
CSE 250: Asymptotic Analysis

CSE 250: Asymptotic Analysis
Lecture 4

Sept 6, 2023

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Class Logistics

Reminders

AI Quiz due TONIGHT at 11:59 PM.

Your final submission must have a score of 1.0 to pass the
class.
If you can’t submit in autolab, let course staff know ASAP.

PA 0 due Sun, Sept 10 at 11:59 PM.

All you need to do is make sure you have a working
environment.
If you can’t submit in autolab, let course staff know ASAP.

WA1 due Sun, Sept 10 at 11:59 PM.

Summations, Limits, Exponentials; Friday’s Lecture

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Class Logistics

PA1

Linked Lists

HEAD 1 10 23

19

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Class Logistics

PA1

Linked Lists

HEAD 1 10 23 TAIL

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Class Logistics

PA1

PA1

Build a Sorted linked list.

Insert items in the correct position

Some operations return a ’reference’

Faster access to the element
Hinted operations start search at reference

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

How ”fast” is an algorithm?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Runtime

T
im

e
to

C
om

p
le
ti
on

(s
)

1

2

3

4

Alg. 1 Alg. 2
(on 100 training examples) (on 1 million training examples)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Runtime

T
ra
in
in
g
T
im

e
(s
)

Number of Training Examples

Alg. 1
Alg. 2

Original iPhone

”The Cloud”

Alg. 3

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Implementation Variation

How much data does it process?

What hardware is it running on?

How cleverly has the implementation been optimized?

These are all (brittle) low-level details.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

The Big Picture

©Earthstar Geographics SIO; via Bing Maps

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Runtime

T
ra
in
in
g
T
im

e
(s
)

Number of Training Examples

Alg. 1
Alg. 2

Alg. 3

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Scaling

Idea

Identify algorithms by their ???”shape””Complexity Class”

Quadratic is generally worse than linear.

Algorithm 1 is quadratic

Algorithm 3 is linear ✓

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Some Notation

N: The input ”size”

How many students I have to email.
How many streets on a map.
How many key/value pairs in my dictionary

T (N): The runtime of ’some’ implementation of the
algorithm.

Some... correct implementation.

We care about the ”shape” of T (N) when you plot it.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Thinking in Steps

Instead of runtime, let’s count the ’steps’

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Count the Steps

1 public void updateUsers(User[] users)

2 {

3 x = 1; ←
4 for(user : users) ←
5 {

6 user.id = x;←
7 }

8 }

1 +
∑

user∈users
2 steps = 1 + 2× |users|

... where |users| means the size of the users array.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Count the Steps

1 public void userFullName(User[] users, int id)

2 {

3 User user = users[id];

4 String fullName = user.firstName + user.lastName;

5 return fullName;

6 }

3 steps1

1This is actually a lie, but more on that in later lectures
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Count the Steps

1 public void totalReads(User[] users, Post[] posts)

2 {

3 int totalReads = 0; ←
4 for(post : posts) ←
5 {

6 int userReads = 0; ←
7 for(user : users)←
8 {

9 if(user.readPost(post)){ userReads += 1; } ←
10 }

11 totalReads += userReads;←
12 }

13 }

1 +
∑

post∈posts

(
3 +

∑
user∈users

2

)
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Comparing Step Counts

Which is better?

1 An algorithm that takesT1(N) = 5 + (|users|N × 3) steps

2 An algorithm that takesT2(N) = 1
2(|users|

2N2) steps

S
te
p
s

|users|N

Alg. 1T1(N)

Alg. 2T2(N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Comparing Step Counts

T1(N) ≪ T2(N) (for ”big enough” N).

So... to us an algorithm that takes T1(N) steps is
better/faster/stronger than T2(N).

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Complexity Classes

Additive Factors

Which is better?

1 T1(N) = 5 + (N × 3)

2 T2(N) = 10 + (N × 3)

S
te
p
s

N

T1(N)

T2(N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Complexity Classes

Additive Factors

T1(N) is within a constant additive factor of T2(N)
(i.e., T1(N) = T2(N) + c)

In This Class

T1(N) and T2(N) are the same.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Complexity Classes

Multiplicative Factors

Which is better?

