CSE 250

Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Lec 11: Recursion

Announcements

- PA1 Implementation due Sunday, 9/24 @ 11:59PM
- Continue with the same repo you've been using
- Special weekend office hours (see Piazza)
- WA2 will be released after the PA1 deadline, due 9/31 @ 11:59PM
- Midterm \#1 will be Monday 10/2 in class
- Covers: Summations, Asymptotics, Sequences/Lists, Arrays, Linked Lists, Recursion, Bounds (Tight Upper/Lower, Unqualified vs Expected vs Amortized)

Seq Summary So Far

	ArrayList	Linked List (by index)	Linked List (by reference)
$\operatorname{get}(\ldots)$	$\boldsymbol{\Theta}(1)$	$\boldsymbol{\Theta}(\mathrm{idx})$ or $\boldsymbol{O}(n)$	$\boldsymbol{\Theta}(1)$
$\operatorname{set}(\ldots)$	$\boldsymbol{\Theta}(1)$	$\boldsymbol{\Theta}(\mathrm{idx})$ or $\boldsymbol{O}(n)$	$\boldsymbol{\Theta}(1)$
$\operatorname{size}()$	$\boldsymbol{\Theta}(1)$	$\boldsymbol{\Theta}(1)$	$\boldsymbol{\Theta}(1)$
add (\ldots)	$\boldsymbol{O}(n)$, Amortized $\boldsymbol{\Theta}(1)$	$\boldsymbol{\Theta}(\mathrm{idx})$ or $\boldsymbol{O}(n)$	$\boldsymbol{\Theta}(1)$
remove (\ldots)	$\boldsymbol{O}(n)$	$\boldsymbol{\Theta}(\mathrm{idx})$ or $\boldsymbol{O}(n)$	$\boldsymbol{\Theta}(1)$

What Data Structure is Best?

Scenario \#1: You need to read in the lines of a CSV file, store them in a List, and later be able to access individual records based on index.

What Data Structure is Best?

Scenario \#1: You need to read in the lines of a CSV file, store them in a List, and later be able to access individual records based on index.

ArrayList
Since the amortized runtime of add for ArrayList and LinkedList, adding the \boldsymbol{n} lines of the CSV file will take $\mathbf{O (n)}$ time for both...

But ArrayLists will then have an advantage because looking up records by index will be $\boldsymbol{O}(1)$ whereas LinkedLists will be $\boldsymbol{O}(\boldsymbol{n})$

What Data Structure is Best?

Scenario \#2: Users logging onto an online game need to be efficiently added to a List in the order they log on. From time to time you must be able to iterate through the list from beginning to end.

What Data Structure is Best?

Scenario \#2: Users logging onto an online game need to be efficiently added to a List in the order they log on. From time to time you must be able to iterate through the list from beginning to end.

LinkedList

The enumeration will cost a total of $\mathbf{O}(\mathbf{n})$ for both types of List
But some users will experience longer waits being added to the List if implemented as an ArrayList due to the need for it to occasionally resize

Recursion

Factorial

factorial(n) $=n$ * $(n-1)$ * $(n-2)$ * ... * 2 * 1

Factorial

factorial(n) $=n$ * $(n-1)$ * ($n-2)$ * ... * 2 * 1
factorial(n-1)

Factorial

factorial(n) $=n$ * $(n-1)$ * ($n-2)$ * ... * 2 * 1

factorial(n-1)

Factorial

factorial $(\mathrm{n})=\mathrm{n}$ * $(\mathrm{n}-1)$ * ($\mathrm{n}-2)$ * ... * 2 * 1

factorial(n-1)

Factorial

factorial(1)
factorial(n) $=n$ * ($n-1$) * ($n-2$) * ... * 2 * 1

factorial(n-1)

Factorial

1	public int factorial(int $n)\{$
2	if(n<= $)\{$ return $1 ;\}$
3	else \{ return $n *$ factorial $(n-1) ;\}$
4	$\}$

