
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 18: Graph ADT and EdgeLists

mailto:epmikida@buffalo.edu

Announcements

● WA3 due on Sunday

2

Edge Types

Directed Edge (asymmetric relationship)

● Ordered pair of vertices (u, v)
● origin (u) →destination (v)

Undirected Edge (symmetric relationship)

● Unordered pair of vertices (u,v)

transmit bandwidth

round-trip latency

3

Edge Types

Directed Edge (asymmetric relationship)

● Ordered pair of vertices (u, v)
● origin (u) →destination (v)

Undirected Edge (symmetric relationship)

● Unordered pair of vertices (u,v)

Directed Graph: All edges are directed

Undirected Graph: All edges are undirected

transmit bandwidth

round-trip latency

4

Terminology

Endpoints of an edge
U, V are endpoints of a

Adjacent Vertices
U, V are adjacent

Degree of a vertex
X has degree 5

5

Terminology

Edges indecent on a vertex
a, b, d are incident on V

Parallel Edges
h, i are parallel

Self-Loop
j is a self-loop

Simple Graph
A graph without parallel edges or
self-loops

6

Terminology

Path
A sequence of alternating vertices
and edges
● begins with a vertex
● ends with a vertex
● each edge preceded/followed

by its endpoints

Simple Path
A path such that all of its vertices
and edges are distinct

7

Terminology

Path
A sequence of alternating vertices
and edges
● begins with a vertex
● ends with a vertex
● each edge preceded/followed

by its endpoints

Simple Path
A path such that all of its vertices
and edges are distinct

V, b, X, h, Z is simple

U, c, W, e, X, g, Y, f, W, d, V is not simple
8

Terminology

Cycle
A path the begins and ends with
the same vertex. Must contain at
least one edge

Simple Cycle
A cycle such that all of its
vertices and edges are distinct

9

Terminology

Cycle
A path the begins and ends with
the same vertex. Must contain at
least one edge

Simple Cycle
A cycle such that all of its
vertices and edges are distinct

V, b, X, g, Y, f, W, c, U, a, V is a
simple cycle

U, c, W, e, X, g, Y, f, W, d, V, a, U is a
cycle that is not simple 10

Notation

n The number of vertices

m The number of edges

deg(v) The degree of vertex v

11

Graph Properties

12

Graph Properties

Proof: Each edge is counted twice

13

Graph Properties

In a directed graph with no self-loops and no parallel edges:

m ≤ n (n - 1)

No parallel edges: each pair is connected at most once

No self-loops: pick each vertex only once

n choices for the first vertex; (n - 1) choices for the second vertex.
Therefore even if there was one edge between every possible pair, we still

have at most n(n - 1) edges

14

Graph Properties

In a directed graph with no self-loops and no parallel edges:

m ≤ n (n - 1)

No parallel edges: each pair is connected at most once

No self-loops: pick each vertex only once

n choices for the first vertex; (n - 1) choices for the second vertex.
Therefore even if there was one edge between every possible pair, we still

have at most n(n - 1) edges

15

Graph Properties

In a directed graph with no self-loops and no parallel edges:

m ≤ n (n - 1)

No parallel edges: each pair is connected at most once

No self-loops: pick each vertex only once

n choices for the first vertex; (n - 1) choices for the second vertex.
Therefore even if there was one edge between every possible pair, we still

have at most n(n - 1) edges

16

A (Directed) Graph ADT

Two type parameters (Graph[V,E])
V: The vertex label type
E: The edge label type

Vertices
…are elements
…store a value of type V

Edges
…are also elements
…store a value of type E

17

A (Directed) Graph ADT

What can we do with a Graph?

18

A (Directed) Graph ADT

What can we do with a Graph?

● Iterate through the vertices
● Iterate through the edges
● Add a vertex
● Add an edge
● Remove a vertex
● Remove an edge

19

A (Directed) Graph ADT

1

2

3

4

5

6

7

8

public interface Graph<V, E> {

 public Iterator<Vertex> vertices();

 public Iterator<Edge> edges();

 public Vertex addVertex(V label);

 public Edge addEdge(Vertex orig, Vertex dest, E label);

 public void removeVertex(Vertex vertex);

 public void removeEdge(Edge edge);

}

20

A (Directed) Graph ADT

What can we do with a Vertex?

