tﬁﬂniversityat Buffalo The stat for ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Introduction Unix /0 Standard I/0 Buffering Summary References

Open Flags

int open(const char *path, int flags, mode_t mode);

The flags parameter controls how open() behaves:
m 0_RDONLY: Open read-only
m 0_WRONLY: Open write-only
m 0_RDWR: Open for reading and writing
m 0_CREAT: When writing, create the file if it doesn’t exist
m 0_EXCL: When creating a file, fail if it already exists
m 0_APPEND: When writing, start at the end of the file
m 0_TRUNC: When writing, truncate the file to 0 bytes
m 0_CLOEXEC: Close this file on exec()

tﬁﬂniversityat Buffalo The st of New Yorl ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Introduction Unix 1/0 Standard 1/0 Buffering Summary

0_CREAT|0_EXCL

The combination of flags 0_CREAT|0_EXCL allows for exclusive
access among cooperating processes.

The kernel will create the file if and only if it doesn’t already exist.
This is an atomic action.

If every process uses 0_CREAT|0_EXCL for a file, the file can be
used as a lock.

Removing the file (also atomic) is the unlock operation!

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Introduction Unix /0 Standard 1/O Buffering Summary

Reading

#tinclude <unistd.h>

int read(int fd, void *buffer, size_t bytes);

The read() system call reads data from an open file.

It reads raw bytes with no translation;
In particular, it may not read a NUL-terminated string.

Its return value is:
m 0: end of file
m > (: bytes read; EOF if < bytes
m —1: error

tﬁﬂniversityatl%uffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Introduction Unix 1/0 Standard 1/0 Buffering Summary

Writing

#tinclude <unistd.h>

int write(int fd, const void *buffer, size_t bytes);

The write() sytem call writes raw binary data to an open file.

Its return value is:
m > 0: bytes written; full disk / efc. if < bytes
m —1: error

tﬁﬂniversityatlmffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Introduction Unix I/O Standard I/0 Buffering Summary

Closing File Descriptors

ftinclude <unistd.h>
int close(int fd);
An open file can be closed with the close() system call.

Using a descriptor after close is an error.

A closed descriptor may be reused by subsequent opens.

tﬁﬂniversityatlmffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Introduction Unix /0 Standard I/0 Buffering

Summary

Unix 1/O Example

#finclude <unistd.h>
#include <fcntl.h>

int main(int argc, char *argv[]) {
char buf[1024];
int fd, bytes;

if ((fd = open(argv[1], O_RDONLY)) < 8)
{ return -1; }

while ((bytes = read(fd, buf, sizeof(buf))) > 8)
{

if (write(1, buf, bytes) < 8) {
return -1;
}

}

return bytes < 0;

tﬁ University at Buffalo The

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 13

Introduction Unix I/0 Standard 1/0 Buffering Summary

Standard 1/0? What Standard?

If Unix 1/O is part of the POSIX Standard ...
Standard 1/O is part of the C Standard.
Non-POSIX systems will still have standard 1/0O!

On Unix systems, the standard 1/O functions wrap Unix [/O.

tﬁﬂniversityatkuffalome st of New Yorl ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

14

Introduction Unix I/0 Standard /0 Buffering Summary

Opening Streams

An open file in standard /O is called a stream.

On Unix, a stream wraps a file descriptor.

#include <stdio.h>

FILE *fopen(const char *path, const char *mode);
FILE *fdopen(int fd, const char *mode);

fopen() opens a file, fdopen() wraps an open file descriptor.

The mode parameter here confusingly corresponds to open
flags.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

15

Introduction Unix I/O Standard I/0 Buffering Summary References

Stream Modes

FILE *fopen(const char *path, const char *mode);
FILE *fdopen(int fd, const char *mode);

A stream can be opened for various purposes, according to mode:
m '"'r'": reading

] : writing, with truncation

[. writing, without truncation (append)

m '"r+": reading and writing, without truncation

m "w+": reading and writing, with truncation

Write modes always create the file if necessary.

tﬁﬂniversityatlmffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Introduction Unix I/O Standard I/0 Buffering Summary

Binary 1/O

Unlike Unix I/O, standard 1/0 may perform transformations.
They may assume that they operate on text files.

You can open for binary I/O using "b" after the mode character:
fopen("somefile", "rb");

On POSIX systems, the "b" is ignored.

This is a feature of the C Standard that is unused on POSIX
systems.

tﬁﬂniversityat Buffalo The state for ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Introduction Unix I/O Standard I/0 Buffering Summary References

Reading and Writing
size_t fread(void *dest, size_t size, size_t nmemb,
FILE *fp);
size_t fwrite(const void *buf, size_t size, size_t
nmemb, FILE *fp);

These functions read and write binary data.
(This is in contrast to the string I/O functions.)

Both write in terms of items of size bytes.

The return value is:
m the number of items read/written (up to nmemb)
m 0 on error or EOF

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 18

Introduction Unix I/O Standard I/0 Buffering Summary References

Errors and EOF

Unlike Unix I/O, errors and EOF return the same value.

