
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 04: Intro to Complexity

mailto:epmikida@buffalo.edu

Announcements and Feedback

● Office hours start this week
● Normal recitations begin next week
● Academic Integrity Quiz due Tonight @ 11:59PM
● PA0 due Friday @ 11:59PM
● WA1 due Friday @ 11:59PM

2

Thought Experiment

An Abstract Data Type is a specification of what a data structure can do

ADT

prepend

get first

get nth

Thought Experiment

Often, many data structures can satisfy a given ADT…how do you choose?

ADT

prepend

get first

get nth

Thought Experiment

Data Structure 1
● Very fast prepend, get first
● Very slow get nth

Data Structure 2
● Very fast get nth, get first
● Very slow prepend

Data Structure 3
● Very fast get nth, get first
● Occasionally slow prepend

Which is better?

Thought Experiment

Which is better?

IT DEPENDS!

Data Structure 1 (Linked List)
● Very fast prepend, get first
● Very slow get nth

Data Structure 2 (Array)
● Very fast get nth, get first
● Very slow prepend

Data Structure 3 (Array Buffer…in reverse)
● Very fast get nth, get first
● Occasionally slow prepend

A (very) Brief Refresher: Array

● An array is an ordered container (elements stored one after another)
● Array elements are all stored in a contiguous block of memory

n sizeof(T) a(0) a(1) a(2) a(3) a(4) …

A (very) Brief Refresher: Linked Lists

HEAD

NoneA B C

● Also an ordered container
● Each element stores a pointer to the next element

○ …not necessarily in a contiguous block of memory

8

A (very) Brief Refresher: Linked Lists

HEAD

None

A B

CG

I

J

E

K

DH

F

L

● Can also be doubly linked (a next AND a prev pointer per node)
● PA1 will have you implementing a Sorted Doubly Linked List with

some minor twists

A (very) Brief Refresher: Linked Lists

HEAD

A CB

10

None

TAIL

Thought Experiment

What is "fast"? "slow"?

Data Structure 1 (Linked List)
● Very fast prepend, get first
● Very slow get nth

Data Structure 2 (Array)
● Very fast get nth, get first
● Very slow prepend

Data Structure 3 (Array Buffer…in reverse)
● Very fast get nth, get first
● Occasionally slow prepend

Attempt #1: Wall-clock time?

● What is fast?
○ 10s? 100ms? 10ns?
○ …it depends on the task

● Algorithm vs Implementation
○ Compare Grace Hopper’s implementation to yours

● What machine are you running on?
○ Your old laptop? A lab machine? The newest, shiniest

processor on the market?
● What bottlenecks exist? CPU vs IO vs Memory vs Network…

12

Attempt #1: Wall-clock time?

● What is fast?
○ 10s? 100ms? 10ns?
○ …it depends on the task

● Algorithm vs Implementation
○ Compare Grace Hopper’s implementation to yours

● What machine are you running on?
○ Your old laptop? A lab machine? The newest, shiniest

processor?
● What bottlenecks exist? CPU vs IO vs Memory vs Network…

Wall-clock time is not terribly useful… 13

Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”

14

Let’s do a quick demo…

15

Comparing Random Access for Array vs List

Array List

16

Comparing Random Access for Array vs List

Array List

Let’s ignore the specific numbers and clean things up a bit…

17

Comparing Random Access for Array vs List

Array List

18

Comparing Random Access for Array vs List

Array List

What differentiates these two algorithms is how they
scale with input size (the shape of the function)

19

Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?

20

Counting Steps

21

1

2

3

4

5

6

7

public void updateUsers(User[] users) {

 x = 1;

 for(user : users) {

 user.id = x;

 x = x + 1;

 }

}

Counting Steps

22

1

2

3

4

5

6

7

public void updateUsers(User[] users) {

 x = 1;

 for(user : users) {

 user.id = x;

 x = x + 1;

 }

}

Counting Steps

23

1

2

3

4

5

6

7

public void updateUsers(User[] users) {

 x = 1;

 for(user : users) {

 user.id = x;

 x = x + 1;

