CSE 250

Data Structures

Dr. Eric Mikida
epmikida@buffalo.edu 208 Capen Hall

Lec 18: Graph ADT and EdgeLists

Announcements

- WA3 due on Sunday

Edge Types

Directed Edge (asymmetric relationship)

- Ordered pair of vertices (u, v)
- origin (u) \rightarrow destination (v)

Undirected Edge (symmetric relationship)

- Unordered pair of vertices (u, v)

transmit bandwidth

round-trip latency

Edge Types

Directed Edge (asymmetric relationship)

- Ordered pair of vertices (u, v)
- origin (u) \rightarrow destination (v)

Undirected Edge (symmetric relationship)

- Unordered pair of vertices (u, v)

Directed Graph: All edges are directed

round-trip latency

Undirected Graph: All edges are undirected

Terminology

Endpoints of an edge U, V are endpoints of a Adjacent Vertices
U, V are adjacent
Degree of a vertex
X has degree 5

Terminology

Edges indecent on a vertex

 a, b, d are incident on V
Parallel Edges

h, i are parallel

Self-Loop

j is a self-loop

Simple Graph

A graph without parallel edges or self-loops

Terminology

Path

A sequence of alternating vertices and edges

- begins with a vertex
- ends with a vertex
- each edge preceded/followed by its endpoints

Simple Path

A path such that all of its vertices and edges are distinct

Terminology

Path

A sequence of alternating vertices and edges

- begins with a vertex
- ends with a vertex
- each edge preceded/followed by its endpoints

Simple Path

A path such that all of its vertices and edges are distinct

$$
U, c, W, e, X, g, Y, f, W, d, V \text { is not simple }
$$

Terminology

Cycle

A path the begins and ends with the same vertex. Must contain at least one edge

Simple Cycle

A cycle such that all of its vertices and edges are distinct

Terminology

Cycle

A path the begins and ends with the same vertex. Must contain at least one edge

Simple Cycle

A cycle such that all of its vertices and edges are distinct

Notation

\boldsymbol{n} The number of vertices
m The number of edges
$\boldsymbol{\operatorname { d e g }}(\boldsymbol{v})$ The degree of vertex \boldsymbol{v}

Graph Properties

$$
\sum_{v} \operatorname{deg}(v)=2 m
$$

Graph Properties

$$
\sum_{v} \operatorname{deg}(v)=2 m
$$

Proof: Each edge is counted twice

Graph Properties

In a directed graph with no self-loops and no parallel edges:

$$
m \leq n(n-1)
$$

Graph Properties

In a directed graph with no self-loops and no parallel edges:

$$
m \leq n(n-1)
$$

No parallel edges: each pair is connected at most once
No self-loops: pick each vertex only once

Graph Properties

In a directed graph with no self-loops and no parallel edges:

$$
m \leq n(n-1)
$$

No parallel edges: each pair is connected at most once
No self-loops: pick each vertex only once
\boldsymbol{n} choices for the first vertex; $(\boldsymbol{n} \mathbf{- 1})$ choices for the second vertex.
Therefore even if there was one edge between every possible pair, we still have at most $n(n-1)$ edges

A (Directed) Graph ADT

Two type parameters (Graph[V, E])
V: The vertex label type
E : The edge label type
Vertices
...are elements
...store a value of type \mathbf{V}

Edges

...are also elements
...store a value of type E

A (Directed) Graph ADT

What can we do with a Graph?

A (Directed) Graph ADT

What can we do with a Graph?

- Iterate through the vertices
- Iterate through the edges
- Add a vertex
- Add an edge
- Remove a vertex
- Remove an edge

A (Directed) Graph ADT

```
1 public interface Graph<V, E> {
2 public Iterator<Vertex> vertices();
public Iterator<Edge> edges();
    public Vertex addVertex(V label);
    public Edge addEdge(Vertex orig, Vertex dest, E label);
    public void removeVertex(Vertex vertex);
    public void removeEdge(Edge edge);
}
```


A (Directed) Graph ADT

What can we do with a Vertex?

A (Directed) Graph ADT

What can we do with a Vertex?

- Get it's label
- Get the outgoing edges
- Get the incoming edges
- Get all incident edges
- Check if it's adjacent to another Vertex

A (Directed) Graph ADT

What can we do with an Edge?