There are two functions provided to detect errors and EOF:
m int feof (FILE *fp);
m int ferror(FILE *fp);

These functions return non-zero if EOF or an error has occurred.

clearerr() will reset the error/EOF status of a stream:
m void clearerr(FILE *fp);

tﬁﬂniversityatlmffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 19

Introduction Unix I/0 Standard 1/0 Buffering Summary

Standard I/O Example

#finclude <stdio.h>

int main(int argc, char *argv[]) {
char buf[1824];
FILE *fp;
int bytes;

if ((fp = fopen(argv[1], "r")) == NULL)
{ return -1; }
while (!feof(fp) &&
(bytes = fread(buf, 1, sizeof(buf), fp)) > 0) {
if (fwrite(buf, 1, bytes, stdout) == 8) {
return -1;
}

}
return ferror(fp) || ferror(stdout);

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 20

Lecture Question

Ask a lecture question!

t]éuniversityat Buffalo The state University of New York ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 21

System Call Overhead

The overhead of calling a system call is often not small.

This overhead is due to the cost of:
m Changing protection domains
m Validating pointers
m Adjusting memory maps
...

It is better to make fewer system calls that do more work.

%Universityat Buffalo The state sity of Ney ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 22

Introduction Unix I/0 Standard I/0 Buffering Summary

Standard 1/0O Buffering

The standard I/O functions use buffering to reduce overhead.
For example, fread() for 1 byte might read a full VM page.
This has important implications for correctness!

For example, device |/O may require very precise 1/O sizes.

Write buffering can cause short writes.
Buffer flushing fixes this short write problem:
int fflush(FILE *fp);

tﬁﬂniversityat Buffalo The state sity of Ney ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 23

Introduction Unix I/0 Standard 1/O Buffering Summary

Buffering and Performance: Unix 1/O

int fd = open("megabyte.dat", O_RDONLY);
int total = 0;
unsigned char c;

while (read(fd, &c, 1) == 1) {
total += c;
}

Time: .
Real time elapsed: 0:00.89
System time used : 0.49

User time used . 0.40

tﬁﬂniversityat Buffalo The stat for ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 24

Introduction Unix I/0 Standard 1/0 Buffering Summary

Buffering and Performance: Standard I/O

FILE *fp = fopen("megabyte.dat", "rb");
int total = 0;
unsigned char c;

while (!ferror(fp) && fread(&c, 1, 1, fp) == 1) {
total += c;
}

Time: .
Real time elapsed: 0:00.04
System time used : 0.00

User time used . 0.03

tﬁﬂniversityat Buffalo The state for ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 25

Introduction Unix I/0 Standard 1/0 Buffering Summary

What's the Difference?

read():

% time seconds usecs/call calls errors syscall

1e0.08 5.130764 4 1048578 read
0.00 0.000000 9 2 close

166.00 5.130764 R total

fread():

% time seconds usecs/call calls errors syscall

'97.35 e.eee220 o 258 read
2.65 0.0000806 3 2 close

le6.08 ©.080226 o 28 total

tﬁl!niversityat Buffalo The state University of New York ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Introduction Unix I/0 Standard 1/0 Buffering Summary

Buffering Mechanism

When the user requests a small read, the standard library
makes a larger read.

For example, our reads of one byte turn into 4 kB reads.
The standard library buffers the remaining data in memory.
Future reads for buffered data read from memory.

Reads for data not in the buffer cause a new buffer to be fetched.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

27

Summary

Introduction Unix I/0 Standard 1/O Buffering

Buffer Example

fread(&len, sizeof(len), 1, fp);
data = malloc(len);
fread(&data, 1, len, fp);

Standard I/O buffer for fp:

28

tﬁﬂniversityatlmffalome iversi lew Yor ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

Buffer Example

|fread(&len, sizeof(len), 1, fp);|
data = malloc(len);
fread(&data, 1, len, fp);

Standard I/O buffer for fp:

First, fread reads a buffer of data from fp.

.[évniversityatl%uffalome state for ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 29

Buffer Example

|fread(&len, sizeof(len), 1, fp);|
data =| malloc(len);
fread (Rdata, 1, len, fp);

Standard I/O buffer for fp:

Then it returns sizeof (size_t) bytes from that buffer.

.[évniversityatl%uffalome state for ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 30

Buffer Example
fread(&len, sizeof(len), 1, fp);

data = malloc(len);
| fread(&data, 1, len, fp);|

Standard I/O buffer for fp:

The next read reads only from the buffer.

.[évniversityatl%uffalome state for ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 31

Introduction Unix I/0 Standard I/0 Buffering Summary

Summary

m Unix I/O is defined by the POSIX Standard

m Standard I/O is defined by the C Standard

m The kernel tracks open files with file descriptors
m All file /0 goes through the kernel

m The standard I/O library is buffered

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 32

References |

Optional Readings

[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s
Perspective. Third Edition. Chapter 10: 10.1-10.4, 10.10-10.12. Pearson, 2016.

t]éuniversityat Buffalo The state University of New York ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 33

Introduction Unix I/0 Standard /O Buffering Summary References

License

Copyright 2018-2025 Ethan Blanton, All Rights Reserved.
Copyright 2024 Eric Mikida, All Rights Reserved.
Copyright 2022—-2025 Carl Alphonce, All Rights Reserved.
Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

tﬁﬂniversityatmﬁalome st of New Yorl ©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming

34

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Unix I/O
	Standard I/O
	Buffering
	Summary
	References

