
Bitwise Operations

CSE 220: Systems Programming

Ethan Blanton & Carl Alphonce

Department of Computer Science and Engineering

University at Buffalo

Introduction C Bit Manipulation Example Summary References

Planning: Diagrams

After a once-through of the documentation, start drawing.

(See the PA2 Handout video!)

Draw the ideas:

Data structures

Abstract the structure!

Arrows represent connections

Boxes represent data storage

…

Program flow

Read args → open inputs → …

(This is more interesting if it’s non-linear!)

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 2

Introduction C Bit Manipulation Example Summary References

Planning: Pseudocode

After diagrams, write pseudocode.

You can write it at a very high level:

“For every cell in the matrix”

Then put it in your code as comments.

Augment the comments with code as you develop!

// For every cell in the matrix

// Compute neighbors

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 3

Introduction C Bit Manipulation Example Summary References

Planning: Pseudocode

After diagrams, write pseudocode.

You can write it at a very high level:

“For every cell in the matrix”

Then put it in your code as comments.

Augment the comments with code as you develop!

// For every cell in the matrix

for (int y = 0; y < GRIDY; y++) {

for (int x = 0; x < GRIDX; x++) {

// Compute neighbors

}

}

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 4

Introduction C Bit Manipulation Example Summary References

Bitwise Operations

We have seen arithmetic and logical integer operations.

C also supports bitwise operations.

These operations correspond to circuit elements.

They are often related to, yet different from, logical operations.

The major operations are:

Bitwise complement

Bit shifts (left and right)

Bitwise AND, OR, and XOR

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 5

Introduction C Bit Manipulation Example Summary References

Truth Tables

You should already be familiar with truth tables.

Every bitwise operation (except shift) is defined by a truth table.

A truth table represents one or two input bits and their output bit.

For example, bitwise OR:

x y Result

0 0 0

1 0 1

0 1 1

1 1 1

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 6

Introduction C Bit Manipulation Example Summary References

Bitwise Operations
OR (∨):

x y Result

0 0 0

1 0 1

0 1 1

1 1 1

XOR (⊕):

x y Result

0 0 0

1 0 1

0 1 1

1 1 0

AND (∧):

x y Result

0 0 0

1 0 0

0 1 0

1 1 1

NOT (¬):

x Result

0 1

1 0

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 7

Introduction C Bit Manipulation Example Summary References

Bit Operations on Words

Each of these bit operations can be applied to any integer type.

Each bit position will have the operation applied individually.

E.g., the application of XOR to an n-bit word is:

∀n–1i=0Resulti = xi ⊕ yi

Each operation applies to a single bit, so no carries are needed.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 8

Introduction C Bit Manipulation Example Summary References

Lecture Question

Time for a review question!

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 9

Introduction C Bit Manipulation Example Summary References

Operators

The C bitwise operators divide into unary and binary operators:

Unary:

~x: Bitwise complement of x (0 → 1, 1 → 0)

Binary:

x | y: Bitwise OR of x and y

x & y: Bitwise AND of x and y

x ^ y: Bitwise XOR of x and y

x << y: Left shift x by y bits

x >> y: Right shift x by y bits

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 10

Introduction C Bit Manipulation Example Summary References

Bit Shifting

Bit shifts are slightly more complicated.

C can shift bits left or right.

Left shift (<<): bits move toward larger bit values

Right shift (>>): bits move toward smaller bit values

For left shift, zeroes are shifted in on the right.

Examples:
0111 left shift 1 bit → 1110

0010 left shift 2 bits → 1000

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 11

Introduction C Bit Manipulation Example Summary References

Right Shifts

Right shifts are somewhat trickier.

In particular, they may obey sign extension.

If the shifted integer is unsigned, zeroes are shifted in on the left:
0110 right shift 1 bit → 0011

1010 right shift 2 bits → 0010

If the shifted integer is signed, the sign bit may affect the shift.

If it is zero, shifts behave as unsigned

If it is one, it might shift in ones

If [the shifted value] is a signed type and a negative value, the

resulting value is implementation-defined. — ISO C99

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 12

Introduction C Bit Manipulation Example Summary References

Bit versus Logical Operators

Do not confuse the bit and logical operators!

Some of them work correctly for integers; e.g., |.¶

Some decidedly do not, e.g., &:

1 & 2 → logical false!

Not (~) and and (&) are particularly pernicious because they

often work.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 13

Introduction C Bit Manipulation Example Summary References

Masking

Many bitwise operations are used to work on a portion of a word.

This typically requires masking either:

The bits to be modified

The bits to be ignored

Masking uses & and sometimes ~.

For example, to get the lowest 8 bits of an integer:

eightbits = x & 0xff;

(You might remember this from dumpmem().)

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 14

Introduction C Bit Manipulation Example Summary References

Bit Twiddling

Setting and unsetting individual bits typically uses masking.

Assume we want to set bit zero:

#define LOWBIT 0x1

x = x | LOWBIT;

Later, we want to unset bit zero:

x = x & ~LOWBIT;

In this case, ~LOWBIT is a mask for all bits except 0.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 15

Introduction C Bit Manipulation Example Summary References

Twiddling with XOR

If you always want to complement a bit, you can use XOR.

This comes from the truth table; assume y is a constant 1:

x y Result

0 0 0

1 0 1

0 1 1

1 1 0

x = x ^ LOWBIT;

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 16

Introduction C Bit Manipulation Example Summary References

Shifting and Powers of 2

Note that bit shifting left is multiplying by powers of 2!

A one-bit left shift is multiplying by 2:
0010 → 2

0100 → 4

0011 → 3

0110 → 6

Successive bit shifts continue to multiply by 2.

1 (= 20)
1 << k (= 2k)

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 17

Introduction C Bit Manipulation Example Summary References

Lecture Question

Ask a lecture question!

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 18

Introduction C Bit Manipulation Example Summary References

Forcing Endianness

int htonl(int input) {

int output;

char *outb = (char *)&output;

for (int b = 0; b < sizeof(int); b++) {

int shift = (sizeof(int) - b - 1) * 8;

outb[b] = (input >> shift) & 0xff;

}

return output;

}

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 19

Introduction C Bit Manipulation Example Summary References

htonl in Action

int x = 0x01020304;

int y = htonl(x);

dump_mem (&x, sizeof(x));

dump_mem (&y, sizeof(y));

04 03 02 01

01 02 03 04

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 20

Introduction C Bit Manipulation Example Summary References

Summary

C can manipulate individual bits in memory.

Bit operations can be subtle and tricky!

Signedness matters.

Bit manipulations can force endianness or other

representations.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 21

Introduction C Bit Manipulation Example Summary References

References I

Required Readings

[2] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Second

Edition. Chapter 2: 2.9; Appendix A: A7.4.6, A7.8, A7.11–A7.13. Prentice Hall, 1988.

[3] Ian Weinand. Computer Science from the Bottom Up. Chapter 2, part 1: 1.1.4, 1.1.5, 1.3.

URL: https://www.bottomupcs.com/index.html.

Optional Readings

[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 2: 2.1.6–2.1.9. Pearson, 2016.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 22

https://www.bottomupcs.com/index.html

Introduction C Bit Manipulation Example Summary References

License

Copyright 2019–2025 Ethan Blanton, All Rights Reserved.

Copyright 2024 Eric Mikida, All Rights Reserved.

Copyright 2022–2025 Carl Alphonce, All Rights Reserved.

Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2025 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 23

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	C Bit Manipulation
	Example
	Summary
	References

