CSE 250 Data Structures

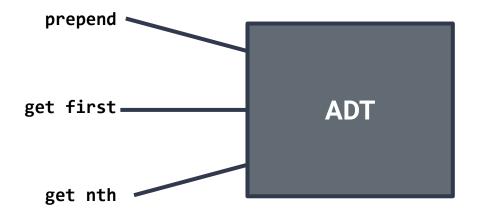
Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Lec 04: Intro to Complexity

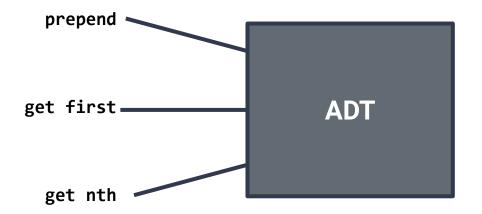
Announcements and Feedback

- Office hours start this week
- Normal recitations begin next week
- Academic Integrity Quiz due Tonight @ 11:59PM
- PA0 due Friday @ 11:59PM
- WA1 due Friday @ 11:59PM

An Abstract Data Type is a specification of what a data structure can do



Often, many data structures can satisfy a given ADT...how do you choose?



Data Structure 1

- Very fast prepend, get first
- Very slow get nth

Data Structure 2

- Very fast get nth, get first
- Very slow prepend

Data Structure 3

- Very fast get nth, get first
- Occasionally slow prepend

Which is better?

Data Structure 1 (Linked List)

- Very fast prepend, get first
- Very slow get nth

Data Structure 2 (Array)

- Very fast get nth, get first
- Very slow prepend

Data Structure 3 (Array Buffer...in reverse)

- Very fast get nth, get first
- Occasionally slow prepend

Which is better?

IT DEPENDS!

A (very) Brief Refresher: Array

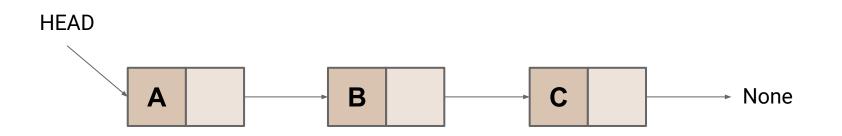
- An array is an ordered container (elements stored one after another)
- Array elements are all stored in a contiguous block of memory

n si	izeof(T)	a(0)	a(1)	a(2)	a(3)	a(4)
------	----------	------	------	------	------	------

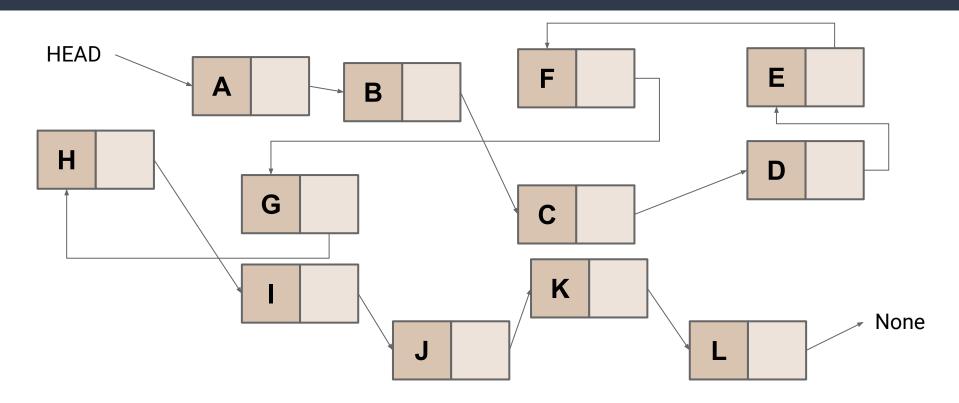
...