Factorial

Factorial

Fibonacci

$\mathrm{fib}(\mathrm{n})=1,1$

Fibonacci

$$
\mathrm{fib}(\mathrm{n})=\underset{+}{1,1,} \frac{2}{4}
$$

Fibonacci

Fibonacci

$$
\mathrm{fib}(\mathrm{n})=1,1, \underset{+}{2,3,5}
$$

Fibonacci

fib(n) $=1,1,2,3,5,8,13,21,34, \ldots$

Fibonacci

fibb(n) $=1,1,2,3,5,8,13,21,34, \ldots$ fib(n) $=$ fib(n-1) $+\operatorname{fib}(n-2)$

Fibonacci

Fibonacci

Fibonacci

Towers of Hanoi

Live demo!

But What is the Complexity?

```
1 public int factorial(int n) {
2 if(n<= 1) { return 1; }
    else { return n * factorial(n - 1); }
4}
```


But What is the Complexity?

But What is the Complexity?

But What is the Complexity?

How do we figure out complexity of a function, when part of the runtime of the function is calling itself?

To know the complexity of factorial, we need to...know the complexity of factorial?

Complexity of factorial

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n \leq 1 \\ T(n-1)+\Theta(1) & \text { otherwise }\end{cases}
$$

Solve for $T(n)$

Complexity of factorial

Solve for $T(n)$
\section*{Approach:}

1. Generate a hypothesis
2. Prove your hypothesis for the base case
3. Prove the hypothesis for the recursive case inductively

Step 1 - Generate a Hypothesis

Let's start by looking at the runtime for increasing values of n

Step 1 - Generate a Hypothesis

Let's start by looking at the runtime for increasing values of n $\boldsymbol{\Theta}(1)$

Step 1 - Generate a Hypothesis

Let's start by looking at the runtime for increasing values of n

$$
\boldsymbol{\Theta}(1), 2 \boldsymbol{\Theta}(1)
$$

Step 1 - Generate a Hypothesis

Let's start by looking at the runtime for increasing values of n

$$
\boldsymbol{\Theta}(1), 2 \boldsymbol{\Theta}(1), 3 \boldsymbol{\Theta}(1)
$$

Step 1 - Generate a Hypothesis

Let's start by looking at the runtime for increasing values of n

$$
\boldsymbol{\Theta}(1), 2 \boldsymbol{\Theta}(1), 3 \boldsymbol{\Theta}(1), 4 \Theta(1), 5 \Theta(1), 6 \boldsymbol{\Theta}(1), 7 \Theta(1)
$$

Step 1 - Generate a Hypothesis

Let's start by looking at the runtime for increasing values of n

$$
\boldsymbol{\Theta}(1), 2 \boldsymbol{\Theta}(1), 3 \boldsymbol{\Theta}(1), 4 \boldsymbol{\Theta}(1), 5 \boldsymbol{\Theta}(1), 6 \boldsymbol{\Theta}(1), 7 \boldsymbol{\Theta}(1)
$$

What is the pattern?

Step 1 - Generate a Hypothesis

Let's start by looking at the runtime for increasing values of n

$$
\boldsymbol{\Theta}(1), 2 \boldsymbol{\Theta}(1), 3 \boldsymbol{\Theta}(1), 4 \boldsymbol{\Theta}(1), 5 \boldsymbol{\Theta}(1), 6 \boldsymbol{\Theta}(1), 7 \boldsymbol{\Theta}(1)
$$

What is the pattern?
Hypothesis: $T(n) \in O(n)$

Step 1 - Generate a Hypothesis

Let's start by looking at the runtime for increasing values of n

$$
\boldsymbol{\Theta}(1), 2 \boldsymbol{\Theta}(1), 3 \boldsymbol{\Theta}(1), 4 \boldsymbol{\Theta}(1), 5 \boldsymbol{\Theta}(1), 6 \boldsymbol{\Theta}(1), 7 \boldsymbol{\Theta}(1)
$$

What is the pattern?
Hypothesis: $T(n) \in O(n)$
(there is some $c>0$ such that $T(n) \leq c \cdot n$)