21

A (Directed) Graph ADT

What can we do with a Vertex?
● Get it's label
● Get the outgoing edges
● Get the incoming edges
● Get all incident edges
● Check if it's adjacent to another Vertex

22

A (Directed) Graph ADT

What can we do with an Edge?
● Get it's label
● Get the incident vertices

23

A (Directed) Graph ADT

1

2

3

4

5

6

7

8

9

10

11

12

13

public interface Vertex<V,E> {

 public V getLabel();

 public Iterator<Edge> getOutEdges();

 public Iterator<Edge> getInEdges();

 public Iterator<Edge> getIncidentEdges();

 public boolean hasEdgeTo(Vertex v);

}

public interface Edge<V,E> {

 public Vertex getOrigin();

 public Vertex getDestination();

 public E getLabel();

} 24

Implementation Attempt 1: Edge List

Data Model:

A List of Edges
(ArrayList)

A List of Vertices
(ArrayList)

25

Implementation Attempt 1: Edge List

1

2

3

4

5

public class EdgeList<V,E> implements Graph<V,E> {

 List<Vertex> vertices = new ArrayList<Vertex>();

 List<Edge> edges = new ArrayList<Edge>();

 /*...*/

}

26

Implementation Attempt 1: Edge List

public Vertex addVertex(V label) {

 Vertex v = new Vertex(label);

 vertices.add(v);

 return v;

}

public Edge addEdge(Vertex orig, Vertex dest, E label) {

 Edge e = new Edge(orig, dest, label);

 edges.add(e);

 return e;

}

What's the complexity? 27

Implementation Attempt 1: Edge List

public Vertex addVertex(V label) {

 Vertex v = new Vertex(label);

 vertices.add(v);

 return v;

}

public Edge addEdge(Vertex orig, Vertex dest, E label) {

 Edge e = new Edge(orig, dest, label);

 edges.add(e);

 return e;

}

What's the complexity?

Amortized 𝚯(1)

Amortized 𝚯(1)

28

Implementation Attempt 1: Edge List

What's the complexity?

1

2

3

public void removeEdge(Edge edge) {

 edges.remove(edge);

}

29

Implementation Attempt 1: Edge List

What's the complexity?
We have to search for edge by value in an unsorted list! O(m)

1

2

3

public void removeEdge(Edge edge) {

 edges.remove(edge);

}

30

Attempt 2: Linked Edge List

Data Model:

A List of Edges
(LinkedList)

A List of Vertices
(LinkedList)

31

Attempt 2: Linked Edge List

1

2

3

4

5

public class LinkedEdgeList<V,E> implements Graph<V,E> {

 List<Vertex> vertices = new LinkedList<Vertex>();

 List<Edge> edges = new LinkedList<Edge>();

 /*...*/

}

32

Attempt 2: Linked Edge List

public Vertex addVertex(V label) {

 Vertex v = new Vertex(label);

 vertices.add(v);

 return v;

}

public Edge addEdge(Vertex orig, Vertex dest, E label) {

 Edge e = new Edge(orig, dest, label);

 edges.add(e);

 return e;

}

What's the complexity? 33

Attempt 2: Linked Edge List

public Vertex addVertex(V label) {

 Vertex v = new Vertex(label);

 vertices.add(v);

 return v;

}

public Edge addEdge(Vertex orig, Vertex dest, E label) {

 Edge e = new Edge(orig, dest, label);

 edges.add(e);

 return e;

}

What's the complexity?

𝚯(1)

𝚯(1)

34

Attempt 2: Linked Edge List

What's the complexity?

1

2

3

public void removeEdge(Edge<V,E> edge) {

 edges.remove(edge);

}

35

Attempt 2: Linked Edge List

What's the complexity?
We have to search for edge by value in an unsorted list! O(m)

1

2

3

public void removeEdge(Edge<V,E> edge) {

 edges.remove(edge);

}

36

Attempt 2: Linked Edge List

What's the complexity?
We have to search for edge by value in an unsorted list! O(m)

Solution: What if we stored a reference to the node?

