
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 05: Asymptotic Analysis

mailto:epmikida@buffalo.edu

Announcements and Feedback

● Normal recitations begin next week
● PA0 due Sunday @ 11:59PM
● WA1 due Sunday @ 11:59PM
● Be mindful of Office Hour changes for next week

2

Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?
3. Focus on “large” inputs

○ Rank functions based on how they behave at large scales
4. Decouple algorithm from infrastructure/implementation

3

Attempt #1: Wall-clock time?

● What is fast?
○ 10s? 100ms? 10ns?
○ …it depends on the task

● Algorithm vs Implementation
○ Compare Grace Hopper’s implementation to yours

● What machine are you running on?
○ Your old laptop? A lab machine? The newest, shiniest

processor?
● What bottlenecks exist? CPU vs IO vs Memory vs Network…

Wall-clock time is not terribly useful… 4

Attempt #2: Growth Functions

Not a function in code…but a mathematical function:

T(n)

n: The “size” of the input

ie: number of users,rows, pixels, etc

T(n): The number of “steps” taken for input of size n

ie: 20 steps per user, where n = |Users|, is 20 x n

5

Attempt #3: Asymptotic Analysis

We want to organize runtimes (growth functions) into
different Complexity Classes

Within the same complexity class, runtimes “behave
the same”/"have the same shape"

6

Getting More Formal

When do we consider two functions to have the same shape?

7

Additive
Factors
Consider two growth
functions:

T1(n) = 3n

T2(n) = 3n + 3

8

T1(n)

T2(n)

Additive
Factors
Consider two growth
functions:

T1(n) = 3n

T2(n) = 3n + 3

9

T1(n)

T2(n)

These functions still have the same
shape…the same complexity

Multiplicative
Factors
Consider two growth
functions:

T1(n) = 3n

T3(n) = 6n

10

T1(n)

T3(n)

Multiplicative
Factors
Consider two growth
functions:

T1(n) = 3n

T3(n) = 6n

11

T1(n)

T3(n)

These functions still have the same
shape…the same complexity

A Counter
Example
Now consider:

T4(n) = n2

12

T1(n)

T2(n)

T3(n)

T4(n)

A Counter
Example
Now consider:

T4(n) = n2

13

T1(n)

T2(n)

T3(n)

T4(n)

T4 is a distinctly different shape. Notice that
no matter what constant factors we add or
multiply by, T4 will always outgrow T1, T2, T3

A Counter
Example
Now consider:

T4(n) = n2

14

T1(n)

T2(n)

T3(n)

T4(n)

T1, T2, T3 are in the same complexity class

T4 is not

Complexity (so far…)

If there are constants c1 and c2 such that:

 T1(n) = c1 + c2T2(n)

then we say T1 and T2 are in the same complexity class*

15

* not a complete definition…but we are getting there

Back To Growth Functions

So what exactly counts as a step?

16

Back To Growth Functions

So what exactly counts as a step?
● An arithmetic operation
● Accessing a variable
● Printing to the screen
● etc

but…

17

Counting Steps

How many steps in each of these snippets?

18

1 x = 10;

1

2

x = 10;

y = 20;

Counting Steps

How many steps in each of these snippets?

T1(n) = 1

19

1 x = 10;

1

2

x = 10;

y = 20;

Counting Steps

How many steps in each of these snippets?

T1(n) = 1

T2(n) = 2

20

1 x = 10;

1

2

x = 10;

y = 20;

Counting Steps

How many steps in each of these snippets?

