CSE 250: Recursion
 Lecture 11

Sept 22, 2023

Reminders

- PA1 Implementation due Sun, Sept 24 at 11:59 PM
- Implement a Sorted Linked List
- Extra office hours Davis 338A 6-8 PM Saturday

■ WA2 due Sun, Oct 1 at 11:59 PM

- Will be released over the next weekend

■ Midterm 1 on Oct 2 in-class
■ Covers: Asymptotics, Sequences/Lists, Arrays, Linked Lists, Recursion
■ Bounds: Tight Upper/Lower, Unqualified vs Amortized vs Expected

ArrayList

ArrayList: An array with empty space at the end.
add (v)
■ Use an empty slot if one is available

- When you run out of space, double the size.
add(idx, v)
- As add, but shift elements \geq idx right one space first.
remove(idx)
■ Shift elements > idx left one spot.

Huh?

Despicable Me; © 2010 Universal Pictures

Amortized Runtimes

$$
T_{\text {add }}(N)= \begin{cases}\theta(1) & \text { if capacity }>\text { size } \\ \theta(N) & \text { otherwise }\end{cases}
$$

$T_{\text {add }}(N) \in O(N)$

- Any one call could be $O(N)$
- But the $O(N)$ case happens rarely.
- ... rarely enough (with doubling) that the expensive call amortizes over the cheap calls.

ArrayList

■ Double the size

- Copy 2^{i} elements
- Get $2^{i}-1 \theta(1)$ freebie inserts
(Put $\theta\left(2^{i}\right)$ on a credit card)
(Pay off over $\theta\left(2^{i}\right)$ calls to add)
- Contrast with always adding k slots
- Copy $k \cdot i$ elements
- Get $k \theta(1)$ freebie inserts
(Put $k \cdot i$ on a credit card)
(Pay off over $\theta(k)$ calls to add)

When doubling, the time you have to 'pay off' your card grows with the amount that goes on the card.

Amortized Runtime

- The tight unqualified upper bound on add (i) is $\mathrm{O}(\mathrm{N})$ Any one call to add (i) could take up to $O(N)$.
- The tight amortized upper bound on add(i) is $\mathrm{O}(1)$ N calls to add(i) average out to $O(1)$ each. ($O(N)$ for all N calls)
(Amortized lets you use a credit card, as long as you pay it off)

Recursion

Recursion

https://www.etsy.com/listing/916447505/ukrainian-nesting-doll-nesting-dolls

Algorithms

Recursive Algorithm: When the little problem is the same as the big problem, just smaller.

Factorial

$$
\begin{aligned}
& 439!= \\
&= \\
& 439 \cdot 438 \cdot 437 \cdot 436 \cdot 435 \cdot 434 \cdot 433 \cdot 432 \cdot \ldots \\
& 438! \\
& \\
& 439!
\end{aligned}
$$

Factorial

$$
N!\quad=N \cdot \quad(N-1)!
$$

$$
\underbrace{N!}_{\text {big problem }}=N \cdot \underbrace{(N-1)!}_{\text {smaller (same) problem }}
$$

StackOverflowError

Factorial

$$
\begin{aligned}
& 1!=1 \\
& -N!=N \cdot(N-1)!
\end{aligned}
$$

Base Case
 Recursive Case

Fibonacci

$$
1,1,2,3,5,8,13,21,34,55,89, \ldots
$$

Fibonacci

- $\operatorname{Fib}(0)=1$
- $\operatorname{Fib}(1)=1$
$\square \operatorname{Fib}(N)=\operatorname{Fib}(N-1)+\operatorname{Fib}(N-2)$

```
public long fib(long N)
{
    if(n <= 1){ return 1; }
    else { fib(n-1) + fib(n-2) }
}
```


Towers of Hanoi

Live Demo!

Towers of Hanoi

Task: Move n blocks from \mathbf{A} to \mathbf{C}
Base Case ($n=1$)
1 Move the Block from A to C

Base Case ($n \geq 2$)
1 Move $n-1$ blocks from \mathbf{A} to \mathbf{B}
2 Move the n'th block from \mathbf{A} to \mathbf{C}
3 Move $n-1$ blocks from \mathbf{B} to \mathbf{C}

Towers of Hanoi

How do we compute the complexity of recursive algorithms?

Factorial

What is the complexity of Factorial?

```
public long factorial(long N)
{
    if(N <= 1){ return 1; }
    else { return N * factorial(N-1); }
}
```

$$
T_{\text {factorial }}(N)= \begin{cases}\theta(1) & \text { if } N \leq 1 \\ \theta(1)+? ? ? T_{\text {factorial }}(N-1) & \text { otherwise }\end{cases}
$$

Runtime growth functions have base and recursive cases too.