A (very) Brief Refresher: Linked Lists

- Also an ordered container
- Each element stores a pointer to the next element
 - …not necessarily in a contiguous block of memory

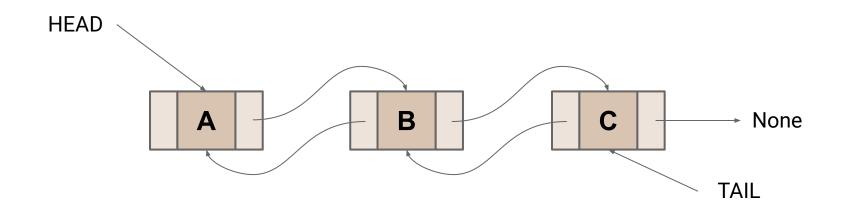


A (very) Brief Refresher: Linked Lists



A (very) Brief Refresher: Linked Lists

- Can also be doubly linked (a next AND a prev pointer per node)
- PA1 will have you implementing a **Sorted Doubly Linked List** with some minor twists



Data Structure 1 (Linked List)

- Very fast prepend, get first
- Very slow get nth

Data Structure 2 (Array)

- Very fast get nth, get first
- Very slow prepend

What is "fast"? "slow"?

Data Structure 3 (Array Buffer...in reverse)

- Very fast get nth, get first
- Occasionally slow prepend

Attempt #1: Wall-clock time?

- What is fast?
 - o 10s? 100ms? 10ns?
 - \circ ...it depends on the task
- Algorithm vs Implementation
 - Compare Grace Hopper's implementation to yours
- What machine are you running on?
 - Your old laptop? A lab machine? The newest, shiniest processor on the market?
- What bottlenecks exist? CPU vs IO vs Memory vs Network...

Attempt #1: Wall-clock time?

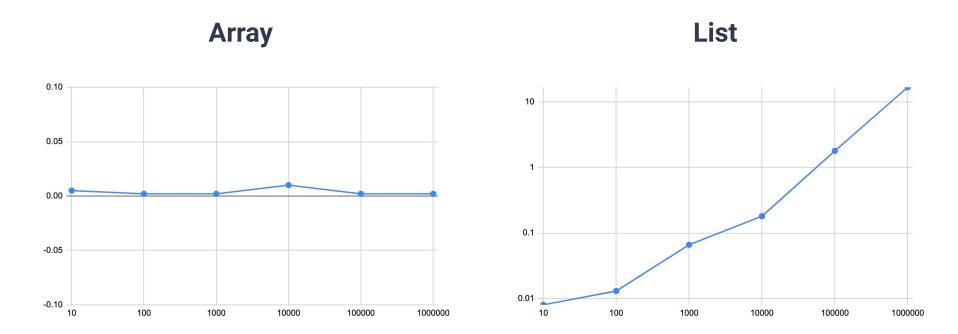
- What is fast?
 - o 10s? 100ms? 10ns?
 - ...it depends on the task
- Algorithm vs Implementation
 - Compare Grace Hopper's implementation to yours
- What machine are you running on?
 - Your old laptop? A lab machine? The newest, shiniest processor?
- What bottlenecks exist? CPU vs IO vs Memory vs Network...

