CSE 250

Data Structures

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Lec 19: Adjacency Lists and DFS

Announcements

- WA3 was due yesterday
- Submissions today will have a 50% penalty (no grace days allowed)
- Submissions close tonight at midnight
- PA2 released
- Testing phase due Sunday 10/22
- Implementation due Sunday $11 / 5$

Edge List Summary

Edge List Summary

- addEdge, addVertex: $\mathbf{O (1)}$
- removeEdge: $0(1)$
- removeVertex: O (m)
- vertex.incidentEdges: $\mathbf{O}(\mathrm{m})$
- vertex.edgeTo: $0(m)$
- Space Used: $0(n)+0(m)$

Edge List Summary

- addEdge, addVertex: $\mathbf{O (1)}$
- removeEdge: $0(1)$
- removeVertex: $O(m)$
- vertex.incidentEdges: $O(m) \leftarrow \quad$ Involves checking every
- vertex.edgeTo: $O(m)$ edge in the graph
- Space Used: O(n) + O(m)

How can we improve?

How can we improve?

Idea: Store the in/out edges for each vertex!
(Called an adjacency list)

Adjacency List

```
1 public class Vertex<V,E> {
2 public Node<Vertex> node;
public List<Edge> inEdges = new CustomLinkedList<Edge>();
        public List<Edge> outEdges = new CustomLinkedList<Edge>();
}
```

Each vertex stores a list of inEdges and outEdges, which are maintained as the graph is modified...

What functions need to change to maintain these lists?

Adjacency List

```
1 public Edge addEdge(Vertex orig, Vertex dest, E label) {
2 Edge e = new Edge(orig, dest, label);
e.node = edges.add(e);
4 orig.outEdges.add(e);
5
6
return e;
7
```

What is the complexity of addEdge now?

Adjacency List

```
1 public Edge addEdge(Vertex orig, Vertex dest, E label) {
2 Edge e = new Edge(orig, dest, label);
e.node = edges.add(e);
4 orig.outEdges.add(e);
5
6
7
```

What is the complexity of addEdge now? Still $\boldsymbol{\Theta}(1)$

Adjacency List

```
1 public void removeEdge(Edge edge) {
2 edges.remove(edge.node);
e edge.orig.outEdges.remove(edge);
4 edge.dest.inEdges.remove(edge);
}
```

What is the complexity of removeEdge now?

Adjacency List

```
1 public void removeEdge(Edge edge) {
2 edges.remove(edge.node);
3 edge.orig.outEdges.remove(edge); \leftarrowWhen we remove an edge from the graph,
4 edge.dest.inEdges.remove(edge);
}
```

What is the complexity of removeEdge now? O(deg(orig) + deg(dest)) :(
But how can we fix this?

Adjacency List

Each Edge now also stores a reference to the nodes in each adjacency list

Adjacency List

```
1 public Edge addEdge(Vertex orig, Vertex dest, E label) {
2 Edge e = new Edge(orig, dest, label);
3 e.node = edges.add(e);
e.outNode = orig.outEdges.add(e);
    e.inNode = dest.inEdges.add(e);
    return e;
}
```

What is the complexity of addEdge now? Still $\boldsymbol{\Theta}(1)$

Adjacency List

```
1 public void removeEdge(Edge edge) {
2 edges.remove(edge.node);
3 edge.orig.outEdges.remove(edge.outNode);
4
5
    edge.dest.inEdges.remove(edge.inNode);
}
\(\leftarrow\) When we remove an edge from the graph, also remove it from the adjacency lists (remove by reference)
```

What is the complexity of removeEdge now?

Adjacency List

```
1 public void removeEdge(Edge edge) {
2 edges.remove(edge.node);
edge.orig.outEdges.remove(edge.outNode);
4
5}
    edge.dest.inEdges.remove(edge.inNode);
\(\leftarrow\) When we remove an edge from the graph, also remove it from the adjacency lists (remove by reference)
```

What is the complexity of removeEdge now? $\boldsymbol{\Theta}(1)$

Adjacency List

So, we are able to store and maintain adjacency lists in each vertex while still keeping a $\boldsymbol{\Theta}(1)$ runtime for addVertex, addEdge, and removeEdge How much extra space is used?

Adjacency List

So, we are able to store and maintain adjacency lists in each vertex while still keeping a $\Theta(1)$ runtime for addVertex, addEdge, and removeEdge How much extra space is used? $\boldsymbol{\Theta}(1)$ per edge

Each edge only appears in 3 lists:

- The edge list
- One vertices inList
- One vertices outList

Adjacency List

So, we are able to store and maintain adjacency lists in each vertex while still keeping a $\Theta(1)$ runtime for addVertex, addEdge, and removeEdge How much extra space is used? $\boldsymbol{\Theta}(1)$ per edge

Each edge only appears in 3 lists:

- The edge list
- One vertices inList
- One vertices outList

Adjacency List

```
1 \text { public void removeVertex(Vertex v) \{}
2 for(edge : v.getIncidentEdges()) {
    removeEdge(edge.node)
    }
    vertices.remove(v.node);
    }
```

What is the complexity of removeVertex now?

