
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 14: Midterm #1 Review

mailto:epmikida@buffalo.edu

Midterm Procedure

● Exam is during normal class time. Same time, same place.
● Seating is assigned randomly

○ Wait outside the room until instructed to enter
○ Immediately place all bags/electronics at the front of the room

● At your seat you should have:
○ Writing utensil
○ UB ID card
○ One 8.5x11 cheatsheet (front and back) if desired
○ Summation/Log rules will be provided

2

Content Overview

3

Analysis
Tools/Techniques ADTs

Data
Structures

Week 2/3 Asymptotic Analysis,
(Unqualified) Runtime Bounds

Week 3 Sequence Array,
LinkedList

Week 4 Amortized Runtime List ArrayList,
LinkedList

Analysis Tools and
Techniques

4

Recap of Runtime Complexity

Big-𝚯 — Tight Bound
● Growth functions are in the same complexity class
● If f(n) ∈ 𝚯(g(n)) then an algorithm taking f(n) steps is as "exactly" as fast as one that takes g(n)

steps.

Big-O — Upper Bound
● Growth functions in the same or smaller complexity class.
● If f(n) ∈ O(g(n)), then an algorithm that takes f(n) steps is at least as fast as one taking g(n) (but it

may be even faster).

Big-𝛀 — Lower Bound
● Growth functions in the same or bigger complexity class
● If f(n) ∈ 𝛀(g(n)), then an algorithm that takes f(n) steps is at least as slow as one that takes g(n)

steps (but it may be even slower)

5

Common Runtimes (in order of complexity)

Constant Time: 𝚯(1)

Logarithmic Time: 𝚯(log(n))

Linear Time: 𝚯(n)

Quadratic Time: 𝚯(n2)

Polynomial Time: 𝚯(nk) for some k > 0

Exponential Time: 𝚯(cn) (for some c ≥ 1)

6

Formal Definitions

f(n) ∈ O(g(n)) iff exists some constants c, n0 s.t.

f(n) ≤ c * g(n) for all n > n0

f(n) ∈ 𝛀(g(n)) iff exists some constants c, n0 s.t.

f(n) ≥ c * g(n) for all n > n0

f(n) ∈ 𝚯(g(n)) iff f(n) ∈ O(g(n)) and f(n) ∈ 𝛀(g(n))

7

Amortized Runtime

If n calls to a function take O(f(n))...

We say the Amortized Runtime is O(f(n) / n)

The amortized runtime of add on an ArrayList is: O(n/n) = O(1)
The unqualified runtime of add on an ArrayList is: O(n)

8

What guarantees do you get?

If f(n) is a Tight Bound (Big Theta)
The algorithm always runs in cf(n) steps

If f(n) is a Worst-Case Bound (Big O)
The algorithm always runs in at most cf(n)

If f(n) is an Amortized Bound
n invocations of the algorithm always run in cnf(n) steps

← Unqualified runtime

9

ADTs and Data Structures

10

Abstract Data Types (ADTs)

The specification of what a data structure can do

ADT

Enumerate everything

Get "nth" element

Set "nth" element

Get length

Usage is governed by what we can do, not how it is done

What's in the box? …we
don't know, and in some
sense…we don't care

11

Abstract Data Type vs Data Structure

ADT

The interface to a data structure

Defines what the data structure
can do

Many data structures can
implement the same ADT

Data Structure

The implementation of one (or
more) ADTs

Defines how the different tasks
are carried out

Different data structures will excel
at different tasks

12

Abstract Data Type vs Data Structure

ADT

The interface to a data structure

Defines what the data structure
can do

Many data structures can
implement the same ADT

Data Structure

The implementation of one (or
more) ADTs

Defines how the different tasks
are carried out

Different data structures will excel
at different tasks

Think about the Linked List we are
implementing for PA1.

The internal structure and the mental
model of our sequence are very

different.

13

The Sequence ADT

14

1

2

3

4

5

6

public interface Sequence<E> {

 public E get(idx: Int);

 public void set(idx: Int, E value);

 public int size();

 public Iterator<E> iterator();

}

Arrays and Linked Lists in Memory 15

The List ADT

16

1

2

3

4

5

6

7

8

9

10

11

public interface List<E>

 extends Sequence<E> { // Everything a sequence has, and...

 /** Extend the sequence with a new element at the end */

 public void add(E value);

 /** Extend the sequence by inserting a new element */

 public void add(int idx, E value);

 /** Remove the element at a given index */

 public void remove(int idx);

}

17

Runtime Summary

ArrayList
Linked List
(by index)

Linked List
(by reference)

get(...) 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

set(...) 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

size() 𝚯(1) 𝚯(1) 𝚯(1)

add(...) O(n), Amortized 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

remove(...) O(n) 𝚯(idx) or O(n) 𝚯(1)