Wall-clock time is not terribly useful...¹³

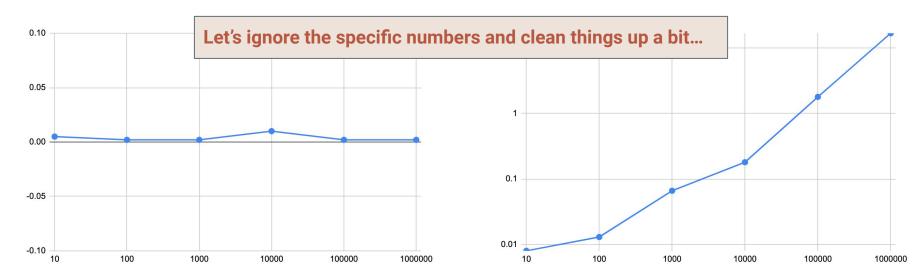
Analysis Checklist

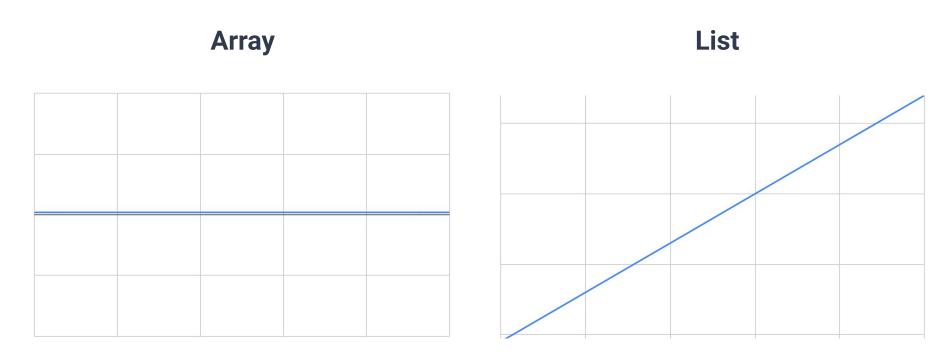
1. Don't think in terms of wall-time, think in terms of "number of steps"

Let's do a quick demo...



Array





Array			List		
	two algorithms is how they he shape of the function)				

Analysis Checklist

- 1. Don't think in terms of wall-time, think in terms of "number of steps"
- 2. To give a useful solution, we should take "scale" into account
 - How does the runtime change as we change the size of the input?

```
1 public void updateUsers(User[] users) {
2     x = 1;
3     for(user : users) {
4         user.id = x;
5             x = x + 1;
6     }
7 }
```

```
1 public void updateUsers(User[] users) {
2     x = 1;
3     for(user : users) {
4         user.id = x;
5          x = x + 1;
6     }
7 }
```

$$1 + \sum_{user \in users}$$

$$1 + \sum_{user \in users} 4$$

$$1 + \sum_{user \in users} 4 = 1 + 4 \cdot |users|$$

```
1 public void userFullName(User[] users, int id) {
2 User user = users[id];
3 String fullName = user.firstName + user.lastName;
4 return fullName;
5 }
```

```
1 public void userFullName(User[] users, int id) {
2 User user = users[id];
3 String fullName = user.firstName + user.lastName;
4 return fullName;
5 }
```

3 steps...(sort of, more details later)

```
1
   public void totalReads(User[] users, Post[] posts) {
 2
     int totalReads = 0;
     for(post : posts) {
 3
       int userReads = 0;
4
 5
       for(user : users) {
 6
         if(user.readPost(post)){ userReads += 1; }
 7
       }
8
       totalReads += userReads;
 9
10
```

```
1
   public void totalReads(User[] users, Post[] posts) {
2
     int totalReads = 0;
     for(post : posts) {
 3
      int userReads = 0;
4
5
      for(user : users) {
6
         if(user.readPost(post)){ userReads += 1; }
7
       }
8
      totalReads += userReads;
9
10
```

```
1
   public void totalReads(User[] users, Post[] posts) {
 2
     int totalReads = 0;
 3
     for(post : posts) { 
       int userReads = 0;
 4
 5
       for(user : users) {
 6
         if(user.readPost(post)){ userReads += 1; }
 7
       }
8
       totalReads += userReads;
 9
10
```

$$1 + \sum_{post \in posts}$$

```
1
   public void totalReads(User[] users, Post[] posts) {
2
     int totalReads = 0;
 3
     for(post : posts) {
      int userReads = 0;
4
5
     for(user : users) {
6
         if(user.readPost(post)){ userReads += 1; }
7
       }
8
      totalReads += userReads; 
9
10
                      1 + \sum
                                        3
                                                                                     31
                           post \in posts
```

```
1
   public void totalReads(User[] users, Post[] posts) {
 2
     int totalReads = 0;
     for(post : posts) {
 3
       int userReads = 0;
 4
5
       for(user : users) {
 6
          if(user.readPost(post)){ userReads += 1; }
 7
        }
8
       totalReads += userReads;
 9
10
                        1 + \sum_{post \in posts} \left(3 + \sum_{user \in use}\right)
```

 $user \in users$

```
1
   public void totalReads(User[] users, Post[] posts) {
 2
     int totalReads = 0;
 3
     for(post : posts) {
       int userReads = 0;
 4
 5
      for(user : users) {
 6
         if(user.readPost(post)){ userReads += 1; } ____
 7
       }
8
       totalReads += userReads;
 9
10
                      1 + \sum \left( 3 + \sum \right)
                                                           2
```

