CSE 250 Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Lec 14: Midterm #1 Review

Midterm Procedure

- Exam is during normal class time. Same time, same place.
- Seating is assigned randomly
 - Wait outside the room until instructed to enter
 - Immediately place all bags/electronics at the front of the room
- At your seat you should have:
 - Writing utensil
 - UB ID card
 - One 8.5x11 cheatsheet (front and back) if desired
 - Summation/Log rules will be provided

Content Overview

	Analysis Tools/Techniques	ADTs	Data Structures
Week 2/3	Asymptotic Analysis, (Unqualified) Runtime Bounds		
Week 3		Sequence	Array, LinkedList
Week 4	Amortized Runtime	List	ArrayList, LinkedList

Analysis Tools and Techniques

Recap of Runtime Complexity

Big-**O** – Tight Bound

- Growth functions are in the **same** complexity class
- If f(n) ∈ Θ(g(n)) then an algorithm taking f(n) steps is as "exactly" as fast as one that takes g(n) steps.

Big-O – Upper Bound

- Growth functions in the **same or smaller** complexity class.
- If f(n) ∈ O(g(n)), then an algorithm that takes f(n) steps is at least as fast as one taking g(n) (but it may be even faster).

$\operatorname{Big}-\Omega$ – Lower Bound

- Growth functions in the **same or bigger** complexity class
- If f(n) ∈ Ω(g(n)), then an algorithm that takes f(n) steps is at least as slow as one that takes g(n) steps (but it may be even slower)

Common Runtimes (in order of complexity)

- Constant Time:Θ(1)Logarithmic Time:Θ(log(n))
- Linear Time: $\Theta(n)$
- Quadratic Time: $\Theta(n^2)$
- **Polynomial Time:** $\Theta(n^k)$ for some k > 0
- **Exponential Time:** $\Theta(c^n)$ (for some $c \ge 1$)

Formal Definitions

 $f(n) \in O(g(n))$ iff exists some constants c, n_0 s.t. $f(n) \le c * g(n)$ for all $n > n_0$

 $(\mathbf{r}) \subset \mathbf{O}(\mathbf{r}(\mathbf{r}))$ iff eviate correspondents

 $f(n) \in \Omega(g(n))$ iff exists some constants c, n_0 s.t.

 $f(n) \ge c * g(n)$ for all $n > n_0$

 $f(n) \in \Theta(g(n))$ iff $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$

Amortized Runtime

If *n* calls to a function take *O*(*f*(*n*))... We say the <u>Amortized Runtime</u> is *O*(*f*(*n*) / *n*)

The **amortized runtime** of **add** on an **ArrayList** is: **O**(*n*/*n*) = **O**(1) The **unqualified runtime** of **add** on an **ArrayList** is: **O**(*n*)

What guarantees do you get?

If f(n) is a Tight Bound (Big Theta) The algorithm **always** runs in **cf(n)** steps

If f(n) is a Worst-Case Bound (Big O) The algorithm always runs in at most cf(n)

If *f*(*n*) is an Amortized Bound

n invocations of the algorithm **always** run in *cnf(n)* steps

 $\leftarrow Unqualified runtime$

ADTs and Data Structures

Abstract Data Types (ADTs)

The specification of what a data structure can do

What's in the box? ...we don't know, and in some sense...we don't care

Usage is governed by **what** we can do, not **how** it is done

Abstract Data Type vs Data Structure

ADT

The interface to a data structure

Defines **what** the data structure can do

Many data structures can implement the same ADT

Data Structure

The implementation of one (or more) ADTs

Defines **how** the different tasks are carried out

Different data structures will excel at different tasks

Abstract Data Type vs Data Structure

AD	DT Data S	Data Structure	
The interface to		ation of one (or	
Defines what the	implementing for PA1.) ADTs	
can	The internal structure and the mental	e different tasks	
Many data st	model of our sequence are very different.	ried out	
implement th	different.	uctures will excel	
at different tasks			

at different tasks

The Sequence ADT

```
1 public interface Sequence<E> {
2   public E get(idx: Int);
3   public void set(idx: Int, E value);
4   public int size();
5   public Iterator<E> iterator();
6 }
```


Arrays and Linked Lists in Memory

The List ADT

```
public interface List<E>
 2
       extends Sequence<E> { // Everything a sequence has, and...
    /** Extend the sequence with a new element at the end */
 3
    public void add(E value);
4
5
6
    /** Extend the sequence by inserting a new element */
 7
    public void add(int idx, E value);
8
    /** Remove the element at a given index */
9
10
    public void remove(int idx);
11
```

Runtime Summary

	ArrayList	Linked List (by index)	Linked List (by reference)
get()	Θ(1)	$\Theta(idx)$ or $O(n)$	Θ(1)
set()	Θ (1)	$\Theta(idx)$ or $O(n)$	Θ (1)
<pre>size()</pre>	Θ (1)	Θ (1)	Θ(1)
add()	$O(n)$, Amortized $\Theta(1)$	$\Theta(idx)$ or $O(n)$	Θ(1)
remove()	O (n)	$\Theta(idx)$ or $O(n)$	Θ(1)