CSE 250 Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Lec 19: Adjacency Lists and DFS

Announcements

- WA3 was due yesterday
 - Submissions today will have a 50% penalty (no grace days allowed)
 - Submissions close tonight at midnight
- PA2 released
 - Testing phase due Sunday 10/22
 - Implementation due Sunday 11/5

Edge List Summary

<u>Graph</u>

vertices: LinkedList<Vertex> edges: LinkedList<Edge>

<u>Vertex</u>

Storing the list nodes in the edges/vertices allows us to remove by reference in $\Theta(1)$ time

<u>Edge</u>

label: T vertex: origin vertex: destination node: LinkedListNode

Edge List Summary

- addEdge, addVertex: O(1)
- removeEdge: O(1)
- removeVertex: O(m)
- vertex.incidentEdges: O(m)
- vertex.edgeTo: O(m)
- Space Used: *O*(*n*) + *O*(*m*)

Edge List Summary

- addEdge, addVertex: O(1)
- removeEdge: O(1)
- removeVertex: O(m)
- vertex.incidentEdges: O(m) __
- vertex.edgeTo: O(m)

 Involves checking every edge in the graph

• Space Used: O(n) + O(m)

How can we improve?

How can we improve?

Idea: Store the in/out edges for each vertex!

(Called an adjacency list)

```
1 public class Vertex<V,E> {
2    public Node<Vertex> node;
3    public List<Edge> inEdges = new CustomLinkedList<Edge>();
4    public List<Edge> outEdges = new CustomLinkedList<Edge>();
5    /*...*/
6 }
```

Each vertex stores a list of **inEdges** and **outEdges**, which are maintained as the graph is modified...

What functions need to change to maintain these lists?

```
1 public Edge addEdge(Vertex orig, Vertex dest, E label) {
2 Edge e = new Edge(orig, dest, label);
3 e.node = edges.add(e);
4 orig.outEdges.add(e);
5 dest.inEdges.add(e);
6 return e;
7 }
```

What is the complexity of addEdge now?

```
1 public Edge addEdge(Vertex orig, Vertex dest, E label) {
2 Edge e = new Edge(orig, dest, label);
3 e.node = edges.add(e);
4 orig.outEdges.add(e);
4 dest.inEdges.add(e);
5 dest.inEdges.add(e);
6 return e;
7 }
```

What is the complexity of addEdge now? Still $\Theta(1)$

1	<pre>public void removeEdge(Edge edge) {</pre>
2	edges.remove(edge.node);
3	edge.orig.outEdges.remove(edge); \leftarrow When we remove an edge from the graph.
4	edge.dest.inEdges.remove(edge); also remove it from the adjacency lists
5	}

What is the complexity of **removeEdge** now?

1	<pre>public void removeEdge(Edge edge)</pre>	{
2	edges.remove(edge.node);	
3	<pre>edge.orig.outEdges.remove(edge);</pre>	\leftarrow When we remove an edge from the graph.
4	<pre>edge.dest.inEdges.remove(edge);</pre>	also remove it from the adjacency lists
5	}	

What is the complexity of removeEdge now? O(deg(orig) + deg(dest)) :(

But how can we fix this?

1	<pre>public class Edge<v,e> {</v,e></pre>
2	<pre>public Node<edge> node;</edge></pre>
3	<pre>public Node<edge> inNode;</edge></pre>
4	<pre>public Node<edge> outNode;</edge></pre>
5	/**/
6	}

Each Edge now also stores a reference to the nodes in each adjacency list

1 public Edge addEdge(Vertex orig, Vertex dest, E label) {
2 Edge e = new Edge(orig, dest, label);
3 e.node = edges.add(e);
4 e.outNode = orig.outEdges.add(e);
5 e.inNode = dest.inEdges.add(e);
6 return e;
7 }

What is the complexity of addEdge now? Still $\Theta(1)$

1	<pre>public void removeEdge(Edge edge) {</pre>
2	edges.remove(edge.node);
3	edge.orig.outEdges.remove(edge.outNode); \leftarrow When we remove an edge from the
4	edge.dest.inEdges.remove(edge.inNode); graph, also remove it from the
5	} adjacency lists (remove by reference)

What is the complexity of **removeEdge** now?