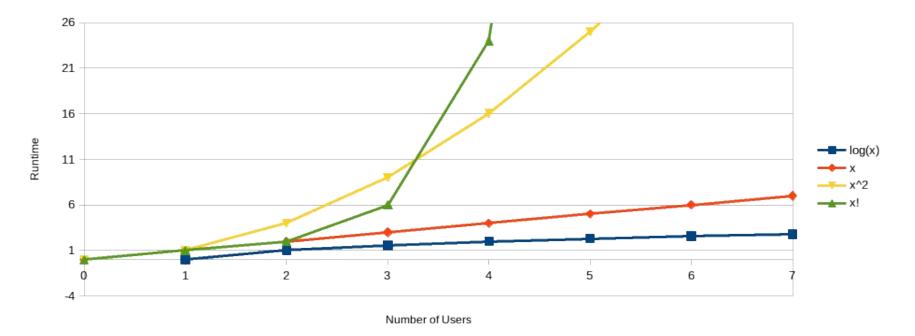
 $user \in users$

 $post \in posts$

Steps to "Functions"

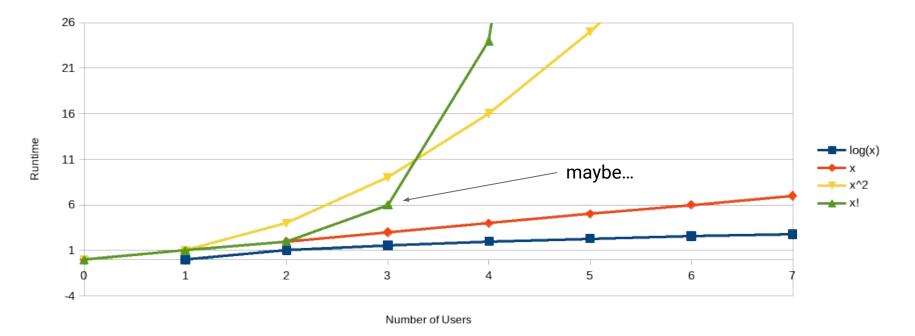
Now that we have number of steps in terms of summations... ...which we can simplify (like in WA1) into mathematical functions... We can start analyzing runtime as a function

Runtime as a Function



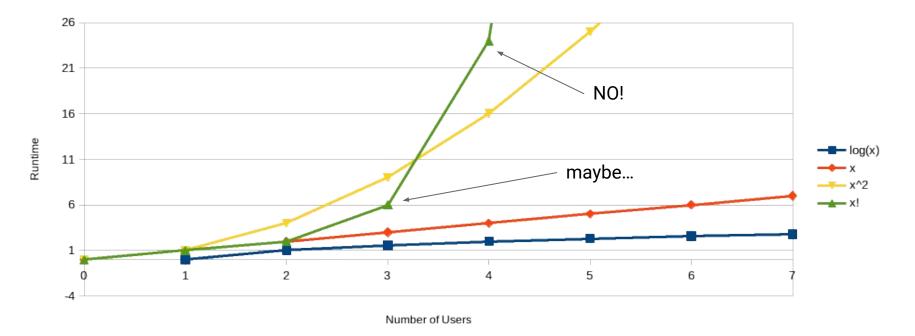
Would you consider an algorithm that takes |Users|! number of steps?

Runtime as a Function



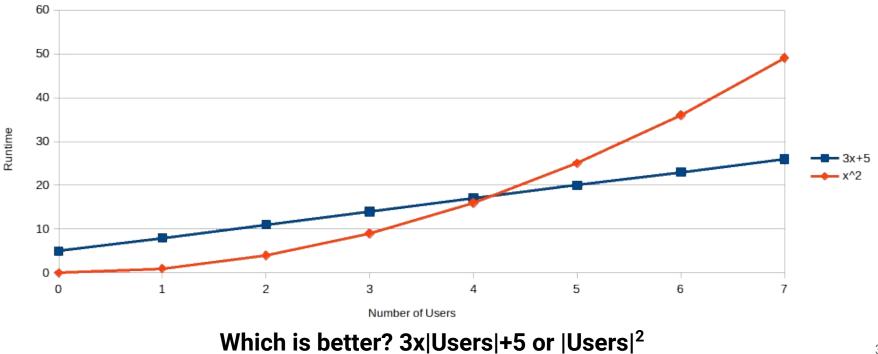
Would you consider an algorithm that takes |Users|! number of steps?

