CSE 250 Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Lec 05: Asymptotic Analysis

Announcements and Feedback

- Normal recitations begin next week
- PA0 due Sunday @ 11:59PM
- WA1 due Sunday @ 11:59PM
- Be mindful of Office Hour changes for next week

Analysis Checklist

- 1. Don't think in terms of wall-time, think in terms of "number of steps"
- 2. To give a useful solution, we should take "scale" into account
 - How does the runtime change as we change the size of the input?
- 3. Focus on "large" inputs
 - Rank functions based on how they behave at large scales
- 4. Decouple algorithm from infrastructure/implementation

Attempt #1: Wall-clock time?

- What is fast?
 - o 10s? 100ms? 10ns?
 - ...it depends on the task
- Algorithm vs Implementation
 - Compare Grace Hopper's implementation to yours
- What machine are you running on?
 - Your old laptop? A lab machine? The newest, shiniest processor?
- What bottlenecks exist? CPU vs IO vs Memory vs Network...

Wall-clock time is not terribly useful... 4

Attempt #2: Growth Functions

Not a function in code...but a mathematical function:

T(n)

n: The "size" of the input

ie: number of users,rows, pixels, etc

T(n): The number of "steps" taken for input of size n

ie: 20 steps per user, where n = |Users|, is 20 x n

Attempt #3: Asymptotic Analysis

We want to organize runtimes (growth functions) into different *Complexity Classes*

Within the same complexity class, runtimes "behave the same"/"have the same shape"

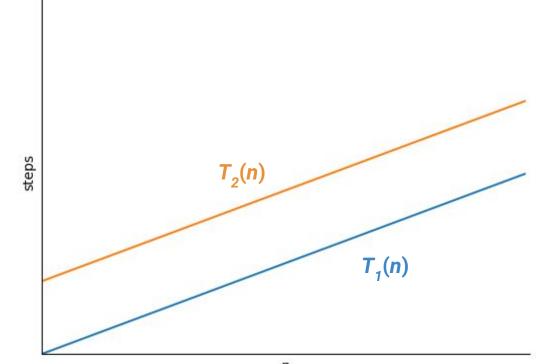
Getting More Formal

When do we consider two functions to have the same shape?

Additive Factors

Consider two growth functions:

 $T_1(n) = 3n$ $T_2(n) = 3n + 3$

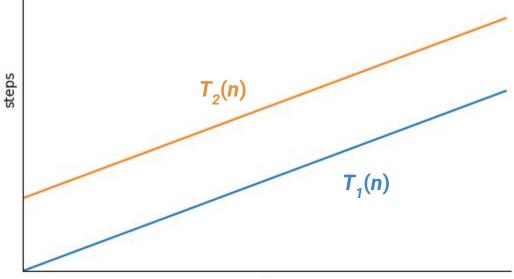


n

Additive Factors

Consider two growth functions:

 $T_1(n) = 3n$ $T_2(n) = 3n + 3$ These functions still have the same shape...the same complexity

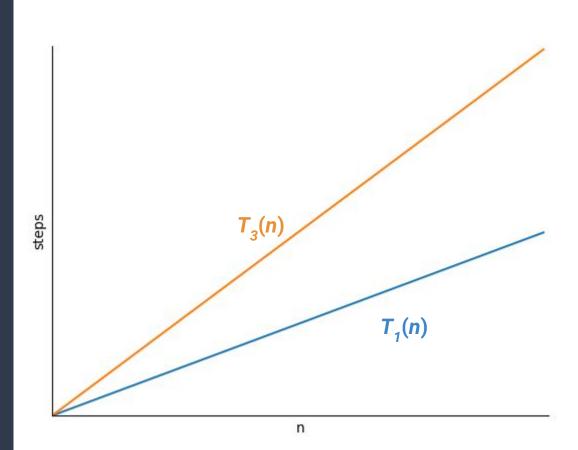


n

Multiplicative Factors

Consider two growth functions:

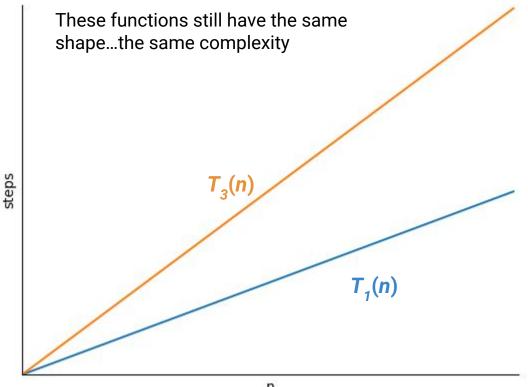
 $T_{1}(n) = 3n$ $T_{3}(n) = 6n$



Multiplicative Factors

Consider two growth functions:

