CSE 250: Asymptotic Analysis
 Lecture 4

Sept 6, 2023

Reminders

■ AI Quiz due TONIGHT at 11:59 PM.
■ Your final submission must have a score of 1.0 to pass the class.

- If you can't submit in autolab, let course staff know ASAP.
- PA 0 due Sun, Sept 10 at 11:59 PM.
- All you need to do is make sure you have a working environment.
- If you can't submit in autolab, let course staff know ASAP.
- WA1 due Sun, Sept 10 at 11:59 PM.
- Summations, Limits, Exponentials; Friday's Lecture

Linked Lists

- Class Logistics

ᄂPA1

Linked Lists

Build a Sorted linked list.

- Insert items in the correct position

■ Some operations return a 'reference'

- Faster access to the element
- Hinted operations start search at reference

How "fast" is an algorithm?

Runtime

Runtime

Number of Training Examples

Implementation Variation

■ How much data does it process?
■ What hardware is it running on?
■ How cleverly has the implementation been optimized?

These are all (brittle) low-level details.

The Big Picture

Runtime

Scaling

Idea

Identify algorithms by their ???" shape"" Complexity Class"

Quadratic is generally worse than linear.

- Algorithm 1 is quadratic
- Algorithm 3 is linear \checkmark

Some Notation

- N : The input "size"

■ How many students I have to email.
■ How many streets on a map.
■ How many key/value pairs in my dictionary
■ $T(N)$: The runtime of 'some' implementation of the algorithm.

- Some... correct implementation.

We care about the "shape" of $T(N)$ when you plot it.

Thinking in Steps

Instead of runtime, let's count the 'steps'

Count the Steps

```
public void updateUsers(User[] users)
{
        x = 1; 
        for(user : users) \leftarrow
        {
            user.id = x;\longleftarrow
        }
    }
```

$$
1+\sum_{\text {user } \in \text { users }} 2 \text { steps }=1+2 \times \mid \text { users } \mid
$$

... where |users| means the size of the users array.

Count the Steps

```
public void userFullName(User[] users, int id)
{
    User user = users[id];
    String fullName = user.firstName + user.lastName;
        return fullName;
    }
```


3 steps 1

${ }^{1}$ This is actually a lie, but more on that in later lectures

Count the Steps

```
public void totalReads(User [] users, Post[] posts)
```

public void totalReads(User [] users, Post[] posts)
{
{
int totalReads = 0; \leftarrow
int totalReads = 0; \leftarrow
for(post : posts) \leftarrow
for(post : posts) \leftarrow
{
{
int userReads = 0; \leftarrow
int userReads = 0; \leftarrow
for(user : users)\leftarrow
for(user : users)\leftarrow
{
{
if(user.readPost(post)){ userReads += 1; } \leftarrow
if(user.readPost(post)){ userReads += 1; } \leftarrow
}
}
totalReads += userReads; }
totalReads += userReads; }
}
}
}

```
}
```

$$
1+\sum_{\text {post } \in \text { posts }}\left(3+\sum_{\text {user } \in \text { users }} 2\right)
$$

Comparing Step Counts

Which is better?
1 An algorithm that takes $T_{1}(N)=5+(\mid$ users $\mid N \times 3)$ steps
2 An algorithm that takes $T_{2}(N)=\frac{1}{2}\left(\mid\right.$ users $\left.\left.\right|^{2} N^{2}\right)$ steps

Comparing Step Counts

$T_{1}(N) \ll T_{2}(N)$ (for "big enough" N).
So... to us an algorithm that takes $T_{1}(N)$ steps is better/faster/stronger than $T_{2}(N)$.

Additive Factors

Which is better?
$1 T_{1}(N)=5+(N \times 3)$
$2 T_{2}(N)=10+(N \times 3)$

Additive Factors

$T_{1}(N)$ is within a constant additive factor of $T_{2}(N)$
(i.e., $T_{1}(N)=T_{2}(N)+c$)

In This Class
$T_{1}(N)$ and $T_{2}(N)$ are the same.

Multiplicative Factors

Which is better?

1. $T_{1}(N)=3+(N \times 3)$
$2 T_{2}(N)=4+(N \times 4)$

Multiplicative Factors

$T_{1}(N)$ is within a constant multiplicative factor of $T_{2}(N)$
(i.e., $T_{1}(N)=c \times T_{2}(N)$)

In This Class
$T_{1}(N)$ and $T_{2}(N)$ are the same.