Prove for the Base Case

First, lets make our constants explicit

$$
T(n)= \begin{cases}c_{0} & \text { if } n \leq 1 \\ T(n-1)+c_{1} & \text { otherwise }\end{cases}
$$

Prove $T(n) \in O(n)$ for the Base Case

Prove: $T(n) \in O(n)$ (ie: there exists a constant, c, such that $T(n) \leq c \cdot n$) Base Case: $\mathrm{n}=1$

$$
T(1) \leq c \cdot 1
$$

Prove $T(n) \in O(n)$ for the Base Case

Prove: $T(n) \in O(n)$ (ie: there exists a constant, c, such that $T(n) \leq c \cdot n$) Base Case: $\mathrm{n}=1$

$$
\begin{gathered}
T(1) \leq c \cdot 1 \\
T(1) \leq c
\end{gathered}
$$

Prove $T(n) \in O(n)$ for the Base Case

Prove: $T(n) \in O(n)$ (ie: there exists a constant, c, such that $T(n) \leq c \cdot n$) Base Case: $\mathrm{n}=1$

$$
\begin{gathered}
T(1) \leq c \cdot 1 \\
T(1) \leq c \\
C_{0} \leq c
\end{gathered}
$$

Prove $T(n) \in O(n)$ for the Base Case

Prove: $T(n) \in O(n)$ (ie: there exists a constant, c, such that $T(n) \leq c \cdot n$) Base Case: $\mathrm{n}=1$

$$
\begin{gathered}
T(1) \leq c \cdot 1 \\
T(1) \leq c \\
C_{0} \leq c
\end{gathered}
$$

True for any $c \geq c_{0}$

Prove $T(n) \in O(n)$ for the Base Case + 1

Prove: $T(n) \in O(n)$ (ie: there exists a constant, c, such that $T(n) \leq c \cdot n$) Base Case + 1: $\mathrm{n}=2$

$$
T(2) \leq c \cdot 2
$$

Prove $T(n) \in O(n)$ for the Base Case + 1

Prove: $T(n) \in O(n)$ (ie: there exists a constant, c, such that $T(n) \leq c \cdot n$)
Base Case + 1: $\mathrm{n}=2$

$$
\begin{gathered}
T(2) \leq c \cdot 2 \\
T(1)+c_{1} \leq 2 c
\end{gathered}
$$

Prove $T(n) \in O(n)$ for the Base Case + 1

Prove: $T(n) \in O(n)$ (ie: there exists a constant, c, such that $T(n) \leq c \cdot n$)
Base Case + 1: $\mathrm{n}=2$

$$
\begin{gathered}
T(2) \leq c \cdot 2 \\
T(1)+c_{1} \leq 2 c \\
c_{0}+c_{1} \leq 2 c
\end{gathered}
$$

Prove $T(n) \in O(n)$ for the Base Case + 1

Prove: $T(n) \in O(n)$ (ie: there exists a constant, c, such that $T(n) \leq c \cdot n$) Base Case + 1: $\mathrm{n}=2$

$$
\begin{gathered}
T(2) \leq c \cdot 2 \\
T(1)+c_{1} \leq 2 c \\
c_{0}+c_{1} \leq 2 c
\end{gathered}
$$

We already know there's a $c \geq c_{0}$, so...

Prove $T(n) \in O(n)$ for the Base Case + 1

Prove: $T(n) \in O(n)$ (ie: there exists a constant, c, such that $T(n) \leq c \cdot n$) Base Case + 1: $\mathrm{n}=2$

$$
\begin{gathered}
T(2) \leq c \cdot 2 \\
T(1)+c_{1} \leq 2 c \\
c_{0}+c_{1} \leq 2 c
\end{gathered}
$$