 $T_{1}(n) = 3n$ $T_{3}(n) = 6n$

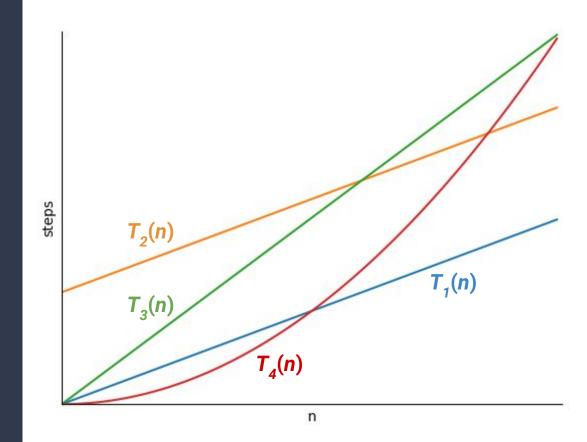


n

A Counter Example

Now consider:

 $\overline{T}_4(n) = n^2$



A Counter Example

Now consider:

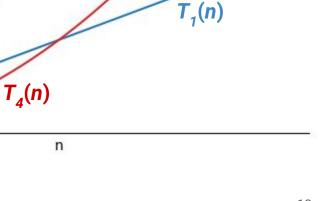
 $T_4(n) = n^2$

 T_4 is a distinctly different shape. Notice that no matter what constant factors we add or multiply by, T_4 will **always** outgrow T_1 , T_2 , T_3

steps

 $T_2(n)$

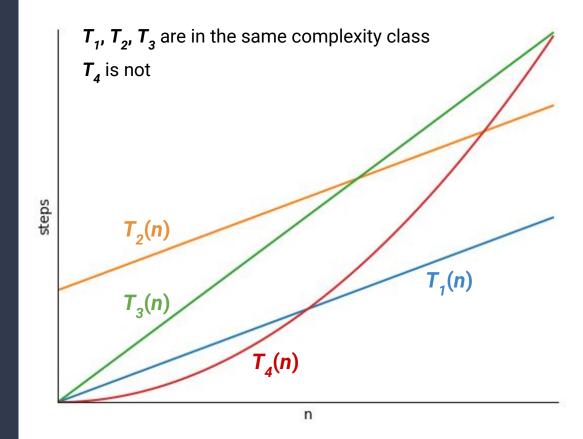
 $T_3(n)$



A Counter Example

Now consider:

 $T_4(n) = n^2$



Complexity (so far...)

If there are constants c_1 and c_2 such that:

$$T_1(n) = c_1 + c_2 T_2(n)$$

then we say T_1 and T_2 are in the same complexity class*

* not a complete definition...but we are getting there

Back To Growth Functions

So what exactly counts as a step?

Back To Growth Functions

So what exactly counts as a step?

- An arithmetic operation
- Accessing a variable
- Printing to the screen
- etc

but...

How many steps in each of these snippets?

|--|

How many steps in each of these snippets?

1	x = 10;
T ₁ (n)	= 1
1 2	x = 10; y = 20;

How many steps in each of these snippets?

1	x = 10;			
$T_{1}(n) = 1$				
1	x = 10;			
2	x = 10; y = 20;			

 $T_2(n) = 2$

How many steps in each of these snippets?

1	x = 10;
$T_1(n)$	= 1
1	x = 10; y = 20;
2	y = 20;

 $T_2(n) = 2$

$$T_2(n) = T_1(n) + 1$$

They are in the same complexity class...in 250 we treat them as the same 21

A step therefore is any code that always has the same runtime

Notation - Big Theta

 $\Theta(f(n))$ is the set of all functions in the same complexity class as f

Notation - Big Theta

 $\Theta(f(n))$ is the set of all functions in the same complexity class as f

```
Example: \Theta(3n + 4) = \{

n,

n - 6,

15n,

...
```

Notation - Big Theta

 $\Theta(f(n))$ is the set of all functions in the same complexity class as f

```
Example: \Theta(3n + 4) = \{

n,

n - 6,

15n,

...
```

 $g(n) \in \Theta(f(n))$ means g and f are in the same complexity class

 $g(n) = \Theta(f(n))$ is common shorthand for $g(n) \in \Theta(f(n))$

 $g(n) = \Theta(f(n))$ is common shorthand for $g(n) \in \Theta(f(n))$ g(n) is in $\Theta(f(n))$ is common shorthand for $g(n) \in \Theta(f(n))$

