CSE 250: Asymptotic Analysis Lecture 5

Sept 8, 2023

Reminders

■ PA 0 due Sun, Sept 10 at 11:59 PM.

- All you need to do is make sure you have a working environment.
- If you can't submit in autolab, let course staff know ASAP.
- WA1 due Sun, Sept 10 at 11:59 PM.
- Summations, Limits, Exponentials; Friday's Lecture

Runtime

How many Steps?

```
x = 10;
VS
1 ( }\begin{array}{l}{\textrm{x}=10;}\\{2}
```

1 java instruction vs 2 java instructions

How many Steps?

```
0 : bipush 10
2: istore_1
3: return
```

VS

```
0 : bipush102: istore_1
3: iload_1
4: iconst_1
5: iadd
6: istore_2
7: return
```

3 java bytecode instructions vs 7 java bytecode instructions
\square
$1 \quad \mathrm{x}=10$;
VS
$\begin{aligned} & 1 \begin{array}{l}\mathrm{x}=10 ; \\ \mathrm{y}=\mathrm{x}+1 ;\end{array}\end{aligned}$
$\theta(1)$ vs $\theta(1)$ (Both code snippets take 'constant' time).

Steps

$\theta(1)$ is any computation that always ${ }^{1}$ has the same runtime.
${ }^{1}$ Offer void where prohibited, some approximations may apply.

Class Names

- $\theta(1)$: Constant
- $\theta(\log (N))$: Logarithmic
- $\theta(N)$: Linear
- $\theta(N \log (N))$: Log-Linear
- $\theta\left(N^{2}\right)$: Quadratic
- $\theta\left(N^{k}\right)$ (for any $k \geq 1$): Polynomial
- $\theta\left(2^{N}\right)$: Exponential

Baseline

If $g(N)=c_{1}+c_{2} f(N)$, then g, f are in the same complexity class.

Complexity Bounds

For $N>1$:

$$
N^{2} \leq N^{2}+N \leq 2 N^{2}
$$

$$
N^{2}+N \text { should probably be in } \theta\left(N^{2}\right) \text { too. }
$$

if:

- $f_{\text {low }}(N), f_{\text {high }}(N) \in \theta(g(N))$
- $f_{\text {low }}(N) \leq T(N) \leq f_{\text {high }}(N)$ (for all big enough N)
...then $T(N) \in \theta(g(N))$ too!

Complexity Bounds

f and g are in the same complexity class if:

- g is bounded from above by something f-shaped $g(N) \in O(f(N))$
- g is bounded from below by something f-shaped $g(N) \in \Omega(f(N))$

Complexity Bounds

- $O(f(N))$ includes:
- All functions in $\theta(f(N))$
- All functions in 'slower-growing'smaller' complexity classes
- $\Omega(f(N))$ includes:
- All functions in $\theta(f(N))$
- All functions in 'faster-growing''bigger' complexity classes
$O(f(N)) \cap \Omega(f(N))=? ? ? \theta(f(N))$

Bounding From Above

$g(N) \in O(f(N))$ if:

- There is some $N_{0}>0$
- There is some $c>0$
- For all $N>N_{0}: g(N) \leq c \times f(N)$

Chain Rule

If $X \geq Y, Y \geq Z$, then $X \geq Z$
To show: $X \geq Z$, find a Y and show:

- $X \geq Y$
- $Y \geq Z$

Decomposition

If $A \geq C$ and $B \geq D$ then $A+B \geq C+D$
To show $A+B \geq C+D$, show that:

- $A \geq C$
- $B \geq D$

Examples

$$
g(N)=1 \quad f(N)=N
$$

$$
1 \stackrel{?}{\leq} c \times N
$$

Is there a c>0 and $N_{0}>0$ you can plug in to make this equation true for all $N \geq N_{0}$?

Examples

$$
g(N)=N+2 N^{2} \quad f(N)=N^{2}
$$

$N+2 N^{2}$	$\stackrel{?}{\leq} c \times N^{2}$
$1+2 N$	$\stackrel{?}{\leq} c \times N$
$1+2 N$	$\stackrel{?}{\leq}(a+b) \times N$
1	$\stackrel{?}{\leq} a \times N$
$2 N$	$\stackrel{?}{\leq} b \times N$
2	$\stackrel{?}{\leq} b$

Define $c=a+b$

Examples

$\frac{1 \stackrel{?}{\leq} a \times N}{2 \stackrel{?}{\leq} b}$

Is there an $a+b=c>0$ and $N_{0}>0$ you can plug in to make this equation true for all $N \geq N_{0}$?