1	<pre>public void removeEdge(Edge edge) {</pre>
2	edges.remove(edge.node);
3	edge.orig.outEdges.remove(edge.outNode); \leftarrow When we remove an edge from the
4	edge.dest.inEdges.remove(edge.inNode); graph, also remove it from the
5	} adjacency lists (remove by reference)

What is the complexity of **removeEdge** now? $\Theta(1)$

So, we are able to store and maintain adjacency lists in each vertex while still keeping a $\Theta(1)$ runtime for addVertex, addEdge, and removeEdge

How much extra space is used?

So, we are able to store and maintain adjacency lists in each vertex while still keeping a $\Theta(1)$ runtime for addVertex, addEdge, and removeEdge

How much extra space is used? $\Theta(1)$ per edge

Each edge only appears in 3 lists:

- The edge list
- One vertices inList
- One vertices outList

So, we are able to store and maintain adjacency lists in each vertex while still keeping a $\Theta(1)$ runtime for addVertex, addEdge, and removeEdge

How much extra space is used? $\Theta(1)$ per edge

Each edge only appears in 3 lists:

- The edge list
- One vertices inList
- One vertices outList

But now what have we gained?

```
1 public void removeVertex(Vertex v) {
2 for(edge : v.getIncidentEdges()) {
3 removeEdge(edge.node)
4 }
5 vertices.remove(v.node);
6 }
```

What is the complexity of **removeVertex** now?

```
1 public void removeVertex(Vertex v) {
2 for(edge : v.getIncidentEdges()) {
3 0(1)
4 }
5 0(1)
6 }
```

What is the complexity of **removeVertex** now?

What is the complexity of **removeVertex** now?

What is the complexity of **removeVertex** now? $\Theta(deg(v))$

Adjacency List Summary

Graph Vertex vertices: LinkedList[Vertex] label: LinkedListNode edges: LinkedList[Edge] node: inEdges: LinkedList[Edge] outEdges: LinkedList[Edge] Storing the list of incident edges in Edge the vertex saves us the time of checking every edge in the graph. label: node: LinkedListNode

inNode:

outNode:

LinkedListNode

LinkedListNode

The edge now stores additional nodes to ensure removal is still $\Theta(1)$

Adjacency List Summary

- addEdge, addVertex: $\Theta(1)$
- removeEdge: $\Theta(1)$
- removeVertex:
 (deg(vertex))
- vertex.incidentEdges: $\Theta(deg(vertex))$
- vertex.edgeTo: Θ(deg(vertex))
- Space Used: $\Theta(n) + \Theta(m)$

Adjacency List Summary

- addEdge, addVertex: $\Theta(1)$
- removeEdge: $\Theta(1)$
- removeVertex: $\Theta(deg(vertex))$
- vertex.incidentEdges: @(deg(vertex))
- vertex.edgeTo: Θ(deg(vertex))
- Space Used: $\Theta(n) + \Theta(m)$

Now we already know what edges are incident without having to check them all

Adjacency Matrix

- addEdge, removeEdge:
- addVertex, removeVertex:
- vertex.incidentEdges:
- vertex.edgeTo:
- Space Used:

Just change a single entry of the matrix

- addEdge, removeEdge: ⊖(1)
- addVertex, removeVertex:
- vertex.incidentEdges:
- vertex.edgeTo:
- Space Used:

- addEdge, removeEdge: $\Theta(1)$
- addVertex, removeVertex: $\Theta(n^2)$
- vertex.incidentEdges:
- vertex.edgeTo:
- Space Used:

Resize and copy the whole matrix

- addEdge, removeEdge: Θ(1)
- addVertex, removeVertex: $\Theta(n^2)$
- vertex.incidentEdges: $\Theta(n)$
- vertex.edgeTo:
- Space Used:

Check the row and column for that vertex

- addEdge, removeEdge: ⊖(1)
- addVertex, removeVertex: $\Theta(n^2)$
- vertex.incidentEdges: $\Theta(n)$
- vertex.edgeTo: $\Theta(1)$
- Space Used:

Check a single entry of the matrix

- addEdge, removeEdge: ⊖(1)
- addVertex, removeVertex: $\Theta(n^2)$
- vertex.incidentEdges: $\Theta(n)$
- vertex.edgeTo: $\Theta(1)$
- Space Used: $\Theta(n^2)$

How does this relate to space of edge/adjacency lists?

- addEdge, removeEdge: ⊖(1)
- addVertex, removeVertex: $\Theta(n^2)$
- vertex.incidentEdges: $\Theta(n)$
- vertex.edgeTo: $\Theta(1)$
- Space Used: $\Theta(n^2)$

How does this relate to space of

edge/adjacency lists? If the matrix is "dense" it's about the same

So...what do we do with our graphs?

