CSE 250: Midterm Review 1
 Lecture 14

Sept 29, 2023

Reminders

■ WA2 due Sun, Oct 1 at 11:59 PM

- Released Monday
- Midterm 1 on Oct 2 in-class

■ Covers: Asymptotics, Sequences/Lists, Arrays, Linked Lists, Recursion
■ Bounds: Tight Upper/Lower, Unqualified vs Amortized

Runtime

Some Notation

- N : The input "size"

■ How many students I have to email.
■ How many streets on a map.
■ How many key/value pairs in my dictionary
■ $T(N)$: The runtime of 'some' implementation of the algorithm.

- Some... correct implementation.

We care about the "shape" of $T(N)$ when you plot it.

Class Names

$T(N) \in \ldots$
■ ... $\theta(1):$ Constant
■ $\ldots \theta(\log (N))$: Logarithmic

- . . $\theta(N)$: Linear

■ . . $\theta(N \log (N))$: Log-Linear

- ... $\theta\left(N^{2}\right):$ Quadratic

■ $\ldots \theta\left(N^{k}\right)$ (for any $k \geq 1$): Polynomial
■ $\ldots \theta\left(2^{N}\right)$: Exponential

Complexity Bounds

f and g are in the same complexity class if:

- g is bounded from above by something f-shaped $g(N) \in O(f(N)$
- g is bounded from below by something f-shaped $g(N) \in \Omega(f(N)$

Complexity Classes

Complexity Bounds

- $O(f(N))$ includes:
- All functions in $\theta(f(N))$
- All functions in 'smaller' complexity classes
- $\Omega(f(N))$ includes:
- All functions in $\theta(f(N))$
- All functions in 'bigger' complexity classes
$O(f(N)) \cap \Omega(f(N))=\theta(f(N))$

Complexity Bounds

$\theta(N \log (N))$

Complexity Bounds

Rules of Thumb

(C) Aleksandra Patrzalek, 2012

Complexity Bounds

$g(N) \in O(f(N))$ (f is an upper bound for g) if and only if:

- You can pick an N_{0}
- You can pick a c
- For all $N>N_{0}: g(N) \leq c \cdot f(N)$
$g(N) \in \Omega(f(N))(f$ is a lower bound for $g)$ if and only if:
- You can pick an N_{0}
- You can pick a c
- For all $N>N_{0}: g(N) \geq c \cdot f(N)$
$g(N) \in \theta(f(N))$ if and only if:
- $g(N) \in \Omega(f(N))$
- $g(N) \in O(f(N))$

Rules of Thumb

$$
F(N)=f_{1}(N)+f_{2}(N)+\ldots+f_{k}(N)
$$

What complexity class is $F(N)$ in?
$f_{1}(N)+f_{2}(N)$ is in the greater of $\theta\left(f_{1}(N)\right)$ and $\theta\left(f_{2}(N)\right)$.
$F(N)$ is in the greatest of any $\theta\left(f_{i}(N)\right)$
We say the biggest f_{i} is the dominant term.

Multi-Class Functions

$$
T(N)= \begin{cases}\theta(1) & \text { if } N \text { is even } \\ \theta(N) & \text { if } N \text { is odd }\end{cases}
$$

What is the complexity class of $T(N)$?

- $T(N) \in O(N)$ is a tight bound.
- $T(N) \in \Omega(1)$ is a tight bound.

If the tight Big-O and Big- Ω bounds are different, the function is not in ANY complexity class.
(Big-Theta doesn't exist).

Does Big-Theta Exist?

$N+2 N^{2}$ belongs to one complexity class. $\left(\theta\left(N^{2}\right)\right)$
$5 N+10 N^{2}+2^{N}$ belongs to one complexity class $\left(\theta\left(2^{N}\right)\right)$
$\left\{\begin{array}{ll}2^{N} & \text { if rand }()>0.5 \\ N & \text { otherwise }\end{array}\right.$ does not belong to one complexity class.

- Usually $\theta\left(f_{1}(N)+f_{2}(N)+\ldots\right)$ is based on the dominant term
- If you see cases (i.e., '\{'), it's probably multi-class.

Multi-Class Functions

If...

