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Announcements

● WA3 was due yesterday 
○ Submissions today will have a 50% penalty (no grace days allowed)
○ Submissions close tonight at midnight

● PA2 released
○ Testing phase due Sunday 10/22
○ Implementation due Sunday 11/5
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Edge List Summary

Graph

vertices: LinkedList<Vertex>
edges: LinkedList<Edge>

Vertex

label: T
node: LinkedListNode

Edge

label: T
vertex: origin
vertex: destination
node: LinkedListNode

Storing the list nodes in the 
edges/vertices allows us to 
remove by reference in 𝚯(1) time
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Edge List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(m)
● vertex.incidentEdges: O(m)
● vertex.edgeTo: O(m)
● Space Used: O(n) + O(m)
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Edge List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(m)
● vertex.incidentEdges: O(m)
● vertex.edgeTo: O(m)
● Space Used: O(n) + O(m)

← Involves checking every
edge in the graph
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How can we improve?
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How can we improve?

Idea: Store the in/out edges for each vertex!

(Called an adjacency list)
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Adjacency List

Each vertex stores a list of inEdges and outEdges, which are maintained 
as the graph is modified…

What functions need to change to maintain these lists?

8

1

2

3

4

5

6

public class Vertex<V,E> {

  public Node<Vertex> node;

  public List<Edge> inEdges = new CustomLinkedList<Edge>();

  public List<Edge> outEdges = new CustomLinkedList<Edge>();

  /*...*/

}



Adjacency List

What is the complexity of addEdge now?
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public Edge addEdge(Vertex orig, Vertex dest, E label) {

  Edge e = new Edge(orig, dest, label);

  e.node = edges.add(e);

  orig.outEdges.add(e);

  dest.inEdges.add(e);

  return e;

}

← When we add an edge to the graph, also add 
it to the appropriate adjacency lists



Adjacency List

What is the complexity of addEdge now? Still 𝚯(1)
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public Edge addEdge(Vertex orig, Vertex dest, E label) {

  Edge e = new Edge(orig, dest, label);

  e.node = edges.add(e);

  orig.outEdges.add(e);

  dest.inEdges.add(e);

  return e;

}

← When we add an edge to the graph, also add 
it to the appropriate adjacency lists



Adjacency List

What is the complexity of removeEdge now?
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public void removeEdge(Edge edge) {

  edges.remove(edge.node);

  edge.orig.outEdges.remove(edge);

  edge.dest.inEdges.remove(edge);

}

← When we remove an edge from the graph, 
also remove it from the adjacency lists



Adjacency List

What is the complexity of removeEdge now? O(deg(orig) + deg(dest)) :(

But how can we fix this?

12

1

2

3

4

5

public void removeEdge(Edge edge) {

  edges.remove(edge.node);

  edge.orig.outEdges.remove(edge);

  edge.dest.inEdges.remove(edge);

}

← When we remove an edge from the graph, 
also remove it from the adjacency lists



Adjacency List

Each Edge now also stores a reference to the nodes in each adjacency list
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public class Edge<V,E> {

  public Node<Edge> node;

  public Node<Edge> inNode;

  public Node<Edge> outNode;

  /*...*/

}



Adjacency List

What is the complexity of addEdge now? Still 𝚯(1)
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public Edge addEdge(Vertex orig, Vertex dest, E label) {

  Edge e = new Edge(orig, dest, label);

  e.node = edges.add(e);

  e.outNode = orig.outEdges.add(e);

  e.inNode = dest.inEdges.add(e);

  return e;

}

← When we add an edge to the graph, also 
add it to the appropriate adjacency lists AND 
store the node refs in the Edge object



Adjacency List

What is the complexity of removeEdge now?
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public void removeEdge(Edge edge) {

  edges.remove(edge.node);

  edge.orig.outEdges.remove(edge.outNode);

  edge.dest.inEdges.remove(edge.inNode);

}

← When we remove an edge from the 
graph, also remove it from the 
adjacency lists (remove by reference)



Adjacency List

What is the complexity of removeEdge now? 𝚯(1)
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public void removeEdge(Edge edge) {

  edges.remove(edge.node);

  edge.orig.outEdges.remove(edge.outNode);

  edge.dest.inEdges.remove(edge.inNode);

}

← When we remove an edge from the 
graph, also remove it from the 
adjacency lists (remove by reference)



