
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 19: Adjacency Lists and DFS

mailto:epmikida@buffalo.edu

Announcements

● WA3 was due yesterday
○ Submissions today will have a 50% penalty (no grace days allowed)
○ Submissions close tonight at midnight

● PA2 released
○ Testing phase due Sunday 10/22
○ Implementation due Sunday 11/5

2

Edge List Summary

Graph

vertices: LinkedList<Vertex>
edges: LinkedList<Edge>

Vertex

label: T
node: LinkedListNode

Edge

label: T
vertex: origin
vertex: destination
node: LinkedListNode

Storing the list nodes in the
edges/vertices allows us to
remove by reference in 𝚯(1) time

3

Edge List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(m)
● vertex.incidentEdges: O(m)
● vertex.edgeTo: O(m)
● Space Used: O(n) + O(m)

4

Edge List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(m)
● vertex.incidentEdges: O(m)
● vertex.edgeTo: O(m)
● Space Used: O(n) + O(m)

← Involves checking every
edge in the graph

5

How can we improve?

6

How can we improve?

Idea: Store the in/out edges for each vertex!

(Called an adjacency list)

7

Adjacency List

Each vertex stores a list of inEdges and outEdges, which are maintained
as the graph is modified…

What functions need to change to maintain these lists?

8

1

2

3

4

5

6

public class Vertex<V,E> {

 public Node<Vertex> node;

 public List<Edge> inEdges = new CustomLinkedList<Edge>();

 public List<Edge> outEdges = new CustomLinkedList<Edge>();

 /*...*/

}

Adjacency List

What is the complexity of addEdge now?

9

1

2

3

4

5

6

7

public Edge addEdge(Vertex orig, Vertex dest, E label) {

 Edge e = new Edge(orig, dest, label);

 e.node = edges.add(e);

 orig.outEdges.add(e);

 dest.inEdges.add(e);

 return e;

}

← When we add an edge to the graph, also add
it to the appropriate adjacency lists

Adjacency List

What is the complexity of addEdge now? Still 𝚯(1)

10

1

2

3

4

5

6

7

public Edge addEdge(Vertex orig, Vertex dest, E label) {

 Edge e = new Edge(orig, dest, label);

 e.node = edges.add(e);

 orig.outEdges.add(e);

 dest.inEdges.add(e);

 return e;

}

← When we add an edge to the graph, also add
it to the appropriate adjacency lists

Adjacency List

What is the complexity of removeEdge now?

11

1

2

3

4

5

public void removeEdge(Edge edge) {

 edges.remove(edge.node);

 edge.orig.outEdges.remove(edge);

 edge.dest.inEdges.remove(edge);

}

← When we remove an edge from the graph,
also remove it from the adjacency lists

Adjacency List

What is the complexity of removeEdge now? O(deg(orig) + deg(dest)) :(

But how can we fix this?

12

1

2

3

4

5

public void removeEdge(Edge edge) {

 edges.remove(edge.node);

 edge.orig.outEdges.remove(edge);

 edge.dest.inEdges.remove(edge);

}

← When we remove an edge from the graph,
also remove it from the adjacency lists

Adjacency List

Each Edge now also stores a reference to the nodes in each adjacency list

13

1

2

3

4

5

6

public class Edge<V,E> {

 public Node<Edge> node;

 public Node<Edge> inNode;

 public Node<Edge> outNode;

 /*...*/

}

Adjacency List

What is the complexity of addEdge now? Still 𝚯(1)

14

1

2

3

4

5

6

7

public Edge addEdge(Vertex orig, Vertex dest, E label) {

 Edge e = new Edge(orig, dest, label);

 e.node = edges.add(e);

 e.outNode = orig.outEdges.add(e);

 e.inNode = dest.inEdges.add(e);

 return e;

}

← When we add an edge to the graph, also
add it to the appropriate adjacency lists AND
store the node refs in the Edge object

Adjacency List

What is the complexity of removeEdge now?

