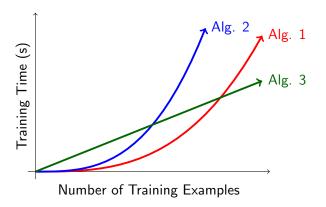
CSE 250: Asymptotic Analysis Lecture 5

Sept 8, 2023

Reminders

- PA 0 due Sun, Sept 10 at 11:59 PM.
 - All you need to do is make sure you have a working environment.
 - If you can't submit in autolab, let course staff know ASAP.
- WA1 due Sun, Sept 10 at 11:59 PM.
 - Summations, Limits, Exponentials; Friday's Lecture

Runtime



How many Steps?

```
x = 10;
VS
```

1 java instruction vs 2 java instructions

How many Steps?

0: bipush 10

2: istore_1
3: return

VS

0: bipush 10

2: istore_1
3: iload_1

4: iconst_1

5: iadd

6: istore_2

7: return

3 java bytecode instructions vs 7 java bytecode instructions

title

```
1 x = 10;
```

VS

```
1  x = 10;
y = x + 1;
```

 $\theta(1)$ vs $\theta(1)$ (Both code snippets take 'constant' time).

Steps

 $\theta(1)$ is any computation that always 1 has the same runtime.

¹Offer void where prohibited, some approximations may apply.

Class Names

- \bullet $\theta(1)$: Constant
- \bullet $\theta(\log(N))$: Logarithmic
- \bullet $\theta(N)$: Linear
- ullet $\theta(N \log(N))$: Log-Linear
- $lackbox{0.5}{\bullet} \theta(N^2)$: Quadratic
- $\theta(N^k)$ (for any $k \ge 1$): Polynomial
- \bullet $\theta(2^N)$: Exponential

Baseline

If
$$g(N) = c_1 + c_2 f(N)$$
, then g , f are in the same complexity class.

Complexity Bounds

For
$$N > 1$$
:

$$N^2 \le N^2 + N \le 2N^2$$

 $N^2 + N$ should probably be in $\theta(N^2)$ too.

title

if:

- $f_{low}(N), f_{high}(N) \in \theta(g(N))$
- $f_{low}(N) \leq T(N) \leq f_{high}(N)$ (for all big enough N)

...then $T(N) \in \theta(g(N))$ too!

Complexity Bounds

f and g are in the same complexity class if:

- g is bounded from above by something f-shaped $g(N) \in O(f(N))$
- g is bounded from below by something f-shaped $g(N) \in \Omega(f(N))$

Complexity Bounds

- O(f(N)) includes:
 - All functions in $\theta(f(N))$
 - All functions in 'slower-growing''smaller' complexity classes
- $\square \Omega(f(N))$ includes:
 - All functions in $\theta(f(N))$
 - All functions in 'faster-growing' bigger' complexity classes

$$O(f(N)) \cap \Omega(f(N)) = ???\theta(f(N))$$

Bounding From Above

$$g(N) \in O(f(N))$$
 if:

- There is some $N_0 > 0$
- There is some c > 0
- For all $N > N_0$: $g(N) \le c \times f(N)$

Chain Rule

If $X \ge Y$, $Y \ge Z$, then $X \ge Z$ To show: $X \ge Z$, find a Y and show:

- *X* ≥ *Y*
- Y ≥ Z

Decomposition

If
$$A \ge C$$
 and $B \ge D$ then $A + B \ge C + D$
To show $A + B \ge C + D$, show that:

- *A* ≥ *C*
- *B* ≥ *D*

$$g(N) = 1$$
 $f(N) = N$

$$1 \stackrel{?}{\leq} c \times N$$

Is there a c>0 and $N_0>0$ you can plug in to make this equation true for all $N\geq N_0$?

$$g(N) = N + 2N^{2} \qquad f(N) = N^{2}$$

$$N + 2N^{2} \stackrel{?}{\leq} c \times N^{2}$$

$$1 + 2N \stackrel{?}{\leq} c \times N$$

$$1 + 2N \stackrel{?}{\leq} (a + b) \times N$$

$$1 \stackrel{?}{\leq} a \times N$$

$$2N \stackrel{?}{\leq} b \times N$$
$$2 \stackrel{?}{\leq} b$$

Define c = a + b

$$\begin{array}{ccc}
 & 1 \leq & a \times N & (1) \\
\hline
 & 2 \leq & b & (2)
\end{array}$$

Is there an a+b=c>0 and $N_0>0$ you can plug in to make this equation true for all $N\geq N_0$?