 $g(n) = \Theta(f(n))$ is common shorthand for $g(n) \in \Theta(f(n))$

g(n) is in $\Theta(f(n))$ is common shorthand for $g(n) \in \Theta(f(n))$

Algorithm Foo is in $\Theta(f(n))$ is common shorthand for $T(n) \in \Theta(f(n))$ where T(n) is the growth function describing the runtime of Foo

 $g(n) = \Theta(f(n))$ is common shorthand for $g(n) \in \Theta(f(n))$

g(n) is in $\Theta(f(n))$ is common shorthand for $g(n) \in \Theta(f(n))$

Algorithm Foo is in $\Theta(f(n))$ is common shorthand for $T(n) \in \Theta(f(n))$ where T(n) is the growth function describing the runtime of Foo

Moving forward: **f**(**n**), **g**(**n**), **f**₁(**n**), etc will be used to name any mathematical function that's a growth function T(n), $T_1(n)$, etc will be used for growth functions for specific algorithms

Complexity Class Names

Θ(1): Constant

O(log(n)): Logarithmic

Θ(*n***)**: Linear

⊖(*n* log(*n*)): Log-Linear

Θ(*n*²): Quadratic

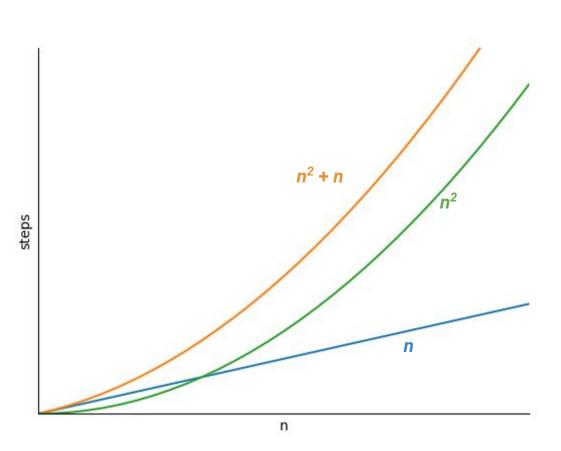
⊖(*n^k*): Polynomial

\Theta(2^n): Exponential

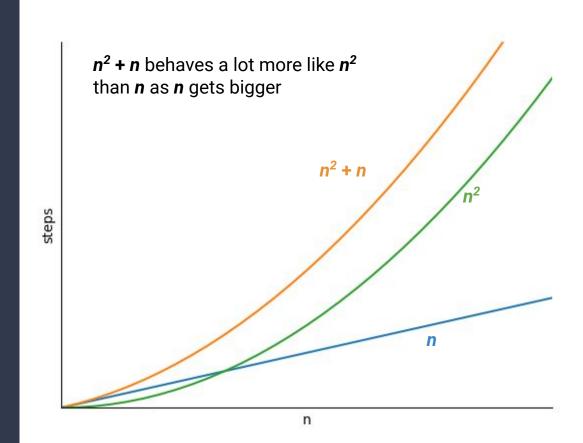
Combining Classes

What complexity class is $g(n) = n + n^2$ in?

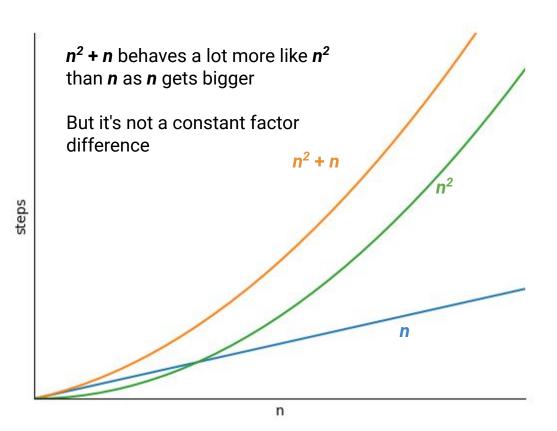
Combining Classes



Combining Classes



Combining Classes



34

Combining Classes

Consider the fact that n^2 and $2n^2$ are in the same complexity class... How does $n^2 + n$ relate to these two functions?

Combining Classes

Consider the fact that n^2 and $2n^2$ are in the same complexity class...

1 ≤ *n*

remember, we only care about problems with non-negative input sizes

Consider the fact that n^2 and $2n^2$ are in the same complexity class...

1 ≤ *n*

$n \le n^2$ multiply both sides by n

Consider the fact that n^2 and $2n^2$ are in the same complexity class...