15

1

2

3

4

5

public void removeEdge(Edge edge) {

 edges.remove(edge.node);

 edge.orig.outEdges.remove(edge.outNode);

 edge.dest.inEdges.remove(edge.inNode);

}

← When we remove an edge from the
graph, also remove it from the
adjacency lists (remove by reference)

Adjacency List

What is the complexity of removeEdge now? 𝚯(1)

16

1

2

3

4

5

public void removeEdge(Edge edge) {

 edges.remove(edge.node);

 edge.orig.outEdges.remove(edge.outNode);

 edge.dest.inEdges.remove(edge.inNode);

}

← When we remove an edge from the
graph, also remove it from the
adjacency lists (remove by reference)

Adjacency List

So, we are able to store and maintain adjacency lists in each vertex while
still keeping a 𝚯(1) runtime for addVertex, addEdge, and removeEdge

How much extra space is used?

17

Adjacency List

So, we are able to store and maintain adjacency lists in each vertex while
still keeping a 𝚯(1) runtime for addVertex, addEdge, and removeEdge

How much extra space is used? 𝚯(1) per edge

Each edge only appears in 3 lists:
● The edge list
● One vertices inList
● One vertices outList

18

Adjacency List

So, we are able to store and maintain adjacency lists in each vertex while
still keeping a 𝚯(1) runtime for addVertex, addEdge, and removeEdge

How much extra space is used? 𝚯(1) per edge

Each edge only appears in 3 lists:
● The edge list
● One vertices inList
● One vertices outList

19

But now what have we gained?

Adjacency List

What is the complexity of removeVertex now?

20

1

2

3

4

5

6

public void removeVertex(Vertex v) {

 for(edge : v.getIncidentEdges()) {

 removeEdge(edge.node)

 }

 vertices.remove(v.node);

}

Adjacency List

What is the complexity of removeVertex now?

21

1

2

3

4

5

6

public void removeVertex(Vertex v) {

 for(edge : v.getIncidentEdges()) {

 𝚯(1)
 }

 𝚯(1)
}

Adjacency List

What is the complexity of removeVertex now?

22

1

2

3

4

5

6

public void removeVertex(Vertex v) {

 for(edge : v.getIncidentEdges()) {

 𝚯(1)
 }

 𝚯(1)
}

We now have a reference to the list of edges in 𝚯(1)
time, and there are deg(v) edge in the list

Adjacency List

What is the complexity of removeVertex now? 𝚯(deg(v))

23

1

2

3

4

5

6

public void removeVertex(Vertex v) {

 for(edge : v.getIncidentEdges()) {

 𝚯(1)
 }

 𝚯(1)
}

We now have a reference to the list of edges in 𝚯(1)
time, and there are deg(v) edge in the list

Adjacency List Summary

Graph

vertices: LinkedList[Vertex]
edges: LinkedList[Edge]

Vertex

label: T
node: LinkedListNode
inEdges: LinkedList[Edge]
outEdges: LinkedList[Edge]

Edge

label: T
node: LinkedListNode
inNode: LinkedListNode
outNode: LinkedListNode

Storing the list of incident edges in
the vertex saves us the time of
checking every edge in the graph.

The edge now stores additional nodes
to ensure removal is still 𝚯(1)

24

Adjacency List Summary

● addEdge, addVertex: 𝚯(1)
● removeEdge: 𝚯(1)
● removeVertex: 𝚯(deg(vertex))
● vertex.incidentEdges: 𝚯(deg(vertex))
● vertex.edgeTo: 𝚯(deg(vertex))
● Space Used: 𝚯(n) + 𝚯(m)

25

Adjacency List Summary

● addEdge, addVertex: 𝚯(1)
● removeEdge: 𝚯(1)
● removeVertex: 𝚯(deg(vertex))
● vertex.incidentEdges: 𝚯(deg(vertex))
● vertex.edgeTo: 𝚯(deg(vertex))
● Space Used: 𝚯(n) + 𝚯(m)