Adjacency List

So, we are able to store and maintain adjacency lists in each vertex while 
still keeping a 𝚯(1) runtime for addVertex, addEdge, and removeEdge

How much extra space is used?
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Adjacency List

So, we are able to store and maintain adjacency lists in each vertex while 
still keeping a 𝚯(1) runtime for addVertex, addEdge, and removeEdge

How much extra space is used? 𝚯(1) per edge 

Each edge only appears in 3 lists:
● The edge list
● One vertices inList
● One vertices outList
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Adjacency List

So, we are able to store and maintain adjacency lists in each vertex while 
still keeping a 𝚯(1) runtime for addVertex, addEdge, and removeEdge

How much extra space is used? 𝚯(1) per edge 

Each edge only appears in 3 lists:
● The edge list
● One vertices inList
● One vertices outList
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But now what have we gained?



Adjacency List

What is the complexity of removeVertex now?
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public void removeVertex(Vertex v) {

  for(edge : v.getIncidentEdges()) {

    removeEdge(edge.node)

  }

  vertices.remove(v.node);

}



Adjacency List

What is the complexity of removeVertex now?
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public void removeVertex(Vertex v) {

  for(edge : v.getIncidentEdges()) {

    𝚯(1)
  }

  𝚯(1)
}



Adjacency List

What is the complexity of removeVertex now? 
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public void removeVertex(Vertex v) {

  for(edge : v.getIncidentEdges()) {

    𝚯(1)
  }

  𝚯(1)
}

We now have a reference to the list of edges in 𝚯(1) 
time, and there are deg(v) edge in the list 



Adjacency List

What is the complexity of removeVertex now? 𝚯(deg(v))
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public void removeVertex(Vertex v) {

  for(edge : v.getIncidentEdges()) {

    𝚯(1)
  }

  𝚯(1)
}

We now have a reference to the list of edges in 𝚯(1) 
time, and there are deg(v) edge in the list 



Adjacency List Summary

Graph

vertices: LinkedList[Vertex]
edges: LinkedList[Edge]

Vertex

label: T
node: LinkedListNode
inEdges: LinkedList[Edge]
outEdges: LinkedList[Edge]

Edge

label: T
node: LinkedListNode
inNode: LinkedListNode
outNode: LinkedListNode

Storing the list of incident edges in 
the vertex saves us the time of 
checking every edge in the graph.

The edge now stores additional nodes 
to ensure removal is still 𝚯(1) 
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Adjacency List Summary

● addEdge, addVertex: 𝚯(1)
● removeEdge: 𝚯(1)
● removeVertex: 𝚯(deg(vertex))
● vertex.incidentEdges: 𝚯(deg(vertex))
● vertex.edgeTo: 𝚯(deg(vertex))
● Space Used: 𝚯(n) + 𝚯(m)
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Adjacency List Summary

● addEdge, addVertex: 𝚯(1)
● removeEdge: 𝚯(1)
● removeVertex: 𝚯(deg(vertex))
● vertex.incidentEdges: 𝚯(deg(vertex))
● vertex.edgeTo: 𝚯(deg(vertex))
● Space Used: 𝚯(n) + 𝚯(m)

Now we already know what 
edges are incident without 
having to check them all
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Adjacency Matrix

Destination

U V W

U - a -

V - - b

W c - -

O
rig

in
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Adjacency Matrix Summary

● addEdge, removeEdge:
● addVertex, removeVertex:
● vertex.incidentEdges:
● vertex.edgeTo:
● Space Used:
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Adjacency Matrix Summary

● addEdge, removeEdge: 𝚯(1)
● addVertex, removeVertex:
● vertex.incidentEdges:
● vertex.edgeTo:
● Space Used:

Just change a single entry of the matrix
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Adjacency Matrix Summary

● addEdge, removeEdge: 𝚯(1)
● addVertex, removeVertex: 𝚯(n2)
● vertex.incidentEdges:
● vertex.edgeTo:
● Space Used:

Resize and copy the 
whole matrix
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Adjacency Matrix Summary

● addEdge, removeEdge: 𝚯(1)
● addVertex, removeVertex: 𝚯(n2)
● vertex.incidentEdges: 𝚯(n)
● vertex.edgeTo:
● Space Used:

Check the row and 
column for that vertex
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Adjacency Matrix Summary

● addEdge, removeEdge: 𝚯(1)
● addVertex, removeVertex: 𝚯(n2)
● vertex.incidentEdges: 𝚯(n)
● vertex.edgeTo: 𝚯(1)
● Space Used:

Check a single entry of the matrix
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Adjacency Matrix Summary

● addEdge, removeEdge: 𝚯(1)
● addVertex, removeVertex: 𝚯(n2)
● vertex.incidentEdges: 𝚯(n)
● vertex.edgeTo: 𝚯(1)
● Space Used: 𝚯(n2)

How does this relate to space of 
edge/adjacency lists? 33



Adjacency Matrix Summary

● addEdge, removeEdge: 𝚯(1)
● addVertex, removeVertex: 𝚯(n2)
● vertex.incidentEdges: 𝚯(n)
● vertex.edgeTo: 𝚯(1)
● Space Used: 𝚯(n2)

How does this relate to space of
edge/adjacency lists? If the matrix is "dense" it's about the same 34



So…what do we do with our graphs?

35



Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?
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Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?
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Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?
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Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?
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Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?
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A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges
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A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G…
Is a subgraph of G
Contains all of G's vertices
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A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G…
Is a subgraph of G
Contains all of G's vertices

Subgraph of G
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A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G…
Is a subgraph of G
Contains all of G's vertices

Spanning Subgraph of G44



A few more definitions

A graph is connected… 
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new 

vertex without breaking the property
● Any subset of G's edges that connect the 

subgraph are fine
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A few more definitions

A graph is connected… 
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new 

vertex without breaking the property
● Any subset of G's edges that connect the 

subgraph are fine

Connected graph
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A few more definitions

A graph is connected… 
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new 

vertex without breaking the property
● Any subset of G's edges that connect the 

subgraph are fine

Connected graph

Disconnected graph
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A few more definitions

A graph is connected… 
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new 

vertex without breaking the property
● Any subset of G's edges that connect the 

subgraph are fine

Connected graph

Disconnected graph
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A few more definitions

A graph is connected… 
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new 

vertex without breaking the property
● Any subset of G's edges that connect the 

subgraph are fine

Connected graph

Disconnected graph

2 connected 
components 49



A few more definitions

A free tree is an undirected graph T such that… 
There is exactly one simple path between any two nodes
● T is connected
● T has no cycles

A rooted tree is a directed graph T such that…
One vertex of T is the root
There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) forest is a graph F such that…
Every connected component is a tree
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A few more definitions

A free tree is an undirected graph T such that… 
There is exactly one simple path between any two nodes
● T is connected
● T has no cycles

A rooted tree is a directed graph T such that…
One vertex of T is the root
There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) forest is a graph F such that…
Every connected component is a tree
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A few more definitions

A free tree is an undirected graph T such that… 
There is exactly one simple path between any two nodes
● T is connected
● T has no cycles

A rooted tree is a directed graph T such that…
One vertex of T is the root
There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) forest is a graph F such that…
Every connected component is a tree
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A few more definitions

A spanning tree of a connected graph… 
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

Graph G
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A few more definitions

A spanning tree of a connected graph… 
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

A Spanning Tree of G

Graph G
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A few more definitions

A spanning tree of a connected graph… 
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

Graph G

A Spanning Tree of G Another Spanning Tree of G
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Now back to the question…Connectivity
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How could we represent our maze as a graph?

Back to Mazes

O 1 2 3 4

1 ∞ ∞ ∞ 5

2 ∞ X ∞ 6

4 5 6 9 8

3 ∞ 7 ∞ 7
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Back to Mazes

O 1 2 3 4

1 ∞ ∞ ∞ 5

2 ∞ X ∞ 6

4 5 6 9 8

3 ∞ 7 ∞ 7

O

X

How could we represent our maze as a graph?
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Recall

Searching the maze with a stack
We try every path, one at a time, following it as far as we can
…then backtrack and try another

59



Recall

Searching the maze with a stack (Depth-First Search)
We try every path, one at a time, following it as far as we can
…then backtrack and try another
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Recall

Searching the maze with a stack (Depth-First Search)
We try every path, one at a time, following it as far as we can
…then backtrack and try another

Searching with a queue?
TBD…
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Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