Runtime as a Function



Would you consider an algorithm that takes |Users|! number of steps?

Runtime as a Function



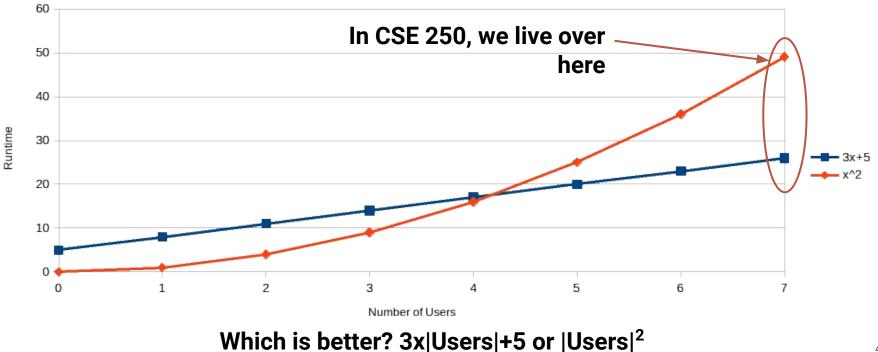
Analysis Checklist

- 1. Don't think in terms of wall-time, think in terms of "number of steps"
- 2. To give a useful solution, we should take "scale" into account
 - How does the runtime change as we change the size of the input?

Analysis Checklist

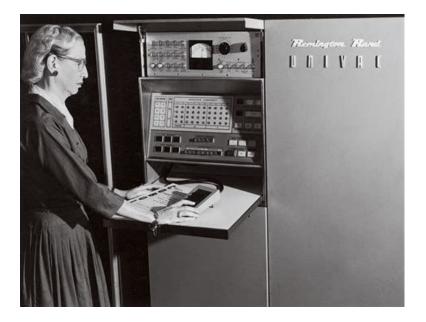
- 1. Don't think in terms of wall-time, think in terms of "number of steps"
- 2. To give a useful solution, we should take "scale" into account
 - How does the runtime change as we change the size of the input?
- 3. Focus on "large" inputs
 - Rank functions based on how they behave at large scales

Runtime as a Function



Goal: Ignore implementation details

VS



....

Error 23: Cat on Keyboard

Goal: Ignore execution environment

Intel i9

Motorola 68000

Goal: Judge the Algorithm Itself

- How fast is a step? Don't care
 - Only count number of steps
- Can this be done in two steps instead of one?
 - "3 steps per user" vs "some number of steps per user"
 - Sometimes we don't care...sometimes we do

Analysis Checklist

- 1. Don't think in terms of wall-time, think in terms of "number of steps"
- 2. To give a useful solution, we should take "scale" into account
 - How does the runtime change as we change the size of the input?
- 3. Focus on "large" inputs
 - Rank functions based on how they behave at large scales

Analysis Checklist

- 1. Don't think in terms of wall-time, think in terms of "number of steps"
- 2. To give a useful solution, we should take "scale" into account
 - How does the runtime change as we change the size of the input?
- 3. Focus on "large" inputs
 - Rank functions based on how they behave at large scales
- 4. Decouple algorithm from infrastructure/implementation
 - Asymptotic notation...?