Now we already know what
edges are incident without
having to check them all

26

Adjacency Matrix

Destination

U V W

U - a -

V - - b

W c - -

O
rig

in

27

Adjacency Matrix Summary

● addEdge, removeEdge:
● addVertex, removeVertex:
● vertex.incidentEdges:
● vertex.edgeTo:
● Space Used:

28

Adjacency Matrix Summary

● addEdge, removeEdge: 𝚯(1)
● addVertex, removeVertex:
● vertex.incidentEdges:
● vertex.edgeTo:
● Space Used:

Just change a single entry of the matrix

29

Adjacency Matrix Summary

● addEdge, removeEdge: 𝚯(1)
● addVertex, removeVertex: 𝚯(n2)
● vertex.incidentEdges:
● vertex.edgeTo:
● Space Used:

Resize and copy the
whole matrix

30

Adjacency Matrix Summary

● addEdge, removeEdge: 𝚯(1)
● addVertex, removeVertex: 𝚯(n2)
● vertex.incidentEdges: 𝚯(n)
● vertex.edgeTo:
● Space Used:

Check the row and
column for that vertex

31

Adjacency Matrix Summary

● addEdge, removeEdge: 𝚯(1)
● addVertex, removeVertex: 𝚯(n2)
● vertex.incidentEdges: 𝚯(n)
● vertex.edgeTo: 𝚯(1)
● Space Used:

Check a single entry of the matrix

32

Adjacency Matrix Summary

● addEdge, removeEdge: 𝚯(1)
● addVertex, removeVertex: 𝚯(n2)
● vertex.incidentEdges: 𝚯(n)
● vertex.edgeTo: 𝚯(1)
● Space Used: 𝚯(n2)

How does this relate to space of
edge/adjacency lists? 33

Adjacency Matrix Summary

● addEdge, removeEdge: 𝚯(1)
● addVertex, removeVertex: 𝚯(n2)
● vertex.incidentEdges: 𝚯(n)
● vertex.edgeTo: 𝚯(1)
● Space Used: 𝚯(n2)

How does this relate to space of
edge/adjacency lists? If the matrix is "dense" it's about the same 34

So…what do we do with our graphs?

35

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

36

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

37

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

38

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

39

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

40

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

41

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G…
Is a subgraph of G
Contains all of G's vertices

42

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G…
Is a subgraph of G
Contains all of G's vertices

Subgraph of G

43

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G…
Is a subgraph of G
Contains all of G's vertices

Spanning Subgraph of G44

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

45

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

46

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

Disconnected graph

47

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

Disconnected graph

48

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

Disconnected graph

2 connected
components 49

A few more definitions

A free tree is an undirected graph T such that…
There is exactly one simple path between any two nodes
● T is connected
● T has no cycles

A rooted tree is a directed graph T such that…
One vertex of T is the root
There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) forest is a graph F such that…
Every connected component is a tree

50

A few more definitions

A free tree is an undirected graph T such that…
There is exactly one simple path between any two nodes
● T is connected
● T has no cycles

A rooted tree is a directed graph T such that…
One vertex of T is the root
There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) forest is a graph F such that…
Every connected component is a tree

51

A few more definitions

A free tree is an undirected graph T such that…
There is exactly one simple path between any two nodes
● T is connected
● T has no cycles

A rooted tree is a directed graph T such that…
One vertex of T is the root
There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) forest is a graph F such that…
Every connected component is a tree

52

A few more definitions

A spanning tree of a connected graph…
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

Graph G

53

A few more definitions

A spanning tree of a connected graph…
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

A Spanning Tree of G

Graph G

54

A few more definitions

A spanning tree of a connected graph…
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

Graph G

A Spanning Tree of G Another Spanning Tree of G

55

Now back to the question…Connectivity

56

How could we represent our maze as a graph?

Back to Mazes

O 1 2 3 4

1 ∞ ∞ ∞ 5

2 ∞ X ∞ 6

4 5 6 9 8

3 ∞ 7 ∞ 7

57

Back to Mazes

O 1 2 3 4

1 ∞ ∞ ∞ 5

2 ∞ X ∞ 6

4 5 6 9 8

3 ∞ 7 ∞ 7

O

X

How could we represent our maze as a graph?