- Get it's label
- Get the incident vertices

A (Directed) Graph ADT

```
    1 public interface Vertex<V,E> {
    2 public V getLabel();
    public Iterator<Edge> getOutEdges();
    public Iterator<Edge> getInEdges();
    public Iterator<Edge> getIncidentEdges();
    public boolean hasEdgeTo(Vertex v);
    }
    8
    public interface Edge<V,E> {
10 public Vertex getOrigin();
1 1 ~ p u b l i c ~ V e r t e x ~ g e t D e s t i n a t i o n ( ) ;
12 public E getLabel();
1 3
}
```


Implementation Attempt 1: Edge List

Data Model:

A List of Edges
(ArrayList)
A List of Vertices
(ArrayList)

Implementation Attempt 1: Edge List

```
1 public class EdgeList<V,E> implements Graph<V,E> {
2 List<Vertex> vertices = new ArrayList<Vertex>();
    List<Edge> edges = new ArrayList<Edge>();
    /*...*/
5}
```


Implementation Attempt 1: Edge List

```
public Vertex addVertex(V label) {
    Vertex v = new Vertex(label);
    vertices.add(v);
    return v;
}
public Edge addEdge(Vertex orig, Vertex dest, E label) {
    Edge e = new Edge(orig, dest, label);
    edges.add(e);
    return e;
}
```


Implementation Attempt 1: Edge List

```
public Vertex addVertex(V label) {
    Vertex v = new Vertex(label);
    vertices.add(v);
    return v;
}
public Edge addEdge(Vertex orig, Vertex dest, E label) {
    Edge e = new Edge(orig, dest, label);
    edges.add(e);
    return e;
}
```


Implementation Attempt 1: Edge List

```
1 public void removeEdge(Edge edge) {
2 edges.remove(edge);
3)
```

What's the complexity?

Implementation Attempt 1: Edge List

```
1 public void removeEdge(Edge edge) {
2 edges.remove(edge);
3)
```

What's the complexity?
We have to search for edge by value in an unsorted list! $\mathbf{O (m)}$

Attempt 2: Linked Edge List

Data Model:

A List of Edges
(LinkedList)
A List of Vertices
(LinkedList)

Attempt 2: Linked Edge List

```
1 public class LinkedEdgeList<V,E> implements Graph<V,E> {
2 List<Vertex> vertices = new LinkedList<Vertex>();
    List<Edge> edges = new LinkedList<Edge>();
    /*...*/
}
```


Attempt 2: Linked Edge List

```
public Vertex addVertex(V label) {
    Vertex v = new Vertex(label);
    vertices.add(v);
    return v;
}
public Edge addEdge(Vertex orig, Vertex dest, E label) {
    Edge e = new Edge(orig, dest, label);
    edges.add(e);
    return e;
}
```


Attempt 2: Linked Edge List

```
public Vertex addVertex(V label) {
    Vertex v = new Vertex(label);
        \Theta(1)
    vertices.add(v);
    return v;
}
public Edge addEdge(Vertex orig, Vertex dest, E label) {
    Edge e = new Edge(orig, dest, label);
    edges.add(e);
    return e;
        \Theta(1)
}
```


Attempt 2: Linked Edge List

```
1 public void removeEdge(Edge<V,E> edge) {
2 edges.remove(edge);
3)
```

What's the complexity?

Attempt 2: Linked Edge List

```
1 public void removeEdge(Edge<V,E> edge) {
2 edges.remove(edge);
3}
```

What's the complexity?
We have to search for edge by value in an unsorted list! $\mathbf{O (m)}$

Attempt 2: Linked Edge List

```
1 public void removeEdge(Edge<V,E> edge) {
2 edges.remove(edge);
3
```

What's the complexity?
We have to search for edge by value in an unsorted list! $\mathbf{O (m)}$
Solution: What if we stored a reference to the node?