Attempt #2: Growth Functions

Not a function in code...but a mathematical function:

T(n)

n: The "size" of the input

ie: number of users,rows, pixels, etc

T(n): The number of "steps" taken for input of size n

ie: 20 steps per user, where n = |Users|, is 20 x n

Some Basic Assumptions:

Problem sizes are non-negative integers

 $n \in \{0, 1, 2, 3, ...\} = \{0\} \cup \mathbb{Z}^+$

We can't reverse time...(obviously)

T(n) > 0

Smaller problems aren't harder than bigger problems

$$n_1 < n_2 \Rightarrow T(n_1) \le T(n_2)$$

Some Basic Assumptions:

Problem sizes are non-negative integers

n ∈ {0, 1, 2, 3, ...} = {0} ∪ ℤ⁺

We can't reverse time...(obviously)

T(*n*) > 0

7: {0} $U \mathbb{Z}^+ \to \mathbb{R}^+$

T is non-decreasing

Smaller problems aren't harder than bigger problems

$$n_1 < n_2 \Rightarrow T(n_1) \le T(n_2)$$

We are still implementation dependent...

 $T_1(n) = 19n$ $T_2(n) = 20n$

We are still implementation dependent...

$T_{1}(n) = 19n$ $T_{2}(n) = 20n$

Does 1 extra step per element really matter...?

Is this just an implementation detail?

We are still implementation dependent...

 $T_1(n) = 19n$ $T_2(n) = 20n$ $T_3(n) = 2n^2$

 T_1 and T_2 are much more "similar" to each other than they are to T_3

We are still implementation dependent...

 $T_1(n) = 19n$ $T_2(n) = 20n$ $T_3(n) = 2n^2$

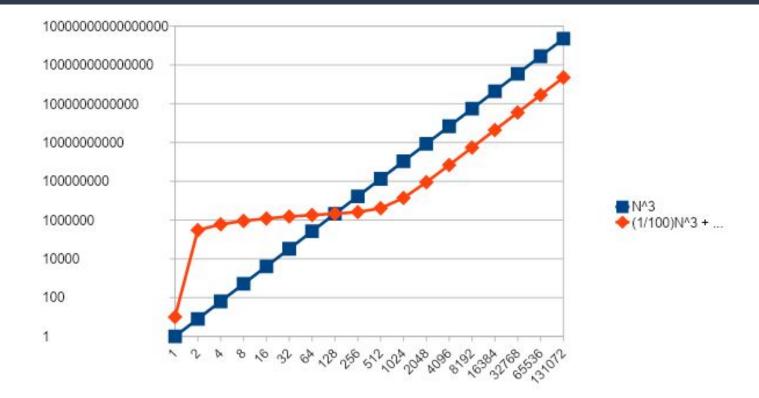
 T_1 and T_2 are much more "similar" to each other than they are to T_3

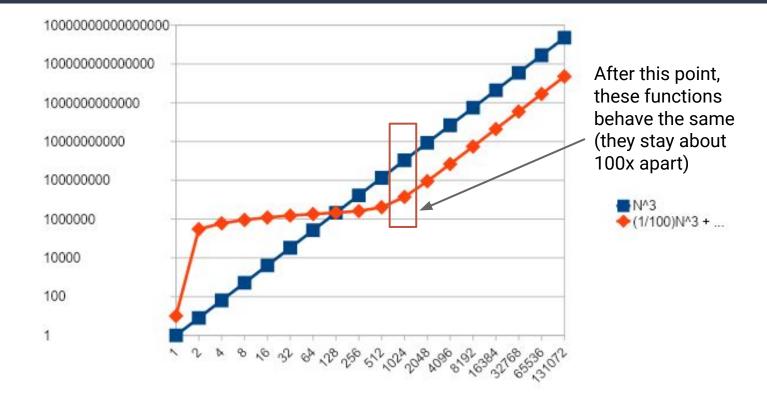
How do we capture this idea formally?