- $g(N) \in O(f(N))$ is a tight upper bound
- $g(N) \in \Omega\left(f^{\prime}(N)\right)$ is a tight lower bound
- $f^{\prime}(N) \notin \theta(f(N))$
... then there is no θ bound for $g(N)$ (g is multi class)
Remember: Addition does not make a function multi-class.
(A tight $\Omega(f(N))$ is the dominant (biggest) term being summed)

Rules of Thumb

■ Lines of Code: Add Complexities
■ Loops: Multiply Complexity by the Loop Count
■ If/Then: Cases block '\{'

Bubblesort on Lists

```
public void bubblesort(List[Integer] data)
{
    int N = data.size();
    for(int i = N - 2; i >= 0; i--)
    {
        for(int j = i; j <= N - 1; j++)
        {
            if(data.get(j+1) < data.get(j))
            {
                int temp = data.get(j);
                data.set(j, data.get(j+1));
                data.set(j+1, temp);
            }
        }
    }
}
```


Bubblesort on Lists

Bubblesort on Lists

```
public void bubblesort(List[Integer] data)
{
    int[] array = data.toArray()
    bubblesort(array) // Use the array implementation
    data.clear()
    data.addAll(Arrays.toList(array))
}
```


Bubblesort on Lists

```
public void bubblesort(List[Integer] data)
{
        O(N)
        O(N2
        O(N)
        O(N)
    }
```


Abstract Data Types

Abstract Data Type defines...

- Domain: What kind of data is stored? (e.g., elements, key/value pairs)
- Constraints: How are items related? (e.g., ordered keys)

■ Operations: How can the data be accessed/modified (e.g., 'i'th item)

Like a Java interface ${ }^{1}$
${ }^{1}$ The term interface is not quite the same as ADT; The interface only formalizes the permitted operations.

The Sequence ADT

```
public interface Sequence<E>
{
        public E get(int idx);
        public void set(int idx, E value);
        public int size();
        public Iterator<E> iterator();
}
```

E is the type of thing in the Sequence.

CSE 220 Crossover

IIIIIIII

0100100001100101011011000110110001101111...

\qquad
0100100001100101011011000110110001101111

Array

- public E get(int idx)
- Return bytes bPE $\times i d x$ to bPE $\times(i d x+1)-1$
- $\theta(1)$ (if we treat bPE as a constant)

■ public void set(int idx, E value)

- Update bytes bPE $\times i d x$ to $\mathrm{bPE} \times(i d x+1)-1$
- $\theta(1)$ (if we treat bPE as a constant)
- public int size()
- Return size
- $\theta(1)$

CSE 220 Crossover 2: List Harder

IIIIIIII

OpenClipArt: https://freesvg.org/random-access-computer-memory-ram-vector-image

LinkedList

- public E get(int idx)
- Start at head, and move to the next element idx times. Return the element's value.
- $\theta(i d x), O(N)$

■ public void set(int idx, E value)

- Start at head, and move to the next element idx times.

Update the element's value.

- $\theta(i d x), O(N)$

■ public int size()

- Start at head, and move to the next element until you reach the end. Return the number of steps taken.
- $\theta(N)$

Linked Lists' size

Can we do better?

Store size

```
public class LinkedList<T> implements List<T>
{
    LinkedListNode<T> head = null;
    int size = 0;
    /* ... */
}
```

■ How expensive is public int size() now? $(\theta(1))$

■ How expensive is it to maintain size?
(Extra $\theta(1)$ work on insert/remove).

Storing redundant information can reduce complexity.

Enumeration

```
public int sumUpList(LinkedList<Integer> list)
```

public int sumUpList(LinkedList<Integer> list)
{
{
int total = 0;
int total = 0;
int N = list.size()
int N = list.size()
Optional<LinkedListNode<Integer>> node = list.head;
Optional<LinkedListNode<Integer>> node = list.head;
while(node.isPresent())
while(node.isPresent())
{
{
int value = node.get().value;
int value = node.get().value;
total += value;
total += value;
node = node.get().next;
node = node.get().next;
}
}
return total;
return total;
}

```
}
```


Enumeration

This code is specialized for LinkedLists

- We can't re-use it for an ArrayList.

■ If we change LinkedList, the code breaks.

How do we get code that is both fast and general?

- We need a way to represent a reference to the idx'th element of a list.

Listlterator

```
public interface ListIterator<E>
{
    public boolean hasNext();
    public E next();
    public boolean hasPrevious();
    public E previous();
    public void add(E value);
    public void set(E value);
    public void remove();
}
```


Linked Lists

Access list element by index: $O(N)$
Access list element by reference (iterator): $O(1)$

The List ADT

```
public interface List<E>
    extends Sequence<E> // Everything a sequence has, and...
{
    /** Extend the sequence with a new element at the end */
    public void add(E value);
    /** Extend the sequence by inserting a new element */
    public void add(int idx, E value);
    /** Remove the element at a given index */
    public void remove(int idx);
}
```

Array add(idx, value)

HIII IIIS

array.data

$$
\text { array. } \operatorname{add}(i d x=2, \text { value }=5) \leftarrow \theta(N)
$$

Idea 1

Idea: Allocate more memory than we need.

