
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 08: Sequences

mailto:epmikida@buffalo.edu

Announcements

● PA1 due Sunday at midnight
○ Be aware that course staff is not guaranteed to be available after 5PM or

on weekends
○ Be thoughtful in your submissions to Autolab

2

Sequences (what are they?)

Fibonacci Sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Characters in a String: 'H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 'l', 'd'

Lines in a File

People in a queue

3

Sequences (what are they?)

Fibonacci Sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Characters in a String: 'H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 'l', 'd'

Lines in a File

People in a queue

An "ordered" collection of elements

4

Sequences (what can you do with them?)

5

Sequences (what can you do with them?)

● Enumerate every element in sequence
○ ie: print out every element, sum every element

● Get the "nth" element
○ ie: what is the first element? what is the 42nd element?

● Modify the "nth" element
○ ie: set the first element to x, set the third element to y

● Count how many elements you have

6

Abstract Data Types (ADTs)

The specification of what a data structure can do

ADT

Enumerate everything

Get "nth" element

Set "nth" element

Get length

7

Abstract Data Types (ADTs)

The specification of what a data structure can do

ADT

Enumerate everything

Get "nth" element

Set "nth" element

Get length

Usage is governed by what we can do, not how it is done

What's in the box? …we
don't know, and in some
sense…we don't care

8

The Sequence ADT

T get(int idx)
Get the element (of type T) at position idx

T set(int idx, T value)
Set the element (of type T) at position idx to a new value

int length
Get the number of elements in the seq

Iterator<T> iterator()
Get access to view all elements in the sequence, in order, once

9

So…what's in the box?
(how do we implement it)

10

A Brief Aside on RAM (220 crossover)

11

A Brief Aside on RAM (220 crossover)

01001000 01100101 01101100 01101100
01101111...

12

A Brief Aside on RAM (220 crossover)

01001000 01100101 01101100 01101100
01101111...

H e l l o

13

A Brief Aside on RAM (220 crossover)

01001000 01100101 01101100 01101100
01101111...

H e l l o

Array

14

A Brief Aside on RAM (220 crossover)

01001000 01100101 01101100 01101100
01101111...

H e l l o

fixed element size

fixed number of elements

Array

15

RAM

Allocation with new T:
Go find some unused part of memory that is big enough to fit a T,
mark it as used, and return the address of that location in memory.

16

RAM

Allocation with new T:
Go find some unused part of memory that is big enough to fit a T,
mark it as used, and return the address of that location in memory.

The above code allocates 50 * 4 = 200 bytes of memory*
(a single Java int takes of 4 bytes in memory)

* slightly more actually…see next slide

1 int[] arr = new int[50];

17

Arrays in Detail

What does an array of n items of type T actually look like?

● 4 bytes for n (optional)
● 4 bytes for sizeof(T) (optional)
● n * sizeof(T) bytes for the data

18

Arrays in Detail

What does an array of n items of type T actually look like?

● 4 bytes for n (optional)
● 4 bytes for sizeof(T) (optional)
● n * sizeof(T) bytes for the data

n sizeof(T) a[0] a[1] a[2] a[3] a[4] …

19

Arrays in Detail

How would we implement the methods of the Sequence ADT for an Array:

T get(int idx)

T set(int idx, T value)

int length

20

Arrays in Detail

What does an array of n items of type T actually look like?

● 4 bytes for n (optional)
● 4 bytes for sizeof(T) (optional)
● n * sizeof(T) bytes for the data

n sizeof(T) a[0] a[1] a[2] a[3] a[4] …

21The length is stored in the memory allocated for the array…𝚯(1) time to access

Arrays in Detail

How would we implement the methods of the Sequence ADT for an Array:

T get(int idx)

T set(int idx, T value)

int length

Access the length field in constant time 𝚯(1)

22

Implementing get/set

If arr is at address a, where should you look for arr[19]?

1 int[] arr = new int[50];

23

Implementing get/set

If arr is at address a, where should you look for arr[19]?
● a + 19 * 4

1 int[] arr = new int[50];

24

Implementing get/set

If arr is at address a, where should you look for arr[19]?
● a + 19 * 4 (does this computation depend on the size of arr?)

What is the complexity?

1 int[] arr = new int[50];

25

Implementing get/set

If arr is at address a, where should you look for arr[19]?
● a + 19 * 4 (does this computation depend on the size of arr?)