Consider the following two functions:

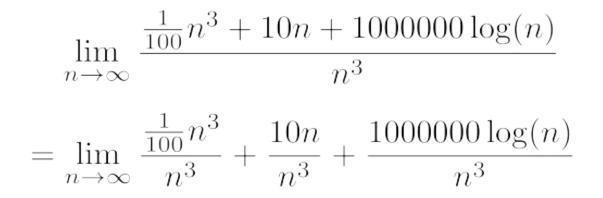
$$\frac{1}{100}n^3 + 10n + 1000000\log(n)$$

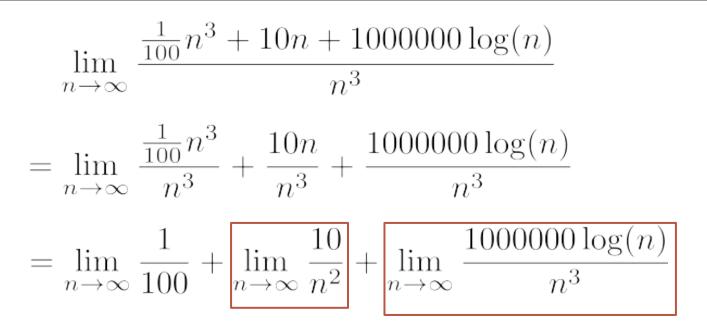
$$n^3$$



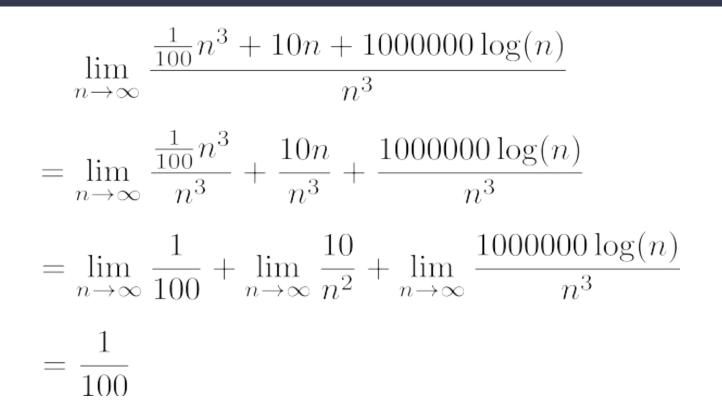


$$\lim_{n \to \infty} \frac{\frac{1}{100}n^3 + 10n + 1000000\log(n)}{n^3}$$





These terms go to 0



Attempt #3: Asymptotic Analysis

Consider two functions, f(n) and g(n)

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

In this particular case, f grows w.r.t. n faster than g

So...if f(n) and g(n) are the number of steps two different algorithms take on a problem of size n, which is better?

Attempt #3: Asymptotic Analysis

Case 1:
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

(f grows faster; g is better)

Case 2: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$

(g grows faster; f is better)

Case 3: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = some \ constant$

(f and g "behave" the same)

Goal of "Asymptotic Analysis"

We want to organize runtimes (growth functions) into different *Complexity Classes*

Within the same complexity class, runtimes "behave the same"

Goal of "Asymptotic Analysis"

"Strategic Optimization" focuses on improving the complexity class of your code!

Back to Our Previous Example...

$$\frac{1}{100}n^3 + 10n + 1000000\log(n)$$

The 10n and 1000000 log(n) "don't matter" The 1/100 "does not matter"

Back to Our Previous Example...

$$\frac{1}{100}n^3 + 10n + 1000000\log(n)$$

The 10n and 1000000 log(n) "don't matter" The 1/100 "does not matter"

n³ is the dominant term, and that determines the "behavior"

Why Focus on Dominating Terms?

f(n)	10	20	50	100	1000
log(log(n))	0.43 ns	0.52 ns	0.62 ns	0.68 ns	0.82 ns
log(n)	0.83 ns	1.01 ns	1.41 ns	1.66 ns	2.49 ns
n	2.5 ns	5 ns	12.5 ns	25 ns	0.25 µs
nlog(n)	8.3 ns	22 ns	71 ns	0.17 µs	2.49 µs
$n^2 = n^5$	25 ns	0.1 µs	0.63 µs	2.5 µs	0.25 ms
$\frac{n}{2^n}$	25 µs	0.8 ms	78 ms	2.5 s	2.9 days
$\frac{2}{n!}$	0.25 µs	0.26 ms	3.26 days	10 ¹³ years	10 ²⁸⁴ years
	0.91 ms	19 years	10 ⁴⁷ years	10 ¹⁴¹ years	67

Why Focus on Dominating Terms?

$2^n \gg n^c \gg n \gg log(n) \gg c$