Connectivity Problems

Given graph G:
Given graph **G**:

• Is vertex *u* adjacent to vertex *v*?

Given graph **G**:

- Is vertex *u* adjacent to vertex *v*?
- Is vertex *u* connected to vertex *v* via some path?

Given graph **G**:

- Is vertex *u* adjacent to vertex *v*?
- Is vertex *u* connected to vertex *v* via some path?
- Which vertices are **connected** to vertex **v**?

Given graph **G**:

- Is vertex *u* adjacent to vertex *v*?
- Is vertex *u* connected to vertex *v* via some path?
- Which vertices are **connected** to vertex **v**?
- What is the **shortest path** from vertex **u** to vertex **v**?

A <u>subgraph</u>, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A <u>subgraph</u>, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A <u>spanning subgraph</u> of *G*... Is a subgraph of *G* Contains all of *G*'s vertices

A **<u>subgraph</u>**, *S*, of a graph *G* is a graph where: S's vertices are a subset of G's vertices **S**'s edges are a subset of **G**'s edges

A **spanning subgraph** of **G**... Is a subgraph of **G** Contains all of **G**'s vertices

A <u>subgraph</u>, *S*, of a graph *G* is a graph where: *S*'s vertices are a subset of *G*'s vertices *S*'s edges are a subset of *G*'s edges

A <u>spanning subgraph</u> of *G*... Is a subgraph of *G* Contains all of *G*'s vertices

A graph is **<u>connected</u>**...

If there is a path between every pair of vertices

A graph is **<u>connected</u>**...

If there is a path between every pair of vertices

A graph is **<u>connected</u>**...

If there is a path between every pair of vertices

A graph is **connected**...

If there is a path between every pair of vertices

A connected component of G...

Is a maximal connected subgraph of **G**

- "maximal" means you can't add a new vertex without breaking the property
- Any subset of **G**'s edges that connect the subgraph are fine

A graph is **<u>connected</u>**...

If there is a path between every pair of vertices

A connected component of G...

Is a maximal connected subgraph of **G**

- "maximal" means you can't add a new vertex without breaking the property
- Any subset of **G**'s edges that connect the subgraph are fine

A **free tree** is an undirected graph **T** such that...

There is exactly one simple path between any two nodes

- **T** is connected
- **T** has no cycles

A **free tree** is an undirected graph **T** such that...

There is exactly one simple path between any two nodes

- **T** is connected
- **T** has no cycles

A **rooted tree** is a directed graph **T** such that...

One vertex of **T** is the **<u>root</u>**

There is exactly one simple path from the root to every other vertex in the graph

A **free tree** is an undirected graph **T** such that...

There is exactly one simple path between any two nodes

- **T** is connected
- **T** has no cycles

A **rooted tree** is a directed graph **T** such that...

One vertex of **T** is the **<u>root</u>**

There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) **forest** is a graph **F** such that... Every connected component is a tree

A **<u>spanning tree</u>** of a connected graph...

- ... Is a spanning subgraph that is a tree
- ... It is not unique unless the graph is a tree

A **spanning tree** of a connected graph... ...Is a spanning subgraph that is a tree ...It is not unique unless the graph is a tree

A <u>spanning tree</u> of a connected graph... ...Is a spanning subgraph that is a tree ...It is not unique unless the graph is a tree

Now back to the question...Connectivity

Back to Mazes

How could we represent our maze as a graph?

Back to Mazes

How could we represent our maze as a graph?

Recall

Searching the maze with a stack

We try every path, one at a time, following it as far as we can ...then backtrack and try another

Recall

Searching the maze with a stack (Depth-First Search)

We try every path, one at a time, following it as far as we can ...then backtrack and try another

Recall

Searching the maze with a stack (Depth-First Search)

We try every path, one at a time, following it as far as we can ...then backtrack and try another

Searching with a queue?

TBD...