1 T1(N) = 3 + (N × 3)

2 T2(N) = 4 + (N × 4)

S
te
p
s

N

T1(N)

T2(N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Complexity Classes

Multiplicative Factors

T1(N) is within a constant multiplicative factor of T2(N)
(i.e., T1(N) = c × T2(N))

In This Class

T1(N) and T2(N) are the same.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Complexity Classes

Complexity

If there’s a c1 and c2 so that T1(N) = c2 + (c1 × T2(N)) then we
say that T1 is in the same complexity class as T2(N)2.

2I’m lying to you again... slightly. More soon.
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Complexity Classes

Growth Functions

”T (N) is an algorithm’s runtime” means:
On an input of size N the algorithm finishes in exactly T (N) steps.

What is a step?

An arithmetic operation

Accessing a variable

Printing a character

But...

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Complexity Classes

How many Steps?

1 x = 10;

vs

1 x = 10;

2 y = 20;

1 and 2 are in the same complexity class (2 = 1 + 1).

The exact number of steps doesn’t matter.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Complexity Classes

Steps

A step is any computation that always3 has the same runtime.

3Offer void where prohibited, some approximations may apply.
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Complexity Classes

Growth Functions

We can make some assumptions about runtimes...

The size of an input is never negative.
N ∈ Z+ ∪ {0} (N is a positive integer or 0)

Code never finishes before it starts.
T (N) ≥ 0

Code never runs faster on bigger inputs.
if N1 ≤ N2, then T (N1) ≤ T (N2)

We shouldn’t allow fractional steps, but we want easy math.
T (N) ∈ R+ ∪ {0} (T (N) is a non-negative real.)

We call any function T with these properties a growth function.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Complexity Classes

Growth Functions

When I say a function, I mean a mathematical expression like
1 + 2N (not a bit of code).

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Complexity Classes

Shorthands

θ(f (N))

(all the mathematical functions in f (N)’s complexity class)

θ(2 + (3× N)) = {
5 + (10× N)

N

2× N

...

}

g(N) ∈ θ(f (N)) means g and f are in the same complexity class

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Complexity Classes

Shorthands

g(N) = θ(f (N)):
Common shorthand for g(N) ∈ θ(f (N))

g(N) is in θ(f (N)):
Common shorthand for g(N) ∈ θ(f (N))

Algorithm Foo is in θ(f (N)):
Common shorthand for T (N) ∈ θ(f (N)) where T (N) is the
runtime of Foo.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Complexity Classes

Class Names

θ(1): Constant

θ(log(N)): Logarithmic

θ(N): Linear

θ(N log(N)): Log-Linear

θ(N2): Quadratic

θ(Nk) (for any k ≥ 1): Polynomial

θ(2N): Exponential

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Complexity Classes

Moving forward:

f (N), g(N), f1(N), f2(N), . . . : Any mathematical function
that’s a growth function.

T (N): The growth function for a specific algorithm

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Complexity Classes

Combining Classes

What class is g(N) = N + N2 in?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Complexity Classes

Combining Classes

S
te
p
s

N

N

N2

N2 + N

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Complexity Classes

Combining Classes

For big N, N + N2 looks a lot more like N2 than N.
But it’s not a constant factor different.

N + N2 ̸= c1 + N2 × c2

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Complexity Classes

Combining Classes

N2 and 2N2 are in the same complexity class.

N2 + N
?
≤ 2N2

N
?
≤ N2

1 ≤ N

N2 + N
?
≥ N2

N ≥ 0

N2 ≤ N2 + N ≤ 2N2
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Complexity Bounds

Complexity Bounds

N2 ≤ N2 + N ≤ 2N2

N2 + N should probably be in θ(N2) too.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Complexity Bounds

Complexity Bounds

f and g are in the same complexity class if:

g is bounded from above by something f -shaped
g(N) ∈ O(f (N)

g is bounded from below by something f -shaped
g(N) ∈ Ω(f (N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY


	Class Logistics
	PA1

	How "Fast" is an Algorithm?