Adjacency List

```
1 public void removeVertex(Vertex v) {
2 for(edge : v.getIncidentEdges()) {
    \Theta(1)
    }
    \Theta(1)
    6 }
```

What is the complexity of removeVertex now?

Adjacency List

```
1 public void removeVertex(Vertex v) {
2 for(edge : v.getIncidentEdges()) {
3
4 }
\Theta(1)
6 }
```

We now have a reference to the list of edges in $\boldsymbol{\Theta}(1)$ time, and there are $\operatorname{deg}(\mathbf{v})$ edge in the list

What is the complexity of removeVertex now?

Adjacency List

```
1 public void removeVertex(Vertex v) {
2 for(edge : v.getIncidentEdges()) {
3
4 }
    \Theta(1)
6 }
```

We now have a reference to the list of edges in $\boldsymbol{\Theta}(1)$ time, and there are $\operatorname{deg}(\mathbf{v})$ edge in the list

What is the complexity of removeVertex now? $\Theta(\operatorname{deg}(v))$

Adjacency List Summary

Adjacency List Summary

- addEdge, addVertex: ©(1)
- removeEdge: $\boldsymbol{\Theta}(1)$
- removeVertex: $\boldsymbol{\Theta}$ (deg(vertex))
- vertex.incidentEdges: $\boldsymbol{\Theta}(\operatorname{deg}($ vertex))
- vertex.edgeTo: $\boldsymbol{\Theta}$ (deg(vertex))
- Space Used: $\boldsymbol{\Theta}(n)+\boldsymbol{\Theta}(m)$

Adjacency List Summary

- addEdge, addVertex: $\boldsymbol{\Theta}(1)$
- removeEdge: $\boldsymbol{\Theta}(1)$
- removeVertex: $\boldsymbol{\Theta}$ (deg(vertex))
- vertex.incidentEdges: $\boldsymbol{\Theta}$ (deg(vertex))
- vertex.edgeTo: $\boldsymbol{\Theta}$ (deg(vertex))
- Space Used: $\boldsymbol{\Theta}(n)+\boldsymbol{\Theta}(m)$

Now we already know what edges are incident without having to check them all

Adjacency Matrix

Adjacency Matrix Summary

- addEdge, removeEdge:
- addVertex, removeVertex:
- vertex.incidentEdges:
- vertex.edgeTo:
- Space Used:

Adjacency Matrix Summary

Just change a single entry of the matrix

- addEdge, removeEdge: $\boldsymbol{\Theta (1)}$
- addVertex, removeVertex:
- vertex.incidentEdges:
- vertex.edgeTo:
- Space Used:

Adjacency Matrix Summary

- addEdge, removeEdge: $\boldsymbol{\Theta}(1)$
- addVertex, removeVertex: $\boldsymbol{\Theta}\left(n^{2}\right)$
- vertex.incidentEdges:
- vertex.edgeTo:
- Space Used:

Adjacency Matrix Summary

- addEdge, removeEdge: $\Theta(1)$
- addVertex, removeVertex: $\boldsymbol{\Theta}\left(n^{2}\right)$
- vertex.incidentEdges: $\boldsymbol{\Theta}(n)$
- vertex.edgeTo: Check the row and
- Space Used: column for that vertex

Adjacency Matrix Summary

- addEdge, removeEdge: $\boldsymbol{\Theta (1)}$
- addVertex, removeVertex: $\boldsymbol{\Theta}\left(n^{2}\right)$
- vertex.incidentEdges: $\boldsymbol{\Theta}(n)$
- vertex.edgeTo: ©(1)
- Space Used:

Check a single entry of the matrix

Adjacency Matrix Summary

- addEdge, removeEdge: $\Theta(1)$
- addVertex, removeVertex: $\boldsymbol{\Theta}\left(n^{2}\right)$
- vertex.incidentEdges: $\boldsymbol{\Theta}(n)$
- vertex.edgeTo: $\Theta(1)$
- Space Used: $\boldsymbol{\Theta}\left(n^{2}\right)$

How does this relate to space of edge/adjacency lists?

Adjacency Matrix Summary

- addEdge, removeEdge: $\Theta(1)$
- addVertex, removeVertex: $\boldsymbol{\Theta}\left(n^{2}\right)$
- vertex.incidentEdges: $\boldsymbol{\Theta}(n)$
- vertex.edgeTo: $\Theta(1)$
- Space Used: $\boldsymbol{\Theta}\left(n^{2}\right)$

How does this relate to space of
edge/adjacency lists? If the matrix is "dense" it's about the same

So...what do we do with our graphs?