58

Recall

Searching the maze with a stack
We try every path, one at a time, following it as far as we can
…then backtrack and try another

59

Recall

Searching the maze with a stack (Depth-First Search)
We try every path, one at a time, following it as far as we can
…then backtrack and try another

60

Recall

Searching the maze with a stack (Depth-First Search)
We try every path, one at a time, following it as far as we can
…then backtrack and try another

Searching with a queue?
TBD…

61

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

62

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components

63

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices

64

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected

65

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected
○ Side Effect: Identify cycles

66

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected
○ Side Effect: Identify cycles

● Complete in time O(|V| + |E|)

67

Depth-First Search

DFS
Input: Graph G = (V,E)
Output: Label every edge as:
● Spanning Edge: Part of the spanning tree
● Back Edge: Part of a cycle

DFSOne
Input: Graph G = (V,E), start vertex v ∈ V
Output: Label every edge in v's connected component

68

Depth-First Search

DFS
Input: Graph G = (V,E)
Output: Label every edge as:
● Spanning Edge: Part of the spanning tree
● Back Edge: Part of a cycle

DFSOne
Input: Graph G = (V,E), start vertex v ∈ V
Output: Label every edge in v's connected component

69

Depth-First Search

70

Depth-First Search

✓

71

Depth-First Search

✓

72

Depth-First Search

✓

✓

73

Depth-First Search

✓

✓

74

Depth-First Search

✓

✓

✓

75

Depth-First Search

✓

✓

✓

76

Depth-First Search

✓ ✓

✓

✓

77

Depth-First Search

✓ ✓

✓

✓

78

Depth-First Search

✓ ✓

✓

✓

✓

79

DFS

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFS(Graph graph) {

 for (Vertex v : graph.vertices) {

 v.setLabel(UNEXPLORED);

 }

 for (Edge e : graph.edges) {

 e.setLabel(UNEXPLORED);

 }

 for (Vertex v : graph.vertices) {

 if (v.label == UNEXPLORED) {

 DFSOne(graph, v);

 }

 }

} 80

DFS

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFS(Graph graph) {

 for (Vertex v : graph.vertices) {

 v.setLabel(UNEXPLORED);

 }

 for (Edge e : graph.edges) {

 e.setLabel(UNEXPLORED);

 }

 for (Vertex v : graph.vertices) {

 if (v.label == UNEXPLORED) {

 DFSOne(graph, v);

 }

 }

} 81

Initialize all vertices and edges to
UNEXPLORED

DFS

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFS(Graph graph) {

 for (Vertex v : graph.vertices) {

 v.setLabel(UNEXPLORED);

 }

 for (Edge e : graph.edges) {

 e.setLabel(UNEXPLORED);

 }

 for (Vertex v : graph.vertices) {

 if (v.label == UNEXPLORED) {

 DFSOne(graph, v);

 }

 }

} 82

Call DFSOne to label the connected
component of every unexplored
vertex

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 83

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 84

← Mark the vertex as VISITED (so we'll never try to visit it again)

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 85

Check every outgoing edge (every possible
way we could leave the current vertex)

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 86

Follow the unexplored edges

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 87

If it leads to an unexplored vertex, then it is a
spanning edge. Recursively explore that vertex.