- Visit every vertex in graph **G** = (V,E)
- Construct a spanning tree for every connected component

- Visit every vertex in graph **G** = (V,E)
- Construct a spanning tree for every connected component
 - Side Effect: Compute connected components

- Visit every vertex in graph **G** = (V,E)
- Construct a spanning tree for every connected component
 - Side Effect: Compute connected components
 - Side Effect: Compute a path between all connected vertices

- Visit every vertex in graph **G** = (V,E)
- Construct a spanning tree for every connected component
 - Side Effect: Compute connected components
 - Side Effect: Compute a path between all connected vertices
 - Side Effect: Determine if the graph is connected

- Visit every vertex in graph **G** = (V,E)
- Construct a spanning tree for every connected component
 - Side Effect: Compute connected components
 - Side Effect: Compute a path between all connected vertices
 - Side Effect: Determine if the graph is connected
 - Side Effect: Identify cycles

- Visit every vertex in graph **G** = (V,E)
- Construct a spanning tree for every connected component
 - Side Effect: Compute connected components
 - Side Effect: Compute a path between all connected vertices
 - Side Effect: Determine if the graph is connected
 - Side Effect: Identify cycles
- Complete in time **O(|V| + |E|)**

DFS

Input: Graph G = (V,E)

Output: Label every edge as:

- <u>Spanning Edge</u>: Part of the spanning tree
- Back Edge: Part of a cycle

DFS

Input: Graph G = (V,E)

Output: Label every edge as:

- <u>Spanning Edge</u>: Part of the spanning tree
- <u>Back Edge</u>: Part of a cycle

DFSOne

Input: Graph G = (V, E), start vertex $v \in V$

Output: Label every edge in **v**'s connected component


```
public void DFS(Graph graph) {
 1
     for (Vertex v : graph.vertices) {
 2
 3
       v.setLabel(UNEXPLORED);
4
     }
 5
     for (Edge e : graph.edges) {
       e.setLabel(UNEXPLORED);
6
 7
     }
8
     for (Vertex v : graph.vertices) {
9
       if (v.label == UNEXPLORED) {
10
         DFSOne(graph, v);
11
12
13
```



```
public void DFS(Graph graph) {
     for (Vertex v : graph.vertices) {
 2
       v.setLabel(UNEXPLORED);
 3
                                          Initialize all vertices and edges to
4
                                          UNEXPLORED
 5
    for (Edge e : graph.edges) {
       e.setLabel(UNEXPLORED);
 6
 7
8
     for (Vertex v : graph.vertices) {
9
       if (v.label == UNEXPLORED) {
10
         DFSOne(graph, v);
11
12
13
                                                                              81
```



```
public void DFS(Graph graph) {
     for (Vertex v : graph.vertices) {
 2
 3
       v.setLabel(UNEXPLORED);
4
 5
     for (Edge e : graph.edges) {
6
       e.setLabel(UNEXPLORED);
7
8
    for (Vertex v : graph.vertices) {
                                         Call DFSOne to label the connected
       if (v.label == UNEXPLORED) {
9
                                         component of every unexplored
10
         DFSOne(graph, v);
                                         vertex
11
12
13
                                                                             82
```

```
public void DFSOne(Graph graph, Vertex v) {
 1
     v.setLabel(VISITED);
 2
 3
     for (Edge e : v.outEdges) {
4
       if (e.label == UNEXPLORED) {
 5
         Vertex w = e.to;
         if (w.label == UNEXPLORED) {
 6
 7
           e.setLabel(SPANNING);
8
           DFSOne(graph, w);
9
         } else {
           e.setLabel(BACK);
10
11
12
13|\}
```

```
public void DFSOne(Graph graph, Vertex v) {
 1
     v.setLabel(VISITED); \leftarrow Mark the vertex as VISITED (so we'll never try to visit it again)
 2
 3
     for (Edge e : v.outEdges) {
       if (e.label == UNEXPLORED) {
4
 5
          Vertex w = e.to;
          if (w.label == UNEXPLORED) {
 6
 7
            e.setLabel(SPANNING);
8
            DFSOne(graph, w);
9
          } else {
10
            e.setLabel(BACK);
11
12
13
   }}
```

1	<pre>public void DFSOne(Graph graph, Vert</pre>	ex v) {
2	v.setLabel(VISITED);	
3	<pre>for (Edge e : v.outEdges) {</pre>	
4	<pre>if (e.label == UNEXPLORED) {</pre>	Check every outgoi
5	Vertex w = e.to;	way we could leave
6	<pre>if (w.label == UNEXPLORED) {</pre>	
7	e.setLabel(SPANNING);	
8	<pre>DFSOne(graph, w);</pre>	
9	} else {	
10	<pre>e.setLabel(BACK);</pre>	
11	}	
12	}	
13	}}	