 }

}

Counting Steps

24

1

2

3

4

5

6

7

public void updateUsers(User[] users) {

 x = 1;

 for(user : users) {

 user.id = x;

 x = x + 1;

 }

}

Counting Steps

25

1

2

3

4

5

6

7

public void updateUsers(User[] users) {

 x = 1;

 for(user : users) {

 user.id = x;

 x = x + 1;

 }

}

Counting Steps

26

1

2

3

4

5

public void userFullName(User[] users, int id) {

 User user = users[id];

 String fullName = user.firstName + user.lastName;

 return fullName;

}

Counting Steps

27

1

2

3

4

5

public void userFullName(User[] users, int id) {

 User user = users[id];

 String fullName = user.firstName + user.lastName;

 return fullName;

}

3 steps…(sort of, more details later)

Counting Steps

28

1

2

3

4

5

6

7

8

9

10

public void totalReads(User[] users, Post[] posts) {

 int totalReads = 0;

 for(post : posts) {

 int userReads = 0;

 for(user : users) {

 if(user.readPost(post)){ userReads += 1; }

 }

 totalReads += userReads;

 }

}

Counting Steps

29

1

2

3

4

5

6

7

8

9

10

public void totalReads(User[] users, Post[] posts) {

 int totalReads = 0;

 for(post : posts) {

 int userReads = 0;

 for(user : users) {

 if(user.readPost(post)){ userReads += 1; }

 }

 totalReads += userReads;

 }

}

Counting Steps

30

1

2

3

4

5

6

7

8

9

10

public void totalReads(User[] users, Post[] posts) {

 int totalReads = 0;

 for(post : posts) {

 int userReads = 0;

 for(user : users) {

 if(user.readPost(post)){ userReads += 1; }

 }

 totalReads += userReads;

 }

}

Counting Steps

31

1

2

3

4

5

6

7

8

9

10

public void totalReads(User[] users, Post[] posts) {

 int totalReads = 0;

 for(post : posts) {

 int userReads = 0;

 for(user : users) {

 if(user.readPost(post)){ userReads += 1; }

 }

 totalReads += userReads;

 }

}

Counting Steps

32

1

2

3

4

5

6

7

8

9

10

public void totalReads(User[] users, Post[] posts) {

 int totalReads = 0;

 for(post : posts) {

 int userReads = 0;

 for(user : users) {

 if(user.readPost(post)){ userReads += 1; }

 }

 totalReads += userReads;

 }

}

Counting Steps

33

1

2

3

4

5

6

7

8

9

10

public void totalReads(User[] users, Post[] posts) {

 int totalReads = 0;

 for(post : posts) {

 int userReads = 0;

 for(user : users) {

 if(user.readPost(post)){ userReads += 1; }

 }

 totalReads += userReads;

 }

}

Steps to "Functions"

Now that we have number of steps in terms of summations…

…which we can simplify (like in WA1) into mathematical functions…

We can start analyzing runtime as a function

34

Runtime as a Function

Would you consider an algorithm that takes |Users|! number of steps? 35

Runtime as a Function

Would you consider an algorithm that takes |Users|! number of steps?

maybe…

36

Runtime as a Function

Would you consider an algorithm that takes |Users|! number of steps?

maybe…

NO!

37

Runtime as a Function

Which is better? 3x|Users|+5 or |Users|2
38

Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?

39

Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?
3. Focus on “large” inputs

○ Rank functions based on how they behave at large scales

40

Runtime as a Function

Which is better? 3x|Users|+5 or |Users|2

In CSE 250, we live over
here

41

Goal: Ignore implementation details

Seasoned Pro Implementation Error 23: Cat on Keyboard

vs

42

Goal: Ignore execution environment

vs

Intel i9
Images from openclipart.org, used with permission

Motorola 68000
43

Goal: Judge the Algorithm Itself

● How fast is a step? Don’t care
○ Only count number of steps

● Can this be done in two steps instead of one?
○ “3 steps per user” vs “some number of steps per user”
○ Sometimes we don’t care…sometimes we do

44

Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?
3. Focus on “large” inputs

○ Rank functions based on how they behave at large scales

45

Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?
3. Focus on “large” inputs

○ Rank functions based on how they behave at large scales
4. Decouple algorithm from infrastructure/implementation

○ Asymptotic notation…?