What is the complexity? 𝚯(1)

1 int[] arr = new int[50];

26

Implementing get/set

If arr is at address a, where should you look for arr[19]?
● a + 19 * 4 (does this computation depend on the size of arr?)

What is the complexity? 𝚯(1)

What about a[55]?

1 int[] arr = new int[50];

27

Implementing get/set

If arr is at address a, where should you look for arr[19]?
● a + 19 * 4 (does this computation depend on the size of arr?)

What is the complexity? 𝚯(1)

What about a[55]?
● a + 55 * 4 …but that memory was not reserved for this array.
● Java will prevent you from accessing an out of bounds element

1 int[] arr = new int[50];

28

Arrays in Detail

How would we implement the methods of the Sequence ADT for an Array:

T get(int idx)

Compute the address of the element in constant time 𝚯(1)

T set(int idx, T value)

Compute the address of the element in constant time 𝚯(1)

int length

Access the length field in constant time 𝚯(1)

29

Linked Lists

HEAD

None

30

Linked Lists

HEAD

NoneA

31

Linked Lists

HEAD

NoneA B

32

Linked Lists

HEAD

NoneA B C

33

Linked Lists

HEAD

None

A B

CG

I

J

E

K

DH

F

L
34

Linked Lists in Detail

1

2

3

4

class LinkedList<T> {

 Optional<LinkedListNode<T>> head = Optional.empty();

 /* ... */

}

1

2

3

4

class LinkedListNode<T> {

 T value;

 Optional<LinkedListNode<T>> next = Optional.empty();

}

Class for our list, which right now just has a Optional reference to head

Class for a node in the list, which has a value, and an Optional reference to the
next node 35

Linked Lists in Detail

1

2

3

4

class LinkedList<T> {

 Optional<LinkedListNode<T>> head = Optional.empty();

 /* ... */

}

1

2

3

4

class LinkedListNode<T> {

 T value;

 Optional<LinkedListNode<T>> next = Optional.empty();

}

Class for our list, which right now just has a Optional reference to head

Class for a node in the list, which has a value, and an Optional reference to the
next node 36

What is Optional<T>...a brief digression

● Let's say we have a function that we know can possibly return null
● What can go wrong in the following code snippet?

1

2

Integer x = functionThatCanReturnNull();

x.doAThing();

What is Optional<T>...a brief digression

● Let's say we have a function that we know can possibly return null
● What can go wrong in the following code snippet?

java.lang.NullPointerException (runtime error)

1

2

Integer x = functionThatCanReturnNull();

x.doAThing();

What is Optional<T>...a brief digression

We need to add a check for null to avoid this…but this is easy to forget

What if our function returns Optional<Integer> instead?

1

2

3

Integer x = functionThatCanReturnNull();

if (x == null) { /* do something special */ }

else { x.doAThing(); }

What is Optional<T>...a brief digression

● Now our function returns Optional<Integer>
● What can go wrong in the following code snippet?

Cannot resolve method doAThing() in Optional

(compile error)

1

2

Integer x = functionThatCanReturnNull();

x.doAThing();

What is Optional<T>...a brief digression

Java makes us do something sensible!

1

2

3

Integer x = functionThatCanReturnNull();

if (x.isPresent()) { x.doAThing(); }

else { /* do something special */ }

What is Option[T]...a brief digression

Creating Optional objects:
Optional.empty() // Like null

Optional.of(x) // Optional object w with value x

Optional.ofNullable(x) // If x is null same as .empty()

Using Optional objects:
.isPresent() // True if there is a value

.get() // gets the value

.orElse(y) // return value if present, y if not

Linked Lists in Detail

How do we implement the methods of the Sequence ADT for a Linked List:

T get(int idx)

T set(int idx, T value)

int length

43

Implementing get/set

apply(2)

HEAD

NoneA B C

44

Implementing get/set

apply(2)

HEAD

NoneA B C

CURR
i = 0

45

Implementing get/set

apply(2)

HEAD

NoneA B C

CURR
i = 1

46

Implementing get/set

apply(2)

HEAD

NoneA B C

CURR
i = 2

47

Implementing get/set

48

1

2

3

4

5

6

7

8

9

10

11

public T get(int idx) {

 int i = 0;