Check every outgoing edge (every possible way we could leave the current vertex)

1	publi	c void DFSOne (Graph graph, Vert	ex v) {
2	V.S	etLabel(VISITED);	
3	for	(Edge e : v.outEdges) {	
4	i	f (e.label == UNEXPLORED) {	
5		Vertex w = e.to;	Follow the unexplored edges
6		<pre>if (w.label == UNEXPLORED) {</pre>	
7		<pre>e.setLabel(SPANNING);</pre>	
8		<pre>DFSOne(graph, w);</pre>	
9		<pre>} else {</pre>	
10		<pre>e.setLabel(BACK);</pre>	
11		}	
12	}		
13	}}		

```
public void DFSOne(Graph graph, Vertex v) {
     v.setLabel(VISITED);
 2
 3
     for (Edge e : v.outEdges) {
       if (e.label == UNEXPLORED) {
4
 5
         Vertex w = e.to;
 6
          if (w.label == UNEXPLORED) {
            e.setLabel(SPANNING);
 7
                                       If it leads to an unexplored vertex, then it is a
8
            DFSOne(graph, w);
                                       spanning edge. Recursively explore that vertex.
9
          } else {
10
            e.setLabel(BACK);
11
12
13
   }}
```

```
public void DFSOne(Graph graph, Vertex v) {
 1
     v.setLabel(VISITED);
 2
 3
     for (Edge e : v.outEdges) {
4
       if (e.label == UNEXPLORED) {
 5
         Vertex w = e.to;
         if (w.label == UNEXPLORED) {
 6
 7
           e.setLabel(SPANNING);
8
           DFSOne(graph, w);
9
         } else {
           e.setLabel(BACK);
10
                                Otherwise, we just found a cycle
11
12
13
  }}
```


	UNEXPLORED			A
	VISITED			
	UNEXPLORED			
	SPANNING	<u>Call Stack</u> DFS(G)	$(\rightarrow edges to list)$	∪ c
1	ВАСК	DFSOne(G,A) DFSOne(G,B) DFSOne(G,C)	$(\rightarrow B, C, D)$ $(\rightarrow A, C)$ $(\rightarrow B, A, D, E)$	

	UNEXPLORED			A
	VISITED			
	UNEXPLORED			
	SPANNING	<u>Call Stack</u> DFS(G)	$(\rightarrow \text{edges to list})$	C
1	ВАСК	DFSOne(G,A) DFSOne(G,B) DFSOne(G,C)	$(\rightarrow B, C, D)$ $(\rightarrow A, C)$ $(\rightarrow B, A, D, E)$	

	UNEXPLORED			A
	VISITED			
	UNEXPLORED			
	SPANNING	<u>Call Stack</u> DFS(G)	$(\rightarrow \text{edges to list})$	C
-	ВАСК	DFSOne(G,A) DFSOne(G,B) DFSOne(G,C)	$(\rightarrow B, C, D)$ $(\rightarrow A, C)$ $(\rightarrow B, A, D, E)$	

	UNEXPLORED			A
	VISITED			
	UNEXPLORED			
	SPANNING	<u>Call Stack</u> DFS(G)	$(\rightarrow edges to list)$	C
-	BACK	DFSOne(G,A) DFSOne(G,B) DFSOne(G,C) DFSOne(G,D)	$(\rightarrow B, C, D)$ $(\rightarrow A, C)$ $(\rightarrow B, A, D, E)$ $(\rightarrow A, C)$	

	UNEXPLORED			A
	VISITED			
	UNEXPLORED			
	SPANNING	<u>Call Stack</u> DFS(G)	$(\rightarrow \text{edges to list})$	C
-	BACK	DFSOne(G,A) DFSOne(G,B) DFSOne(G,C) DFSOne(G,D)	$(\rightarrow B, C, D)$ $(\rightarrow A, C)$ $(\rightarrow B, A, D, E)$ $(\rightarrow A, C)$	

	UNEXPLORED			A
	VISITED			
	UNEXPLORED			
	SPANNING	<u>Call Stack</u> DFS(G)	$(\rightarrow edges to list)$	⊂ c
1	ВАСК	DFSOne(G,A) DFSOne(G,B) DFSOne(G,C)	$(\rightarrow B, C, D)$ $(\rightarrow A, C)$ $(\rightarrow B, A, D, E)$	