Factorial

$$
T_{\text {factorial }}(N)= \begin{cases}\theta(1) & \text { if } N \leq 1 \\ \theta(1)+T_{\text {factorial }}(N-1) & \text { otherwise }\end{cases}
$$

Solve for $T_{\text {factorial }}(N)$.

Induction

Solve for $T_{\text {factorial }}(N)$.

Induction

1 Generate a hypothesis.
2 Prove the hypothesis for the base case.
3 Prove the hypothesis inductively.

Generate a Hypothesis

Hypothesis: Solve for increasing values of N

N	1	2	3	4	5	6
$T(N)$	$1 \cdot \theta(1)$	$2 \cdot \theta(1)$	$3 \cdot \theta(1)$	$4 \cdot \theta(1)$	$5 \cdot \theta(1)$	$6 \cdot \theta(1)$

What's the pattern? $(N \cdot \theta(1))$
Hypothesis: $T(N) \in \theta(N)$

- There is some $c_{h i g h}>0$ such that $T(n) \leq c_{h i g h} \cdot n \leftarrow$
- There is some $c_{\text {low }}>0$ such that $T(n) \geq c_{\text {low }} \cdot n$

Algebra with θ

Remember, $\theta(N)$ used in a math equation is shorthand for: $f(N)$ where $f(N) \in \theta(N)$

So $\theta(1)$ is shorthand for some constant c.

Factorial

$$
T_{\text {factorial }}(N)= \begin{cases}\theta(1) c_{1} & \text { if } N \leq 1 \\ \theta(1) c_{2}+T_{\text {factorial }}(N-1) & \text { otherwise }\end{cases}
$$

Goal: Show that $T_{\text {factorial }}(N) \leq c \cdot N$ for some $c>0\left(N>N_{0}\right)$

Factorial

$$
T_{\text {factorial }}(N)= \begin{cases}c_{1} & \text { if } N \leq 1 \\ c_{2}+T_{\text {factorial }}(N-1) & \text { otherwise }\end{cases}
$$

Goal: Show that $T_{\text {factorial }}(N) \leq c \cdot N$ for some $c>0\left(N>N_{0}\right)$

$$
\begin{array}{r}
T_{\text {factorial }}(1) \stackrel{?}{\leq} 1 \cdot c \\
c_{1} \stackrel{?}{\leq} 1 \cdot c
\end{array}
$$

Factorial

$$
T_{\text {factorial }}(N)= \begin{cases}c_{1} & \text { if } N \leq 1 \\ c_{2}+T_{\text {factorial }}(N-1) & \text { otherwise }\end{cases}
$$

Goal: Show that $T_{\text {factorial }}(N) \leq c \cdot N$ for some $c>0\left(N>N_{0}\right)$

$$
\begin{aligned}
& T_{\text {factorial }}(2) \stackrel{?}{\leq} 2 \cdot c \\
& c_{2}+T_{\text {factorial }}(1) \stackrel{?}{\leq} 2 \cdot c \\
& c_{2}+c_{1} \stackrel{?}{\leq} 2 \cdot c \checkmark
\end{aligned}
$$

Factorial

$$
T_{\text {factorial }}(N)= \begin{cases}c_{1} & \text { if } N \leq 1 \\ c_{2}+T_{\text {factorial }}(N-1) & \text { otherwise }\end{cases}
$$

Goal: Show that $T_{\text {factorial }}(N) \leq c \cdot N$ for some $c>0\left(N>N_{0}\right)$

$$
\begin{aligned}
& T_{\text {factorial }}(2) \stackrel{?}{\leq} 2 \cdot c \\
& c_{2}+T_{\text {factorial }}(1) \stackrel{?}{\leq} 2 \cdot c \\
& c_{2}+T_{\text {factorial }}(1) \stackrel{?}{\leq} c+c \\
& c_{2} \stackrel{?}{\leq} c
\end{aligned}
$$

Factorial

$$
T_{\text {factorial }}(N)= \begin{cases}c_{1} & \text { if } N \leq 1 \\ c_{2}+T_{\text {factorial }}(N-1) & \text { otherwise }\end{cases}
$$

Goal: Show that $T_{\text {factorial }}(N) \leq c \cdot N$ for some $c>0\left(N>N_{0}\right)$

$$
\begin{aligned}
T_{\text {factorial }}(3) & \stackrel{?}{\leq} 3 \cdot c \\
c_{2}+T_{\text {factorial }}(2) & \stackrel{?}{\leq} 3 \cdot c \\
c_{2}+T_{\text {factorial }}(2) & \stackrel{?}{\leq} c+2 c \\
c_{2} & \stackrel{?}{\leq} c \checkmark
\end{aligned}
$$

Factorial

This is boring!
Can't I automate the proof?