We already know there's a $c \geq c_{0}$, so...
True for any $c \geq c_{1}$

Prove $T(n) \in O(n)$ for the Base Case + 2

Prove: $T(n) \in O(n)$ (ie: there exists a constant, c, such that $T(n) \leq c \cdot n$) Base Case + 2: $\mathrm{n}=3$

$$
T(3) \leq c \cdot 3
$$

Prove $T(n) \in O(n)$ for the Base Case + 2

Prove: $T(n) \in O(n)$ (ie: there exists a constant, c, such that $T(n) \leq c \cdot n$)
Base Case + 2: $\mathrm{n}=3$

$$
\begin{gathered}
T(3) \leq c \cdot 3 \\
T(2)+c_{1} \leq 3 c
\end{gathered}
$$

Prove $T(n) \in O(n)$ for the Base Case + 2

Prove: $T(n) \in O(n)$ (ie: there exists a constant, c, such that $T(n) \leq c \cdot n$)
Base Case + 2: $\mathrm{n}=3$

$$
\begin{gathered}
T(3) \leq c \cdot 3 \\
T(2)+c_{1} \leq 3 c
\end{gathered}
$$

We know there's a c s.t. $T(2) \leq 2 c$,

Prove $T(n) \in O(n)$ for the Base Case + 2

Prove: $T(n) \in O(n)$ (ie: there exists a constant, c, such that $T(n) \leq c \cdot n$) Base Case + 2: $\mathrm{n}=3$

$$
\begin{gathered}
T(3) \leq c \cdot 3 \\
T(2)+c_{1} \leq 3 c
\end{gathered}
$$

We know there's a c s.t. $T(2) \leq 2 c$,
So if we show that $2 c+c_{1} \leq 3 c$, then $T(2)+c_{1} \leq 2 c+c_{1} \leq 3 c$

Prove $T(n) \in O(n)$ for the Base Case + 2

Prove: $T(n) \in O(n)$ (ie: there exists a constant, c, such that $T(n) \leq c \cdot n$) Base Case + 2: $\mathrm{n}=3$

$$
\begin{gathered}
T(3) \leq c \cdot 3 \\
T(2)+c_{1} \leq 3 c
\end{gathered}
$$

We know there's a c s.t. $T(2) \leq 2 c$,
So if we show that $2 c+c_{1} \leq 3 c$, then $T(2)+c_{1} \leq 2 c+c_{1} \leq 3 c$
True for any $c \geq c_{1}$

Prove $T(n) \in O(n)$ for the Base Case + 3

Prove: $T(n) \in O(n)$ (ie: there exists a constant, c, such that $T(n) \leq c \cdot n$) Base Case + 2: $\mathrm{n}=4$

$$
\begin{gathered}
T(4) \leq c \cdot 4 \\
T(3)+c_{1} \leq 4 c
\end{gathered}
$$

We know there's a c s.t. $T(3) \leq 3 c$,
So if we show that $3 c+c_{1} \leq 4 c$, then $T(3)+c_{1} \leq 3 c+c_{1} \leq 4 c$
True for any $c \geq c_{1}$

Proving the Hypothesis Inductively

We're starting to see a pattern...

Proving the Hypothesis Inductively

We can prove our hypothesis for specific values of n...

Proving the Hypothesis Inductively

We can prove our hypothesis for specific values of n...
$n=1 \quad n=2$

Proving the Hypothesis Inductively

We can prove our hypothesis for specific values of n...
$n=1$

...

Proving the Hypothesis Inductively

We can prove our hypothesis for specific values of n...
...but there are infinitely many possible values of n
$n=1$

Proving the Hypothesis Inductively

We can prove our hypothesis for specific values of n...
...but there are infinitely many possible values of n

Instead, let's prove that we can derive an unproven case from a proven one!

Proving the Hypothesis Inductively

Approach: Assume our hypothesis is true for any $\boldsymbol{n}^{\prime}<\boldsymbol{n}$; Now prove it must also hold true for \boldsymbol{n}.