ArrayList

Start with a capacity of 2 .
$1 \theta(1)$
(size now 1)
$2 \theta(1)$
(size now 2)
$32 \cdot \theta(1)$
$4 \theta(1)$
$54 \cdot \theta(1)$
$6 \theta(1)$
$7 \theta(1)$
$8 \theta(1)$
(capacity now 4 ; size now 3)
(size now 4)
(capacity now 8; size now 5)
(size now 6) (size now 7)
(size now 8)
$98 \cdot \theta(1)$
(capacity now 16 ; size now 9)
... 8 more operations before next $\theta(N)$
... 16 more operations before next $\theta(N)$

ArrayList

- 2 insertions at $\theta(1)$
- $2 \cdot \theta(1)$ plus 2 insertions at $\theta(1)$ (up to capacity of 4)
- $4 \cdot \theta(1)$ plus 4 insertions at $\theta(1)$ (up to capacity of 8)

■ $8 \cdot \theta(1)$ plus 8 insertions at $\theta(1)$ (up to capacity of 16)

- $16 \cdot \theta(1)$ plus 16 insertions at $\theta(1)$ (up to capacity of 32)
- $32 \cdot \theta(1)$ plus 32 insertions at $\theta(1)$ (up to capacity of 64)

What's the pattern?
($2^{i} \cdot \theta(1)$ copy on the 2^{i} 'th insertion)
For N insertions, how many copies do we perform?
$\left(\log _{2}(N)\right)$

Huh?

Despicable Me; © 2010 Universal Pictures

Amortized Runtimes

$$
T_{\text {add }}(N)= \begin{cases}\theta(1) & \text { if capacity }>\text { size } \\ \theta(N) & \text { otherwise }\end{cases}
$$

$T_{\text {add }}(N) \in O(N)$

- Any one call could be $O(N)$
- But the $O(N)$ case happens rarely.
- ... rarely enough (with doubling) that the expensive call amortizes over the cheap calls.

LinkedList vs ArrayList

```
for(i = 0; i < N; i++)
{
    list.add(i);
}
```

	LinkedList	ArrayList
add(i) once	$O(1)$	$O(N)$
add(i) N times	$O(N)$	$O(N)$

ArrayList.add(i) behaves like it's $O(1)$, but only when it's in a loop.

Amortized Runtime

- The tight unqualified upper bound on add (i) is $\mathrm{O}(\mathrm{N})$ Any one call to add (i) could take up to $O(N)$.
- The tight amortized upper bound on add(i) is $\mathrm{O}(1)$ N calls to add(i) average out to $O(1)$ each. ($O(N)$ for all N calls)

Amortized Runtime

If $T(N)$ runs in amortized $O(f(N))$, then:

$$
\sum_{i=0}^{N} T(N)=N \cdot O(f(N))=O(N \cdot f(N))
$$

Even if $T(N) \notin O(f(N))$

Amortized Runtime

■ Unqualified Bounds: Always true (no qualifiers)

- Amortized Bounds: Only valid in $\sum_{i=0}^{N} T(i)$
- One call may be expensive, many calls average out cheap

List Runtimes

Op	Array	ArrayList	Linked List (by idx)	Linked List (by iter)
get (i)	$\theta(1)$	$\theta(1)$	$\theta(i), O(N)$	$\theta(1)$
set (i,v)	$\theta(1)$	$\theta(1)$	$\theta(i), O(N)$	$\theta(1)$
add(v)	$\theta(N)$	Amm. $\theta(1)$	$\theta(1)$	$\theta(1)$
add(i,v)	$\theta(N)$	$\theta(N)$	$\theta(i), O(N)$	$\theta(1)$
remove(i)	$\theta(N)$	$\theta(N)$	$\theta(i), O(N)$	$\theta(1)$

Merge Sort

Merge Sort

$$
\begin{gathered}
\left(\sum_{i=0}^{\log (N)-1} 2^{i} \cdot \theta(1)\right)+\left(\sum_{i=1}^{\log (N)-1} \theta(N)\right) \\
\left(2^{\log (N)} \theta(1)\right)+(\log (N) \theta(N)) \\
\theta(N)+\theta(N \log (N))
\end{gathered}
$$

Merge Sort: $\theta(N \log (N))$
Bubble Sort: $\theta\left(N^{2}\right)$