Examples

$$
\begin{gathered}
g(N)=3 N+1 \quad f(N)=N^{2} \\
3 N+1 \stackrel{?}{\leq} c \times N^{2} \\
3+\frac{1}{N} \stackrel{?}{\leq} c \times N
\end{gathered}
$$

If $X<Y$ and $Y<Z$, then $X<Z$:

$$
\begin{gathered}
3+\frac{1}{N} \leq Y \stackrel{?}{\leq} c \times N \\
3+\frac{1}{N} \leq 3+1 \stackrel{?}{\leq} c \times N
\end{gathered}
$$

Examples

$$
3+\frac{1}{N} \leq 4 \stackrel{?}{\leq} c \times N
$$

Is there a $c>0$ and $N_{0} \geq 1$ you can plug in to make this equation true for all $N \geq N_{0}$?

Examples

$$
\begin{gathered}
g(N)=1 \quad f(N)=N^{2} \\
1 \stackrel{?}{\leq} \quad c \times N^{2}
\end{gathered}
$$

Is there a $c>0$ and $N_{0}>0$ you can plug in to make this equation true for all $N \geq N_{0}$?

$$
1 \in O\left(N^{2}\right)
$$

$O(f(N))$ is every mathematical function in the complexity class of $f(N)$ or a lesser class.

Tight Bounds

So... along those lines: $N \in O\left(N^{2}\right)$
We call this a loose bound.
$g(N) \in O(f(N))$ is a tight bound if there is no $f^{\prime}(N)$ in a smaller complexity class where $g(N) \in O\left(f^{\prime}(N)\right)$.

Bounding From Below

$g(N) \in \Omega(f(N))$ if:

- There is some $N_{0}>0$
- There is some $c>0$
- For all $N>N_{0}: g(N) \geq c \times f(N)$
$\Omega(f(N))$ is every mathematical function in the complexity class of $f(N)$ or a greater class.

Rules of Thumb

$\theta(1):$ Constant
$<\theta(\log (N))$: Logarithmic
$<\theta(N)$: Linear
$<\theta(N \log (N))$: Log-Linear
$<\theta\left(N^{2}\right)$: Quadratic
$<\theta\left(2^{N}\right)$: Exponential

Rules of Thumb

$$
\begin{gathered}
O(1) \subset O(\log (N)) \\
O(\log (N)) \subset O(N) \\
O(N) \subset O(N \log (N)) \\
O(N) \subset O\left(N^{2}\right)
\end{gathered}
$$

Rules of Thumb

- $O(f(N))$ (Big-O): The complexity class of $f(N)$ and every lesser class.
- $\theta(f(N))(\operatorname{Big}-\theta)$: The complexity class of $f(N)$.
- $\Omega(f(N))(\operatorname{Big}-\Omega)$: The complexity class of $f(N)$ and every greater class.

Rules of Thumb

(C) Aleksandra Patrzalek, 2012

Rules of Thumb

$$
F(N)=f_{1}(N)+f_{2}(N)+\ldots+f_{k}(N)
$$

What complexity class is $F(N)$ in?
$f_{1}(N)+f_{2}(N)$ is in the greater of $\theta\left(f_{1}(N)\right)$ and $\theta\left(f_{2}(N)\right)$.
$F(N)$ is in the greatest of any $\theta\left(f_{i}(N)\right)$
We say the biggest f_{i} is the dominant term.

Algorithms at 50k-ft

- Algorithm 1 is $\theta\left(N^{2}\right)$
- Algorithm 2 is $\theta(N \log (N))$

Which do you pick?

Scaling Up

At $\frac{1}{4}$ ns per 'step' (4 GHz):

$f(n)$	10	20	50	100	1000
$\log (\log (n))$	0.43 ns	0.52 ns	0.62 ns	0.68 ns	0.82 ns
$\log (n)$	0.83 ns	1.01 ns	1.41 ns	1.66 ns	2.49 ns
n	2.5 ns	5 ns	12.5 ns	25 ns	$0.25 \mu \mathrm{~s}$
$n \log (n)$	8.3 ns	22 ns	71 ns	$0.17 \mu \mathrm{~s}$	2.49 ss
n^{2}	25 ns	$0.1 \mu \mathrm{~s}$	$0.63 \mu \mathrm{~s}$	$2.5 \mu \mathrm{~s}$	0.25 ms
n^{5}	$25 \mu \mathrm{~s}$	0.8 ms	78 ms	2.5 s	2.9 days
2^{n}	$0.25 \mu \mathrm{~s}$	0.26 ms	3.26 days	1013 years	10284 years
$n!$	0.91 ms	19 years	1047 years	10141 years	[yeah, no]

Asymptotic Notation

$\operatorname{Big}-\theta$ (and Big-O, Big- Ω) gives us an easy shorthand for how "good" an algorithm is.