Proving the Hypothesis Inductively

Assume: There is a $c>0$ s.t. $T(n-1) \leq c \cdot(n-1)$
Prove: There is a $c>0$ s.t. $T(n) \leq c \cdot n$

$$
T(n) \leq c \cdot n
$$

Proving the Hypothesis Inductively

Assume: There is a $c>0$ s.t. $T(n-1) \leq c \cdot(n-1)$
Prove: There is a $c>0$ s.t. $T(n) \leq c \cdot n$

$$
\begin{gathered}
T(n) \leq c \cdot n \\
T(n-1)+c_{1} \leq c \cdot n
\end{gathered}
$$

Proving the Hypothesis Inductively

Assume: There is a $c>0$ s.t. $T(n-1) \leq c \cdot(n-1)$
Prove: There is a $c>0$ s.t. $T(n) \leq c \cdot n$

$$
\begin{gathered}
T(n) \leq c \cdot n \\
T(n-1)+c_{1} \leq c \cdot n
\end{gathered}
$$

By the inductive assumption, there is a c s.t. $T(n-1) \leq(n-1) c$

Proving the Hypothesis Inductively

Assume: There is a $c>0$ s.t. $T(n-1) \leq c \cdot(n-1)$
Prove: There is a $c>0$ s.t. $T(n) \leq c \cdot n$

$$
\begin{gathered}
T(n) \leq c \cdot n \\
T(n-1)+c_{1} \leq c \cdot n
\end{gathered}
$$

By the inductive assumption, there is a c s.t. $T(n-1) \leq(n-1) c$ So if we show that $(n-1) c+c_{1} \leq n c$, then...

Proving the Hypothesis Inductively

Assume: There is a $c>0$ s.t. $T(n-1) \leq c \cdot(n-1)$
Prove: There is a $c>0$ s.t. $T(n) \leq c \cdot n$

$$
\begin{gathered}
T(n) \leq c \cdot n \\
T(n-1)+c_{1} \leq c \cdot n
\end{gathered}
$$

By the inductive assumption, there is a c s.t. $T(n-1) \leq(n-1) c$
So if we show that $(n-1) c+c_{1} \leq n c$, then...

$$
T(n-1)+c_{1} \leq(n-1) c+c_{1} \leq n c
$$

Proving the Hypothesis Inductively

Assume: There is a $c>0$ s.t. $T(n-1) \leq c \cdot(n-1)$
Prove: There is a $c>0$ s.t. $T(n) \leq c \cdot n$

$$
\begin{gathered}
T(n) \leq c \cdot n \\
T(n-1)+c_{1} \leq c \cdot n
\end{gathered}
$$

By the inductive assumption, there is a c s.t. $T(n-1) \leq(n-1) c$
So if we show that $(n-1) c+c_{1} \leq n c$, then...

$$
T(n-1)+c_{1} \leq(n-1) c+c_{1} \leq n c
$$

True for any $c \geq c_{1}$

Proving the Hypothesis Inductively

Assume: There is a $c>0$ s.t. $T(n-1) \leq c \cdot(n-1)$
Prove: There is a $c>0$ s.t. $T(n) \leq c \cdot n$

$$
\begin{gathered}
T(n) \leq c \cdot n \\
T(n-1)+c_{1} \leq c \cdot n
\end{gathered}
$$

By the inductive assumption, there is a c s.t. $T(n-1) \leq(n-1) c$
So if we show that $(n-1) c+c_{1} \leq n c$, then...

$$
T(n-1)+c_{1} \leq(n-1) c+c_{1} \leq n c
$$

True for any $c \geq c_{1}$

How much space is used?

How much space is used?

factorial(n-1)
factorial(n)

How much space is used?

factorial(n-2)
factorial(n-1)
factorial(n)

How much space is used?

factorial(n-3)
factorial(n-2)
factorial(n-1)
factorial(n)

How much space is used?

factorial(n-4)
factorial(n-3)
factorial(n-2)
factorial(n-1)
factorial(n)

Tail Recursion

If the last thing we do in the function is a single recursive call, we shouldn't need to create an entire stack of all the function calls...

..smart compilers can often automatically convert to a loop...

1	public int factorial(int n) $\{$
2	int total $=1 ;$
3	for (int $i=0 ; i<n ; i++$) \{ total $\left.*_{=} i ;\right\}$
4	return total;
5	$\}$

Fibonacci

What about a function without tail recursion, or with multiple recursive calls?

What is the complexity of $\mathrm{fib}(\mathrm{n})$?

Next time...

Divide and Conquer
Recursion Trees