62



Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
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Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
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Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected
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Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected
○ Side Effect: Identify cycles
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Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected
○ Side Effect: Identify cycles

● Complete in time O(|V| + |E|)
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Depth-First Search

DFS
Input: Graph G = (V,E)
Output: Label every edge as:
● Spanning Edge: Part of the spanning tree
● Back Edge: Part of a cycle

DFSOne
Input: Graph G = (V,E), start vertex v ∈ V
Output: Label every edge in v's connected component
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Depth-First Search

DFS
Input: Graph G = (V,E)
Output: Label every edge as:
● Spanning Edge: Part of the spanning tree
● Back Edge: Part of a cycle

DFSOne
Input: Graph G = (V,E), start vertex v ∈ V
Output: Label every edge in v's connected component
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Depth-First Search
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Depth-First Search

✓
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Depth-First Search

✓
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Depth-First Search

✓

✓
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Depth-First Search

✓

✓
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Depth-First Search

✓

✓

✓
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Depth-First Search

✓

✓

✓
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Depth-First Search

✓ ✓

✓

✓
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Depth-First Search

✓ ✓

✓

✓
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Depth-First Search

✓ ✓

✓

✓

✓
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DFS
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public void DFS(Graph graph) {

  for (Vertex v : graph.vertices) {

    v.setLabel(UNEXPLORED);

  }

  for (Edge e : graph.edges) {

    e.setLabel(UNEXPLORED);

  }

  for (Vertex v : graph.vertices) {

    if (v.label == UNEXPLORED) {

      DFSOne(graph, v);

    }

  }

} 80



DFS

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFS(Graph graph) {

  for (Vertex v : graph.vertices) {

    v.setLabel(UNEXPLORED);

  }

  for (Edge e : graph.edges) {

    e.setLabel(UNEXPLORED);

  }

  for (Vertex v : graph.vertices) {

    if (v.label == UNEXPLORED) {

      DFSOne(graph, v);

    }

  }

} 81

Initialize all vertices and edges to 
UNEXPLORED



DFS
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public void DFS(Graph graph) {

  for (Vertex v : graph.vertices) {

    v.setLabel(UNEXPLORED);

  }

  for (Edge e : graph.edges) {

    e.setLabel(UNEXPLORED);

  }

  for (Vertex v : graph.vertices) {

    if (v.label == UNEXPLORED) {

      DFSOne(graph, v);

    }

  }

} 82

Call DFSOne to label the connected 
component of every unexplored 
vertex



DFSOne
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public void DFSOne(Graph graph, Vertex v) {

  v.setLabel(VISITED);

  for (Edge e : v.outEdges) {

    if (e.label == UNEXPLORED) {

      Vertex w = e.to;

      if (w.label == UNEXPLORED) {

        e.setLabel(SPANNING);

        DFSOne(graph, w);

      } else {

        e.setLabel(BACK);

      }

    }

}} 83



DFSOne
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public void DFSOne(Graph graph, Vertex v) {

  v.setLabel(VISITED);

  for (Edge e : v.outEdges) {

    if (e.label == UNEXPLORED) {

      Vertex w = e.to;

      if (w.label == UNEXPLORED) {

        e.setLabel(SPANNING);

        DFSOne(graph, w);

      } else {

        e.setLabel(BACK);

      }

    }

}} 84

← Mark the vertex as VISITED (so we'll never try to visit it again)



DFSOne
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public void DFSOne(Graph graph, Vertex v) {

  v.setLabel(VISITED);

  for (Edge e : v.outEdges) {

    if (e.label == UNEXPLORED) {

      Vertex w = e.to;

      if (w.label == UNEXPLORED) {

        e.setLabel(SPANNING);

        DFSOne(graph, w);

      } else {

        e.setLabel(BACK);

      }

    }

}} 85

Check every outgoing edge (every possible 
way we could leave the current vertex)



DFSOne
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public void DFSOne(Graph graph, Vertex v) {

  v.setLabel(VISITED);

  for (Edge e : v.outEdges) {

    if (e.label == UNEXPLORED) {

      Vertex w = e.to;

      if (w.label == UNEXPLORED) {

        e.setLabel(SPANNING);

        DFSOne(graph, w);

      } else {

        e.setLabel(BACK);

      }

    }

}} 86

Follow the unexplored edges



DFSOne
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public void DFSOne(Graph graph, Vertex v) {

  v.setLabel(VISITED);

  for (Edge e : v.outEdges) {

    if (e.label == UNEXPLORED) {

      Vertex w = e.to;

      if (w.label == UNEXPLORED) {

        e.setLabel(SPANNING);

        DFSOne(graph, w);

      } else {

        e.setLabel(BACK);

      }

    }

}} 87

If it leads to an unexplored vertex, then it is a 
spanning edge. Recursively explore that vertex.