T1(n) = 1

T2(n) = 2

21

1 x = 10;

1

2

x = 10;

y = 20;

T2(n) = T1(n) + 1

They are in the same complexity class…in 250 we treat them as the same

Counting Steps

A step therefore is any code that always has the same runtime

22

Notation - Big Theta

𝚯(f(n)) is the set of all functions in the same complexity class as f

23

Notation - Big Theta

𝚯(f(n)) is the set of all functions in the same complexity class as f

Example: 𝚯(3n + 4) = {
n,
n - 6,
15n,
…

}

24

Notation - Big Theta

𝚯(f(n)) is the set of all functions in the same complexity class as f

Example: 𝚯(3n + 4) = {
n,
n - 6,
15n,
…

}

25g(n) ∈ 𝚯(f(n)) means g and f are in the same complexity class

Common Shorthand

g(n) = 𝚯(f(n)) is common shorthand for g(n) ∈ 𝚯(f(n))

26

Common Shorthand

g(n) = 𝚯(f(n)) is common shorthand for g(n) ∈ 𝚯(f(n))

g(n) is in 𝚯(f(n)) is common shorthand for g(n) ∈ 𝚯(f(n))

27

Common Shorthand

g(n) = 𝚯(f(n)) is common shorthand for g(n) ∈ 𝚯(f(n))

g(n) is in 𝚯(f(n)) is common shorthand for g(n) ∈ 𝚯(f(n))

Algorithm Foo is in 𝚯(f(n)) is common shorthand for T(n) ∈ 𝚯(f(n)) where
T(n) is the growth function describing the runtime of Foo

28

Common Shorthand

g(n) = 𝚯(f(n)) is common shorthand for g(n) ∈ 𝚯(f(n))

g(n) is in 𝚯(f(n)) is common shorthand for g(n) ∈ 𝚯(f(n))

Algorithm Foo is in 𝚯(f(n)) is common shorthand for T(n) ∈ 𝚯(f(n)) where
T(n) is the growth function describing the runtime of Foo

Moving forward: f(n), g(n), f1(n), etc will be used to name any
mathematical function that's a growth function

T(n), T1(n), etc will be used for growth functions for specific algorithms
29

Complexity Class
Names

𝚯(1): Constant

𝚯(log(n)): Logarithmic

𝚯(n): Linear

𝚯(n log(n)): Log-Linear

𝚯(n2): Quadratic

𝚯(nk): Polynomial

𝚯(2n): Exponential

30

Combining Classes

What complexity class is g(n) = n + n2 in?

31

Combining
Classes

32

n

n2
n2 + n

Combining
Classes

33

n

n2
n2 + n

n2 + n behaves a lot more like n2
than n as n gets bigger

Combining
Classes

34

n

n2
n2 + n

n2 + n behaves a lot more like n2
than n as n gets bigger

But it's not a constant factor
difference

Combining Classes

Consider the fact that n2 and 2n2 are in the same complexity class…

How does n2 + n relate to these two functions?

35

Combining Classes

Consider the fact that n2 and 2n2 are in the same complexity class…

1 ≤ n

36

remember, we only care about problems
with non-negative input sizes

Combining Classes

Consider the fact that n2 and 2n2 are in the same complexity class…

1 ≤ n

n ≤ n2

37

multiply both sides by n

Combining Classes

Consider the fact that n2 and 2n2 are in the same complexity class…

1 ≤ n

n ≤ n2

n + n2 ≤ 2n2

38

add n2 to both sides

Combining Classes

Consider the fact that n2 and 2n2 are in the same complexity class…

0 ≤ n

39

obviously true

Combining Classes

Consider the fact that n2 and 2n2 are in the same complexity class…

0 ≤ n

n2 ≤ n + n2

40

add n2 to both sides

Combining Classes

Consider the fact that n2 and 2n2 are in the same complexity class…

n2 ≤ n + n2 ≤ 2n2

So n2 + n should probably be in 𝚯(n2) too…

41

Complexity: A More Complete Definition

f and g are in the same complexity class iff:

g is bounded from above by something f-shaped

and

g is bounded from below by something f-shaped

42

Complexity: A More Complete Definition

f and g are in the same complexity class iff:

g is bounded from above by something f-shaped

and

g is bounded from below by something f-shaped

43

f shifted or stretched by
a constant factor

Complexity: A More Complete Definition

f and g are in the same complexity class iff:

g is bounded from above by something f-shaped

and

g is bounded from below by something f-shaped

44

What do we mean by bounded from above/below?