Complexity

If there's a c_{1} and c_{2} so that $T_{1}(N)=c_{2}+\left(c_{1} \times T_{2}(N)\right)$ then we say that T_{1} is in the same complexity class as $T_{2}(N)^{2}$.
${ }^{2}$ I'm lying to you again... slightly. More soon.

Growth Functions

" $T(N)$ is an algorithm's runtime" means:
On an input of size N the algorithm finishes in exactly $T(N)$ steps.
What is a step?

- An arithmetic operation
- Accessing a variable
- Printing a character

But...

How many Steps?

\square
$\mathrm{x}=10$;
VS
$\begin{aligned} & 1 \begin{array}{l}\mathrm{x}=10 ; \\ 2 \\ \mathrm{y}\end{array} \\ & =20 ;\end{aligned}$

1 and 2 are in the same complexity class $(2=1+1)$.
The exact number of steps doesn't matter.

Steps

A step is any computation that always ${ }^{3}$ has the same runtime.
${ }^{3}$ Offer void where prohibited, some approximations may apply.

Growth Functions

We can make some assumptions about runtimes...

- The size of an input is never negative. $N \in \mathbb{Z}^{+} \cup\{0\}$ (N is a positive integer or 0)
- Code never finishes before it starts.

$$
T(N) \geq 0
$$

- Code never runs faster on bigger inputs. if $N_{1} \leq N_{2}$, then $T\left(N_{1}\right) \leq T\left(N_{2}\right)$
- We shouldn't allow fractional steps, but we want easy math. $T(N) \in \mathbb{R}^{+} \cup\{0\}(T(N)$ is a non-negative real.)
We call any function T with these properties a growth function.

Growth Functions

When I say a function, I mean a mathematical expression like $1+2 N$ (not a bit of code).

Shorthands

$$
\theta(f(N))
$$

(all the mathematical functions in $f(N)$'s complexity class)
$\theta(2+(3 \times N))=\{$

- $5+(10 \times N)$
- N
- $2 \times N$
\}
$g(N) \in \theta(f(N))$ means g and f are in the same complexity class

Shorthands

- $g(N)=\theta(f(N))$:

Common shorthand for $g(N) \in \theta(f(N))$

- $g(N)$ is in $\theta(f(N))$:

Common shorthand for $g(N) \in \theta(f(N))$

- Algorithm Foo is in $\theta(f(N))$:

Common shorthand for $T(N) \in \theta(f(N))$ where $T(N)$ is the runtime of Foo.

Class Names

- $\theta(1):$ Constant
- $\theta(\log (N))$: Logarithmic
- $\theta(N)$: Linear
- $\theta(N \log (N))$: Log-Linear
- $\theta\left(N^{2}\right):$ Quadratic
- $\theta\left(N^{k}\right)$ (for any $k \geq 1$): Polynomial
- $\theta\left(2^{N}\right)$: Exponential

Moving forward:
■ $f(N), g(N), f_{1}(N), f_{2}(N), \ldots$: Any mathematical function that's a growth function.

- $T(N)$: The growth function for a specific algorithm

Combining Classes

What class is $g(N)=N+N^{2}$ in?

Combining Classes

Combining Classes

For big $N, N+N^{2}$ looks a lot more like N^{2} than N. But it's not a constant factor different.

$$
N+N^{2} \neq c_{1}+N^{2} \times c_{2}
$$

Combining Classes

N^{2} and $2 N^{2}$ are in the same complexity class.

$$
\begin{aligned}
& N^{2}+N \stackrel{?}{\leq} 2 N^{2} \\
& N \stackrel{?}{\leq} N^{2} \\
& 1 \leq N \\
& N^{2}+N \stackrel{?}{\geq} N^{2} \\
& N \geq 0 \\
& N^{2} \leq N^{2}+N \leq 2 N^{2}
\end{aligned}
$$

Complexity Bounds

$$
N^{2} \leq N^{2}+N \leq 2 N^{2}
$$

$$
N^{2}+N \text { should probably be in } \theta\left(N^{2}\right) \text { too. }
$$

Complexity Bounds

f and g are in the same complexity class if:
■ g is bounded from above by something f-shaped $g(N) \in O(f(N)$
■ g is bounded from below by something f-shaped $g(N) \in \Omega(f(N)$