DFSOne
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public void DFSOne(Graph graph, Vertex v) {

  v.setLabel(VISITED);

  for (Edge e : v.outEdges) {

    if (e.label == UNEXPLORED) {

      Vertex w = e.to;

      if (w.label == UNEXPLORED) {

        e.setLabel(SPANNING);

        DFSOne(graph, w);

      } else {

        e.setLabel(BACK);

      }

    }

}} 88

Otherwise, we just found a cycle



Detailed Example

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list) 

A

B

C

D
E
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Detailed Example

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G) 

A

B

C

D
E
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Detailed Example

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,A) 

A

B

C

D
E
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Detailed Example

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,A) ( → B, C, D)

A

B

C

D
E
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Detailed Example

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,A) ( → B, C, D)

A

B

C

D
E
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Detailed Example

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,A) ( → B, C, D)
DFSOne(G,B) ( → A, C)

A

B

C

D
E
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Detailed Example

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,A) ( → B, C, D)
DFSOne(G,B) ( → A, C)

A

B

C

D
E
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Detailed Example

✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,A) ( → B, C, D)
DFSOne(G,B) ( → A, C)
DFSOne(G,C) ( → B, A, D, E)

A

B

C

D
E
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Detailed Example

✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,A) ( → B, C, D)
DFSOne(G,B) ( → A, C)
DFSOne(G,C) ( → B, A, D, E)

A

B

C

D
E
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Detailed Example

✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,A) ( → B, C, D)
DFSOne(G,B) ( → A, C)
DFSOne(G,C) ( → B, A, D, E)

A

B

C

D
E
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Detailed Example

✓ ✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,A) ( → B, C, D)
DFSOne(G,B) ( → A, C)
DFSOne(G,C) ( → B, A, D, E)
DFSOne(G,D) ( → A, C)

A

B

C

D
E
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Detailed Example

✓ ✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,A) ( → B, C, D)
DFSOne(G,B) ( → A, C)
DFSOne(G,C) ( → B, A, D, E)
DFSOne(G,D) ( → A, C)

A

B

C

D
E
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Detailed Example

✓ ✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,A) ( → B, C, D)
DFSOne(G,B) ( → A, C)
DFSOne(G,C) ( → B, A, D, E)

A

B

C

D
E
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Detailed Example

✓ ✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,A) ( → B, C, D)
DFSOne(G,B) ( → A, C)
DFSOne(G,C) ( → B, A, D, E)

A

B

C

D
E
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Detailed Example

✓ ✓

✓

✓
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UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,A) ( → B, C, D)
DFSOne(G,B) ( → A, C)
DFSOne(G,C) ( → B, A, D, E)
DFSOne(G,E) ( → A, C)

A

B

C

D
E
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Detailed Example

✓ ✓

✓

✓
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UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,A) ( → B, C, D)
DFSOne(G,B) ( → A, C)
DFSOne(G,C) ( → B, A, D, E)
DFSOne(G,E) ( → A, C)

A

B

C

D
E
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Detailed Example

✓ ✓

✓

✓
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UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,A) ( → B, C, D)
DFSOne(G,B) ( → A, C)
DFSOne(G,C) ( → B, A, D, E)

A

B

C

D
E
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Detailed Example

✓ ✓

✓

✓
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UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,A) ( → B, C, D)
DFSOne(G,B) ( → A, C)

A

B

C

D
E
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Detailed Example

✓ ✓
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✓
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UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,A) ( → B, C, D)

A

B

C

D
E
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Detailed Example

✓ ✓
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UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,B) 

A

B

C

D
E
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Detailed Example

✓ ✓
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UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,C) 

A

B

C

D
E
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Detailed Example

✓ ✓
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✓
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UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,D) 

A

B

C

D
E
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Detailed Example

✓ ✓

✓

✓
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UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,E) 