	UNEXPLORED			A
	VISITED			
	UNEXPLORED			
	SPANNING	<u>Call Stack</u> DFS(G)	$(\rightarrow edges to list)$	⊂ C
1	ВАСК	DFSOne(G,A) DFSOne(G,B) DFSOne(G,C)	$(\rightarrow B, C, D)$ $(\rightarrow A, C)$ $(\rightarrow B, A, D, E)$	

	UNEXPLORED			A
	VISITED			
	UNEXPLORED			
	SPANNING	<u>Call Stack</u> DFS(G)	$(\rightarrow edges to list)$	C
-	ВАСК	DFSOne(G,A) DFSOne(G,B) DFSOne(G,C) DFSOne(G,E)	$(\rightarrow B, C, D)$ $(\rightarrow A, C)$ $(\rightarrow B, A, D, E)$ $(\rightarrow A, C)$	

	UNEXPLORED			A
	VISITED			
	UNEXPLORED			
	SPANNING	<u>Call Stack</u> DFS(G)	$(\rightarrow edges to list)$	C
-	ВАСК	DFSOne(G,A) DFSOne(G,B) DFSOne(G,C) DFSOne(G,E)	$(\rightarrow B, C, D)$ $(\rightarrow A, C)$ $(\rightarrow B, A, D, E)$ $(\rightarrow A, C)$	

	UNEXPLORED			A
	VISITED			
	UNEXPLORED			
	SPANNING	<u>Call Stack</u> DFS(G)	$(\rightarrow edges to list)$	∪ c
1	ВАСК	DFSOne(G,A) DFSOne(G,B) DFSOne(G,C)	$(\rightarrow B, C, D)$ $(\rightarrow A, C)$ $(\rightarrow B, A, D, E)$	

	UNEXPLORED			A
	VISITED			
	UNEXPLORED			
	SPANNING	<u>Call Stack</u> DFS(G)	$(\rightarrow edges to list)$	C
1	ВАСК	DFSOne(G,A) DFSOne(G,B)	$(\rightarrow B,C,D)$ $(\rightarrow A,C)$	

DFS vs Mazes

The DFS algorithm is like our stack-based maze solver (kind of)

- Mark each grid square with **VISITED** as we explore it
- Mark each path with **SPANNING** or **BACK**
- Only visit each vertex once (this differs from our maze search)

DFS vs Mazes

The DFS algorithm is like our stack-based maze solver (kind of)

- Mark each grid square with **VISITED** as we explore it
- Mark each path with **SPANNING** or **BACK**
- Only visit each vertex once (this differs from our maze search)
 - DFS will not necessarily find the shortest paths

What's the complexity?


```
public void DFS(Graph graph) {
 1
     for (Vertex v : graph.vertices) {
 2
 3
       v.setLabel(UNEXPLORED);
4
     }
 5
     for (Edge e : graph.edges) {
6
       e.setLabel(UNEXPLORED);
7
8
     for (Vertex v : graph.vertices) {
9
       if (v.label == UNEXPLORED) {
10
         DFSOne(graph, v);
11
12
13
```



```
1 public void DFS(Graph graph) {
     \Theta(|V|)
 2
 3
     for (Edge e : graph.edges) {
       e.setLabel(UNEXPLORED);
4
 5
     }
     for (Vertex v : graph.vertices) {
6
 7
       if (v.label == UNEXPLORED) {
8
         DFSOne(graph, v);
9
       }
10
11
```


1	<pre>public void DFS(Graph graph) {</pre>
2	⊖ (V)
3	⊖ (E)
4	<pre>for (Vertex v : graph.vertices)</pre>
5	<pre>if (v.label == UNEXPLORED) {</pre>
6	<pre>DFSOne(graph, v);</pre>
7	}
8	}
9	}

1	<pre>public void DFS(Graph graph) {</pre>
2	Θ (V)
3	⊖ (E)
4	<pre>for (Vertex v : graph.vertices) {</pre>
5	<pre>if (v.label == UNEXPLORED) {</pre>
6	$\Theta(;;;)$
7	}
8	}
9	}

```
public void DFSOne(Graph graph, Vertex v) {
 1
     v.setLabel(VISITED);
 2
 3
     for (Edge e : v.outEdges) {
4
       if (e.label == UNEXPLORED) {
 5
         Vertex w = e.to;
         if (w.label == UNEXPLORED) {
 6
 7
           e.setLabel(SPANNING);
8
           DFSOne(graph, w);
9
         } else {
           e.setLabel(BACK);
10
11
12
13|\}
```

```
1 public void DFSOne(Graph graph, Vertex v) {
 2
      \Theta(1)
 3
      for (Edge e : v.outEdges) {
        if (e.label == UNEXPLORED) {
 4
 5
          \Theta(1)
 6
          if (w.label == UNEXPLORED) {
 7
             \Theta(1)
 8
             \Theta(???)
 9
          } else {
             \Theta(1)
10
11
12
13|}}
```

How many times do we call **DFSOne** on each vertex?

