
Conditionals and Control Flow

CSE 220: Systems Programming

Ethan Blanton & Carl Alphonce

Department of Computer Science and Engineering

University at Buffalo

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Advice: Time Management

The Carnegie Rule: 2-3 hours of work outside class per credit

That’s why 12 credits is full time!

Plan accordingly:

Schedule ~1.5 hours per lecture in a block

Too long: hard to focus

Too short: lost time to overhead

Work every day, not all at once

Schedule the other 0.5–1.5 hours as needed

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 2

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Advice: Time Management

Keep a TODO!

Don’t lose time to “what do I do next?”

Don’t miss deadlines

For every course:

10-15 minutes every week for TODO management

Make a list of 5-7 items you can just do

If the list gets short, curate it!

Example items:

Good: Read Chapter 5 through 5.4

Good: PA1: Check command line arguments for validity

Bad: PA1

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 3

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Administrivia 1

Deadlines for the following items are today:

Lab 01

AI Quiz

If you aren’t current on your readings, you are behind.

If you are struggling with deadlines, or are shy to ask for help,

don’t be. Our job is to help you learn.

Impostor Syndrome is real!

If you already knew all of this, we wouldn’t make you take it.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 4

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Don’t abuse!

Our shared compute server emon.cse.buffalo.edu

There are 250+ of you, all using the same computer!

Don’t run VS Code on emon, or use VS Code remote

access

Autolab

5 submissions is fine, 10 is questionable, 20 is too many

Office hours

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 5

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Review Question

TopHat review question

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 6

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

what is truth?

#include <stdio.h>

void printTruthValue(int);

int main() {

for (int i=-2; i<=2; i++) {

printTruthValue(i);

}

return 0;

}

void printTruthValue(int x) {

printf("x has value %d, which is ",x);

if (x) { printf("true\n"); }

else { printf("false\n"); }

}

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 7

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

stdbool
#include <stdio.h>

#include <stdbool.h>

void printTruthValue(bool);

int main() {

for (int i=-2; i<=2; i++) {

printTruthValue(i);

}

return 0;

}

void printTruthValue(bool x) {

printf("x has value %d, which is ",x);

if (x) { printf("true\n"); }

else { printf("false\n"); }

}

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 8

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

operators yield bool

#include <stdio.h>

#include <stdbool.h>

int main() {

int x = 2;

printf("x has value %d, !x has value %d, !!x has

value %d\n",x,!x,!!x);

bool r = true;

printf("r has value %d, !r has value %d, !!r has

value %d\n",r,!r,!!r);

return 0;

}

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 9

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

short circuiting
#include <stdio.h>

#include <stdbool.h>

bool f(int x, int y) {

printf("f(%d,%d) called\n",x,y);

return x < y;

}

bool g(int z) {

printf("g(%d) called\n",z);

return z < 20;

}

int main() {

if (f(2,3) && g(5)) { puts("main: true"); }

else { puts("main: false"); }

return 0;

}
©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 10

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Conditionals in C

Truth in C is simple but possibly non-intuitive:

Bit-wise 0 is false

anything else is true

However, boolean expressions and true and false are less

unpredictable:

true and true results are exactly 1

false and false results are exactly 0

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 11

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Control Flow

We have discussed only the for loop in C.

Required readings in K&R have covered other control flow.

We will look at if and its implementation.

There are other control flow statements (discussed in K&R), but

they behave similarly.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 12

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Boolean Operators

C uses the following Boolean operators:

!: Logical not; inverts the following expression

&&: Logical and; true iff the LHS and RHS are both true

||: Logical or; true if either the RHS or LHS is true

Do not confuse these with the similarly-named bitwise operators!

(We will discuss those later.)

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 13

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Boolean Logic in C

C uses short circuit evaluation for Boolean logic.

This means that evaluation of a Boolean sentence stops

as soon as its final truth value is known.

For example:

x && y

If x is false, then this sentence is false.

In that case, y will never be evaluated.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 14

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Short Circuit Consequences

The consequences of short-circuit evaluation can be surprising.

If terms in the sentence have side effects, those side effects

may not run.

This can be very useful, but also surprising!

if (i < len && array[i] == SOMEVAL) {

/* Useful! If array[i] is past the end of the

array , the illegal access never happens. */

}

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 15

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Equality Operators

There are two equality operators:

==: Compares value equality, returns true if equal

!=: Compares value equality, returns false if equal

Note that these operators compare values, not logical truth!