Bounding from Above: Big O

g(n) is bounded from above by f(n) if:

There exists a constant n0 > 0 and a constant c > 0 such that:

For all n > n0, g(n) ≤ c · f(n)

45

Bounding from Above: Big O

g(n) is bounded from above by f(n) if:

There exists a constant n0 > 0 and a constant c > 0 such that:

For all n > n0, g(n) ≤ c · f(n)

In this case, we say that g(n) ∈ O(f(n))

46

Bounding from Below: Big Omega

g(n) is bounded from below by f(n) if:

There exists a constant n0 > 0 and a constant c > 0 such that:

For all n > n0, g(n) ≥ c · f(n)

47

Bounding from Below: Big Omega

g(n) is bounded from below by f(n) if:

There exists a constant n0 > 0 and a constant c > 0 such that:

For all n > n0, g(n) ≥ c · f(n)

In this case, we say that g(n) ∈ 𝛀(f(n))

48

Complexity: A More Complete Definition

f and g are in the same complexity class iff:

g is bounded from above by something f-shaped

and

g is bounded from below by something f-shaped

49

Complexity: A More Complete Definition

g(n) ∈ 𝚯(f(n)) iff:

g is bounded from above by something f-shaped

and

g is bounded from below by something f-shaped

50

Complexity: A More Complete Definition

g(n) ∈ 𝚯(f(n)) iff:

g(n) ∈ O(f(n))

and

g is bounded from below by something f-shaped

51

Complexity: A More Complete Definition

g(n) ∈ 𝚯(f(n)) iff:

g(n) ∈ O(f(n))

and

g(n) ∈ 𝛀(f(n))

52

Rules of Thumb

𝚯(1) < 𝚯(log(n)) < 𝚯(n) < 𝚯(n log(n)) < 𝚯(n2) < 𝚯(n3) < 𝚯(2n)

53

Rules of Thumb

O(1) ⊂ O(log(n)) ⊂ O(n) ⊂ O(n log(n)) ⊂ O(n2) ⊂ O(n3) ⊂ O(2n)

𝛀(2n) ⊂ 𝛀(n3) ⊂ 𝛀(n2) ⊂ 𝛀(n log(n)) ⊂ 𝛀(n) ⊂ 𝛀(log(n)) ⊂ 𝛀(1)

54

Rules of Thumb

O(1) ⊂ O(log(n)) ⊂ O(n) ⊂ O(n log(n)) ⊂ O(n2) ⊂ O(n3) ⊂ O(2n)

𝛀(2n) ⊂ 𝛀(n3) ⊂ 𝛀(n2) ⊂ 𝛀(n log(n)) ⊂ 𝛀(n) ⊂ 𝛀(log(n)) ⊂ 𝛀(1)

55

If something is bounded from above by log(n), it's also bounded from above by n

Rules of Thumb

O(1) ⊂ O(log(n)) ⊂ O(n) ⊂ O(n log(n)) ⊂ O(n2) ⊂ O(n3) ⊂ O(2n)

𝛀(2n) ⊂ 𝛀(n3) ⊂ 𝛀(n2) ⊂ 𝛀(n log(n)) ⊂ 𝛀(n) ⊂ 𝛀(log(n)) ⊂ 𝛀(1)

56

If something is bounded from below by n2, it's also bounded from below by n

Rules of Thumb

O(f(n)) (Big-O): The complexity class of f(n) and every lesser class

𝚯(f(n)) (Big-𝚯): The complexity class of f(n)

𝛀(f(n)) (Big-𝛀): The complexity class of f(n) and every greater class

57

58© Aleksandra Patrzalek, 2012