How many times do we call **DFSOne** on each vertex? **Observation: DFSOne** is called on each vertex at most once If **v.label** == **VISITED**, both **DFS**, and **DFSOne** skip it

How many times do we call DFSOne on each vertex? Observation: DFSOne is called on each vertex at most once If v.label == VISITED, both DFS, and DFSOne skip it O(|V|) calls to DFSOne

How many times do we call DFSOne on each vertex? Observation: DFSOne is called on each vertex at most once If v.label == VISITED, both DFS, and DFSOne skip it O(|V|) calls to DFSOne

What's the runtime of **DFSOne excluding the recursive calls?**

```
1 public void DFSOne(Graph graph, Vertex v) {
 2
      \Theta(1)
 3
      for (Edge e : v.outEdges) {
        if (e.label == UNEXPLORED) {
 4
 5
          \Theta(1)
 6
          if (w.label == UNEXPLORED) {
 7
             \Theta(1)
 8
             \Theta(???)
 9
          } else {
             \Theta(1)
10
11
12
13|}}
```

```
1 public void DFSOne(Graph graph, Vertex v) {
2 @(1)
3 for (Edge e : v.outEdges) {
4 @(1)
5 }
6 }
```

How many times do we call DFSOne on each vertex? Observation: DFSOne is called on each vertex at most once If v.label == VISITED, both DFS, and DFSOne skip it O(|V|) calls to DFSOne

What's the runtime of **DFSOne excluding the recursive calls?**

How many times do we call DFSOne on each vertex? Observation: DFSOne is called on each vertex at most once If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls? O(deg(v))

What is the sum over all calls to **DFSOne**?

What is the sum over all calls to **DFSOne**?

$$\sum_{v \in V} O(deg(v))$$

What is the sum over all calls to **DFSOne**?

$$\sum_{v \in V} O(deg(v))$$

$$= O(\sum_{v \in V} deg(v))$$

What is the sum over all calls to **DFSOne**?

$$\sum_{v \in V} O(deg(v))$$

$$= O(\sum_{v \in V} deg(v))$$

= O(2|E|)

What is the sum over all calls to DFSOne?

$$= O(\sum_{v \in V} deg(v))$$

= O(2|E|)

$$= O(|E|)$$

136

In summary...

In summary...

1. Mark the vertices **UNVISITED**

In summary...

O(|V|)

1. Mark the vertices UNVISITED

139

In summary...

O(|V|)

- 1. Mark the vertices **UNVISITED**
- 2. Mark the edges **UNVISITED**

In summary...

- 1. Mark the vertices **UNVISITED**
- 2. Mark the edges **UNVISITED**

0(|V|) 0(|E|)

In summary...

- 1. Mark the vertices **UNVISITED**
- 2. Mark the edges **UNVISITED**
- **3. DFS** vertex loop

0(|V|) 0(|E|)

In summary...

- 1. Mark the vertices **UNVISITED**
- 2. Mark the edges **UNVISITED**
- **3. DFS** vertex loop

0(|V|) 0(|E|) 0(|V|) iterations

In summary...

- 1. Mark the vertices **UNVISITED**
- 2. Mark the edges **UNVISITED**
- 3. DFS vertex loop
- 4. All calls to DFSOne

0(|V|) 0(|E|) 0(|V|) iterations
Depth-First Search Complexity

In summary...

- 1. Mark the vertices UNVISITED
- 2. Mark the edges UNVISITED
- 3. DFS vertex loop
- 4. All calls to DFSOne

0(|V|) 0(|E|) 0(|V|) iterations 0(|E|) total

Depth-First Search Complexity

In summary...

- 1. Mark the vertices UNVISITED
- 2. Mark the edges UNVISITED
- 3. DFS vertex loop
- 4. All calls to DFSOne

O(|*V*|) *O*(|*E*|) *O*(|*V*|) iterations *O*(|*E*|) total

O(|V|+|E|)