1

2

3

public void removeEdge(Edge<V,E> edge) {

 edges.remove(edge);

}

37

Attempt 2: Linked Edge List

1

2

3

4

5

public class LinkedEdgeList<V,E> implements Graph<V,E> {

 List<Vertex> vertices = new CustomLinkedList<Vertex>();

 List<Edge> edges = new CustomLinkedList<Edge>();

 /*...*/

}

1

2

3

4

5

6

7

8

public class Vertex<V,E> {

 private Node<Vertex> node;

 /*...*/

}

public class Edge<V,E> {

 private Node<Edge> node;

 /*...*/

}
38

Attempt 2: Linked Edge List

1

2

3

4

5

6

7

8

9

10

11

12

13

public Vertex addVertex(V label) {

 Vertex v = new Vertex(label);

 Node<Vertex> node = vertices.add(v);

 v.node = node;

 return v;

}

public Edge addEdge(Vertex orig, Vertex dest, E label) {

 Edge e = new Edge(orig, dest, label);

 Node<Edge> node = edges.add(e);

 e.node = node;

 return e;

} 39

Attempt 2: Linked Edge List

1

2

3

4

5

6

7

8

9

10

11

12

13

public Vertex addVertex(V label) {

 Vertex v = new Vertex(label);

 Node<Vertex> node = vertices.add(v);

 v.node = node;

 return v;

}

public Edge addEdge(Vertex orig, Vertex dest, E label) {

 Edge e = new Edge(orig, dest, label);

 Node<Edge> node = edges.add(e);

 e.node = node;

 return e;

}

Both add methods still 𝚯(1)

40

Attempt 2: Linked Edge List

What's the complexity?

1

2

3

public void removeEdge(Edge edge) {

 edges.remove(edge.node);

}

41

Attempt 2: Linked Edge List

What's the complexity? 𝚯(1)

1

2

3

public void removeEdge(Edge edge) {

 edges.remove(edge.node);

}

42

Attempt 2: Linked Edge List

What's the complexity?

1

2

3

public void removeVertex(Vertex vertex) {

 vertices.remove(vertex.node);

}

43

Attempt 2: Linked Edge List

What's the complexity? 𝚯(1)

What's the problem?

1

2

3

public void removeVertex(Vertex vertex) {

 vertices.remove(vertex.node);

}

44

Attempt 2: Linked Edge List

What's the complexity? 𝚯(1)

What's the problem? The removed vertex may be incident to
edges, which now have an endpoint that is not in the graph!

1

2

3

public void removeVertex(Vertex vertex) {

 vertices.remove(vertex.node);

}

45

Attempt 2: Linked Edge List

What's the complexity?

1

2

3

4

5

6

public void removeVertex(Vertex vertex) {

 for(edge : vertex.getIncidentEdges()) {

 removeEdge(edge.node)

 }

 vertices.remove(vertex.node);

}

46

Attempt 2: Linked Edge List

What's the complexity?

1

2

3

4

5

6

public void removeVertex(Vertex vertex) {

 for(edge : vertex.getIncidentEdges()) {

 removeEdge(edge.node)

 }

 vertices.remove(vertex.node);

}

How do we get the incident edges
with our current model?

47

Attempt 2: Linked Edge List

What is the complexity?

48

1

2

3

4

5

6

7

8

9

public Iterator<Edge> getIncidentEdges(Vertex vertex) {

 ArrayList<Edge> incidentEdges = new ArrayList<>();

 for(edge : edges) {

 if(edge.origin.equals(vertex) || edge.dest.equals(vertex)) {

 incidentEdges.add(edge);

 }

 }

 return incidentEdges.iterator();

}

Attempt 2: Linked Edge List

What is the complexity? O(m)

49

1

2

3

4

5

6

7

8

9

public Iterator<Edge> getIncidentEdges(Vertex vertex) {

 ArrayList<Edge> incidentEdges = new ArrayList<>();

 for(edge : edges) {

 if(edge.origin.equals(vertex) || edge.dest.equals(vertex)) {

 incidentEdges.add(edge);

 }

 }

 return incidentEdges.iterator();

}

Attempt 2: Linked Edge List

What's the complexity? O(m) = O(n2)

1

2

3

4

5

6

public void removeVertex(Vertex vertex) {

 for(edge : vertex.getIncidentEdges()) {

 removeEdge(edge.node)

 }

 vertices.remove(vertex.node);

}

How do we get the incident edges
with our current model?

50

Edge List Summary

● addEdge, addVertex:
● removeEdge:
● removeVertex:
● vertex.incidentEdges:
● vertex.edgeTo:
● Space Used:

51

Edge List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(m)
● vertex.incidentEdges: O(m)
● vertex.edgeTo: O(m)
● Space Used: O(n) + O(m)

52

Edge List Summary

53

How can we improve?

54

How can we improve?

Idea: Store the in/out edges for each vertex!

(Called an adjacency list)

55

