
CSE 250: Java Refresher

CSE 250: Java Refresher
Lecture 1

Guest Lecturer: Aaron Huber

Aug 30, 2023

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Class Logistics

Reminders

AI Quiz due Weds, Sept 6 at 11:59 PM.

Your final submission must have a score of 1.0 to pass the
class.
If you can’t submit in autolab, let course staff know ASAP.

PA 0 due Sun, Sept 10 at 11:59 PM.

All you need to do is make sure you have a working
environment.
If you can’t submit in autolab, let course staff know ASAP.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Class Logistics

Environment

Programming Environment

IntelliJ

Platform

MacOS

Windows

Ubuntu Linux

You don’t have to use this environment, but we may not be able to help
you if you don’t.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Java

Why Java?

Strongly Typed Language: The compiler helps you make
sure you mean what you say.

Compiled Language: Run anywhere, see the impacts of data
layout.

You know it: You learned the basics in 116.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Java

Hello World

Hello World

1 package cse250.examples;

2

3 class MainExample

4 {

5 /**

6 * Main function

7 * @param args The arguments to main

8 */

9 public static void main(String[] args)

10 {

11 System.out.println("Hello World");

12 }

13 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Java

Hello World

1 public static void main(String[] args)

String args[]

There is a parameter args and its type is array of String.

public

The function can be called by anyone.

static

The function isn’t tied to an object (e.g.,
MainExample.main(...)).

void

The function doesn’t return anything.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Java

Hello World

1 System.out.println("Hello World");

System refers to java.lang.System.

System.out is the out field of System.

System.out.println prints a line of text.

Semicolons (;) are mandatory.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Java

Hello World

1 /**

2 * Main function

3 * @param args The arguments to main

4 */

Javadoc comments start with /**.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Java

Hello World

1 package cse250.examples;

2

3 class MainExample

4 {

5 ...

6 }

All code in java lives in a class.

Classes are organized into packages.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Java

Exceptions

Exceptions

1 public List<String> loadData(String filename)

2 {

3 List<String> ret = new ArrayList<String>();

4 BufferedReader input =

5 new BufferedReader(new FileReader(filename));

6 String line;

7 while((line = input.readLine) != null)

8 {

9 ret.add(line)

10 }

11 return ret;

12 }

error: unreported exception IOException; must be caught

or declared to be thrown

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Java

Exceptions

What are Exceptions

Something goes horribly wrong!

What do you do?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Java

Exceptions

Catching Exceptions

1 public List<String> loadData(String filename)

2 {

3 List<String> ret = new ArrayList<String>();

4 try {

5 BufferedReader input =

6 new BufferedReader(new FileReader(filename));

7 String line;

8 while((line = input.readLine) != null)

9 {

10 ret.add(line)

11 }

12 } catch(IOException e) {

13 // handle the situation: e.g., print an error

14 e.printStackTrace()

15 }

16 return ret;

17 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Java

Exceptions

Passing Along Exceptions

1 public List<String> loadData(String filename)

2 throws IOException // Communicate the explosive potential

3 {

4 List<String> ret = new ArrayList<String>();

5 BufferedReader input =

6 new BufferedReader(new FileReader(filename));

7 String line;

8 while((line = input.readLine) != null)

9 {

10 ret.add(line)

11 }

12 return ret;

13 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Java

Coding Style

Coding Style is Important

1 class SHAZboT

2 {

3 public static void

4 doThings(String ILikeLlamas[])

5 {

6 String AString = "No";

7

8 // This is a for loop

9 for(q : ILikeLlamas) System.out.println(q);

10 }

11 }

What the heck is going on here?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Java

Coding Style

Naming

SHAZboT

doThings

AString

ILikeLlamas

These are all valid variable names, but not helpful to someone
reading your code.

Use variable names that summarize the variable’s role or contents:

nextNode: A pointer to the next node in a linked list

data: The contents of an ArrayList

leftChild: A pointer to the left child of a BST

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Java

Coding Style

Indentation

1 class SHAZboT

2 {

3 public static void doThings(String ILikeLlamas[])

4 {

5 String AString = "No";

6

7 // This is a for loop

8 for(q : ILikeLlamas) System.out.println(q);

9 }

10 }

Consistent use of indentation is a big help to readers.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Java

Coding Style

Comments

1 // This is a for loop

Comments should provide information that’s not already present in
the code. For example:

Assumptions you’re making when writing the code.

References to relevant documentation/citations.

Cleaner descriptions of any non-obvious math.

Explanations of hacks or workarounds; why you’re not doing
things the “obvious” way.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Java

Coding Style

Brackets

1 for(q : ILikeLlamas) System.out.println(q);

vs

1 for(q : ILikeLlamas)

2 {

3 System.out.println(q);

4 }

Java supports one-line for loops. This is one of the easiest ways to
introduce bugs.

Always use braces.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Java

Coding Style

Imagine you’re writing a letter to future-you

Help future-you (and your TAs/instructors) understand your thought
process.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Strategies

Ways to Succeed

Never start with code.

What do you have? How is it initially organized?

Draw diagrams
Try out examples

What do you want? How should it be structured?

Draw diagrams
Try out examples

How do the input and output relate?

Connect the diagrams.

Break the big problem down into smaller ones.

If I had ”X”, I could solve the problem.
Separately figure out how to do X.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Strategies

Ways to Obtain Assistance

Explain what you’ve tried.

Which test cases fail?
What approaches have you tried and what breaks?

Explain what you’re trying to accomplish and why.

Make sure your interlocutor has all the context.

Follow coding style guidelines.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Strategies

If you don’t feel comfortable with Java

If you bring us (mostly working) pseudocode, course staff will help
you translate it to Java.

Typical questions:

Syntax (e.g., ”How do I break out of a for loop?”)
Ask on Piazza, Office Hours, Recitations!

Semantics (e.g., ”How do I insert an item into a linked list?”)
Ask, but help will usually not come in the form of code.

Most language (syntax) complaints we get are actually about
semantics.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Strategies

Basic Debugging

Demo

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Strategies

Unit Testing

Look for this phrase

[part of code] should [do a thing]

Any phrase like this can become a unit test.

A typical unit test

Set up a minimal input.

Invoke the code being tested.

Test the output/program state.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Strategies

JUnit

JUnit

1 package cse250.examples.debugging;

2

3 import org.junit.jupiter.api.Test;

4

5 public class BreakItDownTest {

6 ArrayList<FarmersMarket> data =

7 BreakItDown.readMarkets(/*...*/);

8

9 @Test

10 void shouldCount75BakedGoods()

11 throws IOException

12 {

13 int count = BreakItDown.countTheBakedGoods(data);

14 assert (count == 75);

15 }

16 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Strategies

JUnit

1 public class BreakItDownTest {

2 ArrayList<FarmersMarket> data =

3 BreakItDown.readMarkets(/*...*/);

4

5 /*...*/

6 }

Test cases are normal class files.

Usually, they live in a separate directory (test instead of src).

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Strategies

JUnit

1 @Test

2 void shouldCount75BakedGoods()

3 throws IOException

A test case is any function labeled with the @Test annotation.

The name of the function does not matter

The return value should be void

The function may throw exceptions.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Strategies

JUnit

1 assert (count == 75);

The test case should run the code you want to test, and then call
assert to confirm that the outputs are correct.

In this case, we already know that there are 75 farmers markets
that sell baked goods, so we can check whether the code computes
the right value.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

Strategies

JUnit

Debugging with JUnit

Demo

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

	Class Logistics
	Java
	Hello World
	Exceptions
	Coding Style

	Strategies
	JUnit