Attempt 2: Linked Edge List

```
    1 public class LinkedEdgeList<V,E> implements Graph<V,E> {
    2 List<Vertex> vertices = new CustomLinkedList<Vertex>();
        List<Edge> edges = new CustomLinkedList<Edge>();
        /*...*/
    5}
    1 public class Vertex<V,E> {
2 private Node<Vertex> node;
3
    4}
    public class Edge<V,E> {
    6 private Node<Edge> node;
7
        /*...*/
    8}

\section*{Attempt 2: Linked Edge List}
```

 1 public Vertex addVertex(V label) {
 2 Vertex v = new Vertex(label);
 Node<Vertex> node = vertices.add(v);
 v.node = node;
 return v;
 }
7
public Edge addEdge(Vertex orig, Vertex dest, E label) {
9 Edge e = new Edge(orig, dest, label);
10 Node<Edge> node = edges.add(e);
11 e.node = node;
12 return e;
13

```

\section*{Attempt 2: Linked Edge List}
```

 1 public Vertex addVertex(V label) {
 2 Vertex v = new Vertex(label);
Node<Vertex> node = vertices.add(v);
4 v.node = node;
5 \mp@code { r e t u r n ~ v ; }
6 }
7
8 public Edge addEdge(Vertex orig, Vertex dest, E label) {
9 Edge e = new Edge(orig, dest, label);
10 Node<Edge> node = edges.add(e);
1 1 ~ e . n o d e ~ = ~ n o d e ; ~
12 return e;
1 3
}

```

\section*{Attempt 2: Linked Edge List}
```

1 public void removeEdge(Edge edge) {
2 edges.remove(edge.node);
3)

```

What's the complexity?

\section*{Attempt 2: Linked Edge List}
```

1 public void removeEdge(Edge edge) {
2 edges.remove(edge.node);
3

```

What's the complexity? \(\boldsymbol{\Theta}(1)\)

\section*{Attempt 2: Linked Edge List}
```

1 public void removeVertex(Vertex vertex) {
2 vertices.remove(vertex.node);
3)

```

What's the complexity?

\section*{Attempt 2: Linked Edge List}
```

1 public void removeVertex(Vertex vertex) {
2 ~ v e r t i c e s . r e m o v e (v e r t e x . n o d e) ; ~
3}

```

What's the complexity? \(\boldsymbol{\Theta}(1)\)
What's the problem?

\section*{Attempt 2: Linked Edge List}
```

1 public void removeVertex(Vertex vertex) {
2 vertices.remove(vertex.node);
3

```

What's the complexity? \(\boldsymbol{\Theta}(1)\)
What's the problem? The removed vertex may be incident to edges, which now have an endpoint that is not in the graph!

\section*{Attempt 2: Linked Edge List}
```

1 public void removeVertex(Vertex vertex) {
2 for(edge : vertex.getIncidentEdges()) {
3 removeEdge(edge.node)
4 }
5 vertices.remove(vertex.node);
6 }

```

What's the complexity?

\section*{Attempt 2: Linked Edge List}
```

1 public void removeVertex(Vertex vertex)
2 for(edge : vertex.getIncidentEdges()) {
3 removeEdge(edge.node)
}
vertices.remove(vertex.node);
}

```

\section*{What's the complexity?}

\section*{Attempt 2: Linked Edge List}
```

1 public Iterator<Edge> getIncidentEdges(Vertex vertex) {
2 ArrayList<Edge> incidentEdges = new ArrayList<>();
for(edge : edges) {
if(edge.origin.equals(vertex) || edge.dest.equals(vertex)) {
incidentEdges.add(edge);
}
}
return incidentEdges.iterator();
9}

```

What is the complexity?

\section*{Attempt 2: Linked Edge List}

What is the complexity? \(\mathbf{O ( m )}\)

\section*{Attempt 2: Linked Edge List}
```

1 public void removeVertex(Vertex vertex)
2 for(edge : vertex.getIncidentEdges()) {
3 removeEdge(edge.node)
}
vertices.remove(vertex.node);
}

```

What's the complexity? \(\mathbf{O}(\boldsymbol{m})=\mathbf{O}\left(n^{2}\right)\)

\section*{Edge List Summary}
- addEdge, addVertex:
- removeEdge:
- removeVertex:
- vertex.incidentEdges:
- vertex.edgeTo:
- Space Used:

\section*{Edge List Summary}
- addEdge, addVertex: \(\mathbf{O ( 1 )}\)
- removeEdge: \(0(1)\)
- removeVertex: \(O(m)\)
- vertex.incidentEdges: 0 (m)
- vertex.edgeTo: \(0(m)\)
- Space Used: \(0(n)+0(m)\)

\section*{Edge List Summary}


Edge

LinkedList[Edge]


\section*{How can we improve?}

\section*{How can we improve?}

Idea: Store the in/out edges for each vertex!
(Called an adjacency list)```