Induction

1 Generate a hypothesis.

$$
\begin{array}{r}
T(N) \in O(N) \\
\exists c: T(N) \leq c \cdot N
\end{array}
$$

2 Prove the hypothesis for the base case.
3 Prove the hypothesis inductively.

- Assume you've proved it for case $N-1$
- Prove that it holds for case N

Factorial

$$
T_{\text {factorial }}(N)= \begin{cases}c_{1} & \text { if } N \leq 1 \\ c_{2}+T_{\text {factorial }}(N-1) & \text { otherwise }\end{cases}
$$

Goal: Show that $T_{\text {factorial }}(N) \leq c \cdot N$ for some $c>0\left(N>N_{0}\right)$
Assume: $\quad T_{\text {factorial }}(N-1) \leq c \cdot N-1$

$$
\begin{aligned}
T_{\text {factorial }}(N) & \stackrel{?}{\leq} N \cdot c \\
c_{2}+T_{\text {factorial }}(N-1) & \stackrel{?}{\leq} N \cdot c \\
c_{2}+T_{\text {factorial }}(N-1) & \stackrel{?}{\leq} c+(N-1) c \\
c_{2} & \stackrel{?}{\leq} c
\end{aligned}
$$

Induction

We showed there exists a c such that...

- $T(1) \leq 1 \cdot c$
(Base Case)
- if $T(N-1) \leq(N-1) \cdot c$ then $T(N) \leq N \cdot c \quad$ (Inductive Proof)

So...
$1 \quad T(1) \leq 1 \cdot c$
(Base Case)
$2 T(2) \leq 2 \cdot c$
$3 T(3) \leq 3 \cdot c$
$4 T(4) \leq 4 \cdot c$
$5 T(5) \leq 5 \cdot c$
$6 T(6) \leq 6 \cdot c$
7 ...
The proof holds for any $N \geq 1 \rightarrow T(N) \in O(N)$

Factorial

What is the complexity of Factorial?

```
public long factorial(long N)
{
    if(N <= 1){ return 1; }
    else { return N * factorial(N-1); }
}
```

Answer: $O(N)^{1}$

How much memory does it use?

${ }^{1}$ Technically it's $\theta(N)$, but we haven't proven $T(N) \in \Omega(N)$

Stack Frames

Every time you call a function, it allocates some memory for local variables (e.g., N).

This chunk of memory is called a Stack Frame.
This is where the term StackOverflowError comes from.

Stack Frames

IIIIIIII

Factorial (as a loop)

Factorial

Why does this work?

Factorial (as a loop)

```
public long factorial(long N)
{
    if(N <= 1){ return 1; }
    else { return N * factorial(N-1); }
}
```

Each call to factorial only makes one recursive call.

Factorial (as a loop)

- Is $\mathrm{N}>1$?
- Compute arg $=\mathrm{N}-1$
- Call factorial (arg)

■ Compute $\mathrm{N} \times$ result

- Return
\leftarrow Requires stack frame
\leftarrow Requires stack frame
\longleftarrow Requires stack frame

Factorial (as a loop)

```
public long factorial(long N, long total)
{
    if(N <= 1){ return total; }
    else { return factorial(N-1, N * total); }
}
```


Factorial (as a loop)

- Is $\mathrm{N}>1$?
- Compute $\arg 1=\mathrm{N}-1$
- Compute $\arg 2=\mathrm{N} \times$ total

■ Call factorial(arg1, arg2)

- Return
\leftarrow Requires stack frame
\leftarrow Requires stack frame
\leftarrow Requires stack frame
\leftarrow Stack frame unnecessary

Stack Frames

IIIIIIII

Tail Recursion

If the recursive call is the last operation before the return, most languages optimize the recursion away ${ }^{2}$.

This is called Tail Recursion
${ }^{2}$... but not Java

Fibonacci

Time permitting...

Fibonacci

What's the complexity:

```
public long fib(long N)
\{
    if( \(\mathrm{n}<=1\) ) \{ return 1; \}
    else \(\{\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2)\}\)
\}
```