 Optional<LinkedListNode<T>> curr = head;

 while(i < idx) {

 if (!curr.isPresent()) { throw new IndexOutOfBoundsException(); }

 i++;

 curr = curr.get().next;

 }

 if(!curr.isPresent()) { throw new IndexOutOfBoundsException(); }

 return curr;

}

Implementing get/set

49

1

2

3

4

5

6

7

8

9

10

11

public T get(int idx) {

 int i = 0;

 Optional<LinkedListNode<T>> curr = head;

 while(i < idx) {

 if (!curr.isPresent()) { throw new IndexOutOfBoundsException(); }

 i++;

 curr = curr.get().next;

 }

 if(!curr.isPresent()) { throw new IndexOutOfBoundsException(); }

 return curr;

}

All of this is 𝚯(1)

Implementing get/set

50

1

2

3

4

5

6

7

public T get(int idx) {

 𝚯(1)
 while(i < idx) {

 𝚯(1)
 }

 𝚯(1)
}

Implementing get/set

51

1

2

3

4

5

public T get(int idx) {

 𝚯(1)
 𝚯(idx)
 𝚯(1)
}

Complexity: 𝚯(idx) ⊂ O(n)

Linked Lists in Detail

How do we implement the methods of the Sequence ADT for a Linked List:

T get(int idx)

Go node-by-node until you reach idx 𝚯(idx) ⊂ O(n)

T set(int idx, T value)

Go node-by-node until you reach idx 𝚯(idx) ⊂ O(n)

int length

52

Implementing length

53

1

2

3

4

5

6

public int length() {

 int i = 0;

 Optional<LinkedListNode<T>> curr = head;

 while(curr.isPresent()) { i++; curr = curr.get().next; }

 return i;

}

Implementing length

54

1

2

3

4

5

public int length() {

 𝚯(1)
 while(curr.isPresent()) { 𝚯(1) }
 𝚯(1)
}

Implementing length

55

1

2

3

4

5

public int length() {

 𝚯(1)
 𝚯(n)
 𝚯(1)
}

Complexity: 𝚯(n)
Can we do better?

Idea: Have the Linked List class store the length

Now complexity of getting length is 𝚯(1)

Implementing length

1

2

3

4

5

class LinkedList<T> {

 Optional<LinkedListNode<T>> head = Optional.empty();

 int length;

 /* ... */

}

56

Idea: Have the Linked List class store the length

Now complexity of getting length is 𝚯(1)

How much extra space is required? 𝚯(1)

Much extra work is required to insert/remove? 𝚯(1)

Implementing length

1

2

3

4

5

class LinkedList<T> {

 Optional<LinkedListNode<T>> head = Optional.empty();

 int length;

 /* ... */

}

57

Idea: Have the Linked List class store the length

Now complexity of getting length is 𝚯(1)

How much extra space is required? 𝚯(1)

Much extra work is required to insert/remove? 𝚯(1)

Implementing length

1

2

3

4

5

class LinkedList<T> {

 Optional<LinkedListNode<T>> head = Optional.empty();

 int length;

 /* ... */

}

58

Common trade-off: Sometimes storing extra information
can decrease complexity!

Access by-Reference vs by-Index

Complexity of getting the value of the nth node in a Linked List?

Complexity of getting the value of the nth node if we have a reference to
that node?

Complexity of getting the value of (n+1)th node if we have a reference to
the nth node?

Complexity of getting the value of (n-1)th node if we have a reference to
the nth node?

59

Access by-Reference vs by-Index

Complexity of getting the value of the nth node in a Linked List? 𝚯(n)

Complexity of getting the value of the nth node if we have a reference to
that node? 𝚯(1)

Complexity of getting the value of (n+1)th node if we have a reference to
the nth node? 𝚯(1)

Complexity of getting the value of (n-1)th node if we have a reference to
the nth node? 𝚯(n)

60

Doubly Linked Lists

1

2

3

4

5

class LinkedList<T> {

 Optional<LinkedListNode<T>> head = Optional.empty();

 Optional<LinkedListNode<T>> tail = Optional.empty();

 int length;

}

1

2

3

4

6

class LinkedListNode<T> {

 T value;

 Optional<LinkedListNode<T>> next = Optional.empty();

 Optional<LinkedListNode<T>> prev = Optional.empty();

}

61