1 ≤ n

 $n \le n^2$ $n + n^2 \le 2n^2$ add n^2 to both sides

Consider the fact that n^2 and $2n^2$ are in the same complexity class...

$0 \le n$ obviously true

Consider the fact that n^2 and $2n^2$ are in the same complexity class...

0 ≤ n

 $n^2 \le n + n^2$ add n^2 to both sides

Consider the fact that n^2 and $2n^2$ are in the same complexity class...

$n^2 \leq n + n^2 \leq 2n^2$

So $n^2 + n$ should probably be in $\Theta(n^2)$ too...

f and **g** are in the same complexity class iff:

g is bounded from above by something **f**-shaped

and

f and **g** are in the same complexity class iff:

g is bounded from above by something **f**-shaped

and

g is bounded from below by something f-shaped

f shifted or stretched by a constant factor

f and **g** are in the same complexity class iff:

g is **bounded from above** by something **f**-shaped

and

g is **bounded from below** by something **f**-shaped

What do we mean by bounded from above/below?

Bounding from Above: Big O

g(**n**) is bounded from above by **f**(**n**) if:

There exists a constant **n**_o **> 0** and a constant **c > 0** such that:

For all $n > n_0, g(n) \le c \cdot f(n)$

Bounding from Above: Big O

g(**n**) is bounded from above by **f**(**n**) if:

There exists a constant $n_n > 0$ and a constant c > 0 such that:

For all $n > n_0, g(n) \le c \cdot f(n)$

In this case, we say that $g(n) \in O(f(n))$

Bounding from Below: Big Omega

g(**n**) is bounded from below by **f**(**n**) if:

There exists a constant **n**_o **> 0** and a constant **c > 0** such that:

For all $n > n_0, g(n) \ge c \cdot f(n)$

Bounding from Below: Big Omega

g(**n**) is bounded from below by **f**(**n**) if:

There exists a constant $n_0 > 0$ and a constant c > 0 such that:

For all $n > n_0, g(n) \ge c \cdot f(n)$

In this case, we say that $g(n) \in \Omega(f(n))$

f and **g** are in the same complexity class iff:

g is bounded from above by something **f**-shaped

and

 $g(n) \in \Theta(f(n))$ iff:

g is bounded from above by something **f**-shaped

and

 $g(n) \in \Theta(f(n))$ iff: $g(n) \in O(f(n))$

and

 $g(n) \in \Theta(f(n))$ iff: $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$

$\Theta(1) < \Theta(\log(n)) < \Theta(n) < \Theta(n \log(n)) < \Theta(n^2) < \Theta(n^3) < \Theta(2^n)$

 $O(1) \subset O(\log(n)) \subset O(n) \subset O(n \log(n)) \subset O(n^2) \subset O(n^3) \subset O(2^n)$

 $\Omega(2^n) \subset \Omega(n^3) \subset \Omega(n^2) \subset \Omega(n \log(n)) \subset \Omega(n) \subset \Omega(\log(n)) \subset \Omega(1)$

If something is bounded from above by $\log(n)$, it's also bounded from above by n $O(1) \subset O(\log(n)) \subset O(n) \subset O(n \log(n)) \subset O(n^2) \subset O(n^3) \subset O(2^n)$

$\Omega(2^n) \subset \Omega(n^3) \subset \Omega(n^2) \subset \Omega(n \log(n)) \subset \Omega(n) \subset \Omega(\log(n)) \subset \Omega(1)$

 $O(1) \subset O(\log(n)) \subset O(n) \subset O(n \log(n)) \subset O(n^2) \subset O(n^3) \subset O(2^n)$

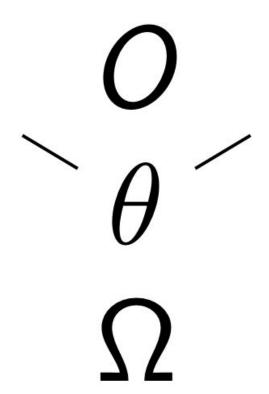
 $\Omega(2^n) \subset \Omega(n^3) \subset \Omega(n^2) \subset \Omega(n \log(n)) \subset \Omega(n) \subset \Omega(\log(n)) \subset \Omega(1)$

If something is bounded from below by n^2 , it's also bounded from below by n

O(f(n)) (Big-O): The complexity class of f(n) and every lesser class

Θ(*f*(*n*)) (**Big-**Θ): The complexity class of *f*(*n*)

 $\Omega(f(n))$ (**Big-** Ω): The complexity class of f(n) and every greater class



© Aleksandra Patrzalek, 2012