Examples

$$g(N) = 3N + 1 \qquad f(N) = N^2$$

$$3N + 1 \stackrel{?}{\leq} c \times N^2$$

$$3 + \frac{1}{N} \stackrel{?}{\leq} c \times N$$
 If $X < Y$ and $Y < Z$, then $X < Z$:
$$3 + \frac{1}{N} \leq Y \stackrel{?}{\leq} c \times N$$

$$3 + \frac{1}{N} \leq 3 + 1 \stackrel{?}{\leq} c \times N$$

$$3 + \frac{1}{N} \le 4 \stackrel{?}{\le} c \times N$$

Is there a c>0 and $N_0\geq 1$ you can plug in to make this equation true for all $N\geq N_0$?

$$g(N)=1 \qquad f(N)=N^2$$

$$1 \stackrel{?}{\leq} c \times N^2$$

Is there a c>0 and $N_0>0$ you can plug in to make this equation true for all $N\geq N_0$?

$$1 \in O(N^2)$$

O(f(N)) is every mathematical function in the complexity class of f(N) or a lesser class.

Tight Bounds

```
So... along those lines: N \in O(N^2)
We call this a loose bound. g(N) \in O(f(N)) is a tight bound if there is no f'(N) in a smaller complexity class where g(N) \in O(f'(N)).
```

Bounding From Below

$$g(N) \in \Omega(f(N))$$
 if:

- There is some $N_0 > 0$
- There is some c > 0
- For all $N > N_0$: $g(N) \ge c \times f(N)$

 $\Omega(f(N))$ is every mathematical function in the complexity class of f(N) or a greater class.

```
\begin{array}{l} \theta(1) \colon \mathsf{Constant} \\ < \theta(\log(N)) \colon \mathsf{Logarithmic} \\ < \theta(N) \colon \mathsf{Linear} \\ < \theta(N\log(N)) \colon \mathsf{Log-Linear} \\ < \theta(N^2) \colon \mathsf{Quadratic} \\ < \theta(2^N) \colon \mathsf{Exponential} \end{array}
```

$$O(1) \subset O(\log(N))$$

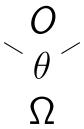
$$O(\log(N)) \subset O(N)$$

$$O(N) \subset O(N \log(N))$$

$$O(N) \subset O(N^2)$$

٠.

- O(f(N)) (Big-O): The complexity class of f(N) and every lesser class.
- $\theta(f(N))$ (Big- θ): The complexity class of f(N).
- $\Omega(f(N))$ (Big- Ω): The complexity class of f(N) and every greater class.



© Aleksandra Patrzalek, 2012

$$F(N) = f_1(N) + f_2(N) + \ldots + f_k(N)$$

What complexity class is F(N) in?

$$f_1(N) + f_2(N)$$
 is in the greater of $\theta(f_1(N))$ and $\theta(f_2(N))$.

F(N) is in the greatest of any $\theta(f_i(N))$

We say the biggest f_i is the *dominant* term.

Algorithms at 50k-ft

- Algorithm 1 is $\theta(N^2)$
- Algorithm 2 is $\theta(N \log(N))$

Which do you pick?

Scaling Up

At $\frac{1}{4}$ ns per 'step' (4 GHz):

f(n)	10	20	50	100	1000
$\log(\log(n))$	0.43 ns	0.52 ns	0.62 ns	0.68 ns	0.82 ns
$\log(n)$	0.83 ns	1.01 ns	1.41 ns	1.66 ns	2.49 ns
n	2.5 ns	5 ns	12.5 ns	25 ns	0.25 μs
$n\log(n)$	8.3 ns	22 ns	71 ns	0.17 µs	2.49 µs
n^2	25 ns	0.1 µs	0.63 µs	2.5 µs	0.25 ms
n^5	25 µs	0.8 ms	78 ms	2.5 s	2.9 days
2 ⁿ	0.25 µs	0.26 ms	3.26 days	1013 years	10284 years
<i>n</i> !	0.91 ms	19 years	1047 years	10141 years	[yeah, no]

Asymptotic Notation

Big- θ (and Big-O, Big- Ω) gives us an easy shorthand for how "good" an algorithm is.