In particular, note that many values are “true”, but true is 1!

This means that two logically true values may compare unequal.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 16

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Truthiness
bool x = true;

int y = 2;

if (x)

printf("x is true\n");

if (y)

printf("y is true\n");

if (x == y)

printf("x and y are equal\n");

Output:
x is true

y is true

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 17

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Truthiness
bool x = true;

int y = 2;

if (x)

printf("x is true\n");

if (y)

printf("y is true\n");

if (x == y)

printf("x and y are equal\n");

Output:
x is true

y is true

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 18

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

stdbool

The header #include <stdbool.h> defines some useful things.

The type bool, which holds only 0 or 1

The values true and false

Before C99, these things didn’t exist in the standard, but were

widely defined in programs.

Therefore they were standardized to require a header.

bool b = 2;

printf("%d\n", b);

Output:
1

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 19

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Control Flow

Control flow is the path that execution takes through a program.

The C model is linear flow by default.

Control flow statements can change the order of execution.

This is how our programs make decisions.

We will examine how this flow is achieved.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 20

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

The if Statement

The simplest control statement in C is if.

Its syntax is:

if (condition) {

body;

}

If the expression condition evaluates to any true value, body

runs.

Otherwise, body is skipped.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 21

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Implementing if

The if statement must be compiled to machine instructions.

Those machine instructions must encode the condition check

and jump.

This is normally implemented as a conditional branch instruction.

You don’t have to learn assembly for this course, but we will look

at some machine instruction concepts.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 22

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

A Simple Condition — C

int main(int argc , char *argv [])

{

if (argc == 2 && argv [1][0] == '-') {

puts("negative");

}

return 0;

}

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 23

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

A Simple Condition — Assembly
cmpl $2, %edi ; compare argc to 2

je .L8 ; jump to .L8 if ==

.L4:

xorl %eax , %eax ; set up return value

ret ; return 0

.L8:

movq 8(%rsi), %rax ; load argv [1][0] to %rax

cmpb $45 , (%rax) ; compare %rax to 45 ('-')

jne .L4 ; jump to .L4 if !=

leaq .LC0(%rip), %rdi; load "negative" to %rdi

subq $8, %rsp ; make room on stack

call puts@PLT ; call puts(" negative ")

; another return 0 goes

here

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 24

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Conditional Instruction Flow

Note that the structure of the program was lost.

One of the advantages of high-level languages is structure.

The computer can generally only:¶

Make simple comparisons (sometimes only to zero!)

Jump to a program location

Anything more complicated is a software construction.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 25

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

The else Clause

The else clause is simply either:

The next instruction after a jump

The jump destination (with the if body being the next

instruction)

Which layout the compiler uses depends on the code and

architecture.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 26

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

else Gotchas

I strongly advocate always using blocks.

Here is a place where it really matters:

if (modify_x)

if (negate)

x = x * -1;

else

y = -x;

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 27

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

else Gotchas

I strongly advocate always using blocks.

What this actually means is:

if (modify_x)

if (negate)

x = x * -1;

else

y = -x;

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 28

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

else Gotchas

I strongly advocate always using blocks.

What you should use is:

if (modify_x) {

if (negate) {

x = x * -1;

}

} else {

y = -x;

}

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 29

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Summary

All nonzero values are true conditions in C.

All Boolean expressions use 1 for true.

The bool keyword holds only 0 or 1.

C uses short-circuit evaluation of Boolean logic.

Control flow is implemented with comparisons and jumps.

Use blocks for if and else!

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 30

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

Next Time …

POSIX memory model

Pointer types

Process layout

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 31

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

References I

Required Readings

[1] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Second

Edition. Chapter 2: 2.6; Chapter 3: Intro, 3.1–3.7. Prentice Hall, 1988.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 32

Ad{vice&ministrivia} Live Coding Introduction Boolean Logic Control Flow Summary References

License

Copyright 2020–2025 Ethan Blanton, All Rights Reserved.

Copyright 2024 Eric Mikida, All Rights Reserved.

Copyright 2022–2025 Carl Alphonce, All Rights Reserved.

Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 33

https://www.cse.buffalo.edu/~eblanton/

	Ad{vice&ministrivia}
	Live Coding
	Introduction
	Boolean Logic
	Control Flow
	Summary
	References