A

B

C

D
E
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Detailed Example

✓ ✓
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UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)

A

B

C
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Detailed Example

✓ ✓
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UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)

A

B

C
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DFS vs Mazes

The DFS algorithm is like our stack-based maze solver (kind of)
● Mark each grid square with VISITED as we explore it
● Mark each path with SPANNING or BACK
● Only visit each vertex once (this differs from our maze search)

○ DFS will not necessarily find the shortest paths
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DFS vs Mazes

The DFS algorithm is like our stack-based maze solver (kind of)
● Mark each grid square with VISITED as we explore it
● Mark each path with SPANNING or BACK
● Only visit each vertex once (this differs from our maze search)

○ DFS will not necessarily find the shortest paths
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Depth-First Search Complexity

What's the complexity?
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DFS
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13

public void DFS(Graph graph) {

  for (Vertex v : graph.vertices) {

    v.setLabel(UNEXPLORED);

  }

  for (Edge e : graph.edges) {

    e.setLabel(UNEXPLORED);

  }

  for (Vertex v : graph.vertices) {

    if (v.label == UNEXPLORED) {

      DFSOne(graph, v);

    }

  }
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DFS

1
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public void DFS(Graph graph) {

  𝚯(|V|)
  for (Edge e : graph.edges) {

    e.setLabel(UNEXPLORED);

  }

  for (Vertex v : graph.vertices) {

    if (v.label == UNEXPLORED) {

      DFSOne(graph, v);

    }

  }

}
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DFS

1
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9

public void DFS(Graph graph) {

  𝚯(|V|)
  𝚯(|E|)
  for (Vertex v : graph.vertices) {

    if (v.label == UNEXPLORED) {

      DFSOne(graph, v);

    }

  }

}
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DFS
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public void DFS(Graph graph) {

  𝚯(|V|)
  𝚯(|E|)
  for (Vertex v : graph.vertices) {

    if (v.label == UNEXPLORED) {

      𝚯(???)
    }

  }

}
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DFSOne
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public void DFSOne(Graph graph, Vertex v) {

  v.setLabel(VISITED);

  for (Edge e : v.outEdges) {

    if (e.label == UNEXPLORED) {

      Vertex w = e.to;

      if (w.label == UNEXPLORED) {

        e.setLabel(SPANNING);

        DFSOne(graph, w);

      } else {

        e.setLabel(BACK);

      }

    }
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DFSOne
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public void DFSOne(Graph graph, Vertex v) {

  𝚯(1)
  for (Edge e : v.outEdges) {

    if (e.label == UNEXPLORED) {

      𝚯(1)
      if (w.label == UNEXPLORED) {

        𝚯(1)
        𝚯(???)
      } else {

        𝚯(1)
      }

    }

}} 122



Depth-First Search Complexity

How many times do we call DFSOne on each vertex?
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Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it
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Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne
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Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls?
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DFSOne
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public void DFSOne(Graph graph, Vertex v) {

  𝚯(1)
  for (Edge e : v.outEdges) {

    if (e.label == UNEXPLORED) {

      𝚯(1)
      if (w.label == UNEXPLORED) {

        𝚯(1)
        𝚯(???)
      } else {

        𝚯(1)
      }

    }

}} 127



DFSOne
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6

public void DFSOne(Graph graph, Vertex v) {

  𝚯(1)
  for (Edge e : v.outEdges) {

    𝚯(1)
  }

}
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DFSOne

1
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3

4

public void DFSOne(Graph graph, Vertex v) {

  𝚯(1)
  𝚯(deg(v))
}
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Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls?
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Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls? O(deg(v))
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Depth-First Search Complexity

What is the sum over all calls to DFSOne?

132



Depth-First Search Complexity

What is the sum over all calls to DFSOne?
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Depth-First Search Complexity

What is the sum over all calls to DFSOne?
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Depth-First Search Complexity

What is the sum over all calls to DFSOne?
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Depth-First Search Complexity

What is the sum over all calls to DFSOne?

136



Depth-First Search Complexity

In summary…

137



Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED
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Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
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Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED
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Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
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Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop
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Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|) iterations
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Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|) iterations
4. All calls to DFSOne 
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Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|) iterations
4. All calls to DFSOne O(|E|) total
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Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|) iterations
4. All calls to DFSOne O(|E|) total

   O(|V| + |E|)
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