46

Attempt #2: Growth Functions

Not a function in code…but a mathematical function:

T(n)

n: The “size” of the input

ie: number of users,rows, pixels, etc

T(n): The number of “steps” taken for input of size n

ie: 20 steps per user, where n = |Users|, is 20 x n

47

Some Basic Assumptions:

Problem sizes are non-negative integers

n ∈ {0, 1, 2, 3, …} = {0} ∪ ℤ+

We can’t reverse time…(obviously)

T(n) > 0

Smaller problems aren’t harder than bigger problems

n1 < n2 ⇒ T(n1) ≤ T(n2)

48

Some Basic Assumptions:

Problem sizes are non-negative integers

n ∈ {0, 1, 2, 3, …} = {0} ∪ ℤ+

We can’t reverse time…(obviously)

T(n) > 0

Smaller problems aren’t harder than bigger problems

n1 < n2 ⇒ T(n1) ≤ T(n2)

49

T: {0} ∪ ℤ+ → ℝ+

T is non-decreasing

First Problem…

We are still implementation dependent…

T1(n) = 19n

T2(n) = 20n

50

First Problem…

We are still implementation dependent…

T1(n) = 19n

T2(n) = 20n

51

Does 1 extra step per
element really matter…?

Is this just an
implementation detail?

First Problem…

We are still implementation dependent…

T1(n) = 19n

T2(n) = 20n

T3(n) = 2n2

52

T1 and T2 are much
more “similar” to
each other than they
are to T3

First Problem…

We are still implementation dependent…

T1(n) = 19n

T2(n) = 20n

T3(n) = 2n2

53

T1 and T2 are much
more “similar” to
each other than they
are to T3 How do we capture

this idea formally?

How Do We Capture Behavior at Scale?

Consider the following two functions:

54

How Do We Capture Behavior at Scale?

55

How Do We Capture Behavior at Scale?

After this point,
these functions
behave the same
(they stay about
100x apart)

56

How Do We Capture Behavior at Scale?

57

How Do We Capture Behavior at Scale?

58

How Do We Capture Behavior at Scale?

These terms go to 0
59

How Do We Capture Behavior at Scale?

60

Attempt #3: Asymptotic Analysis

Consider two functions, f(n) and g(n)

In this particular case, f grows w.r.t. n faster than g

So…if f(n) and g(n) are the number of steps two different algorithms take
on a problem of size n, which is better?

61

Attempt #3: Asymptotic Analysis

Case 1: (f grows faster; g is better)

Case 2: (g grows faster; f is better)

Case 3: (f and g “behave” the same)

62

Goal of “Asymptotic Analysis”

We want to organize runtimes (growth functions) into
different Complexity Classes

Within the same complexity class, runtimes “behave
the same”

63

Goal of “Asymptotic Analysis”

We want to organize runtimes (growth functions) into
different Complexity Classes

Within the same complexity class, runtimes “behave
the same”

“Strategic Optimization” focuses on improving the
complexity class of your code!

64

Back to Our Previous Example…

The 10n and 1000000 log(n) “don’t matter”

The 1/100 “does not matter”

65

Back to Our Previous Example…

The 10n and 1000000 log(n) “don’t matter”

The 1/100 “does not matter”

n3 is the dominant term, and that determines the “behavior”

66

Why Focus on Dominating Terms?

10 20 50 100 1000
0.43 ns 0.52 ns 0.62 ns 0.68 ns 0.82 ns

0.83 ns 1.01 ns 1.41 ns 1.66 ns 2.49 ns

2.5 ns 5 ns 12.5 ns 25 ns 0.25 µs

8.3 ns 22 ns 71 ns 0.17 µs 2.49 µs

25 ns 0.1 µs 0.63 µs 2.5 µs 0.25 ms

25 µs 0.8 ms 78 ms 2.5 s 2.9 days
0.25 µs 0.26 ms 3.26 days 1013 years 10284 years
0.91 ms 19 years 1047 years 10141 years 🤯 67

Why Focus on Dominating Terms?

68