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 88

Otherwise, we just found a cycle

Detailed Example

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)

A

B

C

D
E

89

Detailed Example

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)

A

B

C

D
E

90

Detailed Example

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A)

A

B

C

D
E

91

Detailed Example

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)

A

B

C

D
E

92

Detailed Example

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)

A

B

C

D
E

93

Detailed Example

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)

A

B

C

D
E

94

Detailed Example

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)

A

B

C

D
E

95

Detailed Example

✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

96

Detailed Example

✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

97

Detailed Example

✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

98

Detailed Example

✓ ✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)
DFSOne(G,D) (→ A, C)

A

B

C

D
E

99

Detailed Example

✓ ✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)
DFSOne(G,D) (→ A, C)

A

B

C

D
E

100

Detailed Example

✓ ✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

101

Detailed Example

✓ ✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

102

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)
DFSOne(G,E) (→ A, C)

A

B

C

D
E

103

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)
DFSOne(G,E) (→ A, C)

A

B

C

D
E

104

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

105

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)

A

B

C

D
E

106

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)

A

B

C

D
E

107

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,B)

A

B

C

D
E

108

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,C)

A

B

C

D
E

109

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,D)

A

B

C

D
E

110

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,E)

A

B

C

D
E

111

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)

A

B

C

D
E

112

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)

A

B

C

D
E

113

DFS vs Mazes

The DFS algorithm is like our stack-based maze solver (kind of)
● Mark each grid square with VISITED as we explore it
● Mark each path with SPANNING or BACK
● Only visit each vertex once (this differs from our maze search)

○ DFS will not necessarily find the shortest paths

114

DFS vs Mazes

The DFS algorithm is like our stack-based maze solver (kind of)
● Mark each grid square with VISITED as we explore it
● Mark each path with SPANNING or BACK
● Only visit each vertex once (this differs from our maze search)

○ DFS will not necessarily find the shortest paths

115

Depth-First Search Complexity

What's the complexity?

116

DFS

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFS(Graph graph) {

 for (Vertex v : graph.vertices) {

 v.setLabel(UNEXPLORED);

 }

 for (Edge e : graph.edges) {

 e.setLabel(UNEXPLORED);

 }

 for (Vertex v : graph.vertices) {

 if (v.label == UNEXPLORED) {

 DFSOne(graph, v);

 }

 }

} 117

DFS

1

2

3

4

5

6

7

8

9

10

11

public void DFS(Graph graph) {

 𝚯(|V|)
 for (Edge e : graph.edges) {

 e.setLabel(UNEXPLORED);

 }

 for (Vertex v : graph.vertices) {

 if (v.label == UNEXPLORED) {

 DFSOne(graph, v);

 }

 }

}

118

DFS

1

2

3

4

5

6

7

8

9

public void DFS(Graph graph) {

 𝚯(|V|)
 𝚯(|E|)
 for (Vertex v : graph.vertices) {

 if (v.label == UNEXPLORED) {

 DFSOne(graph, v);

 }

 }

}

119

DFS

1

2

3

4

5

6

7

8

9

public void DFS(Graph graph) {

 𝚯(|V|)
 𝚯(|E|)
 for (Vertex v : graph.vertices) {

 if (v.label == UNEXPLORED) {

 𝚯(???)
 }

 }

}

120

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 121

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 𝚯(1)
 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 𝚯(1)
 if (w.label == UNEXPLORED) {

 𝚯(1)
 𝚯(???)
 } else {

 𝚯(1)
 }

 }

}} 122

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

123

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

124

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

125

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls?

126

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 𝚯(1)
 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 𝚯(1)
 if (w.label == UNEXPLORED) {

 𝚯(1)
 𝚯(???)
 } else {

 𝚯(1)
 }

 }

}} 127

DFSOne

1

2

3

4

5

6

public void DFSOne(Graph graph, Vertex v) {

 𝚯(1)
 for (Edge e : v.outEdges) {

 𝚯(1)
 }

}

128

DFSOne

1

2

3

4

public void DFSOne(Graph graph, Vertex v) {

 𝚯(1)
 𝚯(deg(v))
}

129

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls?

130

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls? O(deg(v))

131

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

132

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

133

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

134

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

135

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

136

Depth-First Search Complexity

In summary…

137

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED

138

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)

139

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED

140

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)

141

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop

142

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|) iterations

143

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|) iterations
4. All calls to DFSOne

144

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|) iterations
4. All calls to DFSOne O(|E|) total

145

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|) iterations
4. All calls to DFSOne O(|E|) total

 O(|V| + |E|)

146