Connectivity Problems

Given graph \mathbf{G} :

Connectivity Problems

Given graph \mathbf{G} :

- Is vertex \boldsymbol{u} adjacent to vertex \boldsymbol{v} ?

Connectivity Problems

Given graph G:

- Is vertex \boldsymbol{u} adjacent to vertex \boldsymbol{v} ?
- Is vertex \boldsymbol{u} connected to vertex \boldsymbol{v} via some path?

Connectivity Problems

Given graph \mathbf{G} :

- Is vertex \boldsymbol{u} adjacent to vertex \boldsymbol{v} ?
- Is vertex \boldsymbol{u} connected to vertex \boldsymbol{v} via some path?
- Which vertices are connected to vertex \boldsymbol{v} ?

Connectivity Problems

Given graph G:

- Is vertex \boldsymbol{u} adjacent to vertex \boldsymbol{v} ?
- Is vertex \boldsymbol{u} connected to vertex \boldsymbol{v} via some path?
- Which vertices are connected to vertex \boldsymbol{v} ?
- What is the shortest path from vertex \boldsymbol{u} to vertex \boldsymbol{v} ?

A few more definitions

A subgraph, \boldsymbol{S}, of a graph \boldsymbol{G} is a graph where: S's vertices are a subset of G's vertices S's edges are a subset of G's edges

A few more definitions

A subgraph, \boldsymbol{S}, of a graph \boldsymbol{G} is a graph where: S's vertices are a subset of G's vertices S's edges are a subset of G's edges

A spanning subgraph of G...
Is a subgraph of G
Contains all of \mathbf{G} 's vertices

A few more definitions

A subgraph, \boldsymbol{S}, of a graph \boldsymbol{G} is a graph where:
S 's vertices are a subset of G's vertices
S's edges are a subset of G's edges
Subgraph of G
A spanning subgraph of G...
Is a subgraph of \mathbf{G}
Contains all of \mathbf{G} 's vertices

A few more definitions

A subgraph, \boldsymbol{S}, of a graph \boldsymbol{G} is a graph where: S 's vertices are a subset of G's vertices S's edges are a subset of G's edges

A spanning subgraph of G...
Is a subgraph of \mathbf{G}
Contains all of \mathbf{G} 's vertices

A few more definitions

A graph is connected...
If there is a path between every pair of vertices

A few more definitions

A graph is connected...

If there is a path between every pair of vertices

A few more definitions

A graph is connected...
If there is a path between every pair of vertices

Disconnected graph

A few more definitions

A graph is connected...
If there is a path between every pair of vertices

A connected component of G...

Is a maximal connected subgraph of G

- "maximal" means you can't add a new vertex without breaking the property
- Any subset of G's edges that connect the subgraph are fine

Disconnected graph

A few more definitions

A graph is connected...
If there is a path between every pair of vertices

A connected component of G...

Is a maximal connected subgraph of G

- "maximal" means you can't add a new vertex without breaking the property
- Any subset of G's edges that connect the subgraph are fine

A few more definitions

A free tree is an undirected graph \boldsymbol{T} such that...
There is exactly one simple path between any two nodes

- \boldsymbol{T} is connected
- \quad Thas no cycles

A few more definitions

A free tree is an undirected graph \boldsymbol{T} such that...
There is exactly one simple path between any two nodes

- \boldsymbol{T} is connected
- \quad Thas no cycles

A rooted tree is a directed graph T such that...
One vertex of \boldsymbol{T} is the root
There is exactly one simple path from the root to every other vertex in the graph

A few more definitions

A free tree is an undirected graph \boldsymbol{T} such that...
There is exactly one simple path between any two nodes

- \boldsymbol{T} is connected
- $\quad \mathbf{T}$ has no cycles

A rooted tree is a directed graph T such that...
One vertex of \boldsymbol{T} is the root
There is exactly one simple path from the root to every other vertex in the graph
A (free/rooted) forest is a graph F such that...
Every connected component is a tree

A few more definitions

A spanning tree of a connected graph...
...Is a spanning subgraph that is a tree
...It is not unique unless the graph is a tree

A few more definitions

A spanning tree of a connected graph...
...Is a spanning subgraph that is a tree
...It is not unique unless the graph is a tree

A Spanning Tree of \mathbf{G}

A few more definitions

A spanning tree of a connected graph...
...Is a spanning subgraph that is a tree
...It is not unique unless the graph is a tree

A Spanning Tree of \mathbf{G}

Another Spanning Tree of \mathbf{G}

Now back to the question...Connectivity

Back to Mazes

How could we represent our maze as a graph?

Back to Mazes

How could we represent our maze as a graph?

Recall

Searching the maze with a stack

We try every path, one at a time, following it as far as we can ...then backtrack and try another

Recall

Searching the maze with a stack (Depth-First Search)

We try every path, one at a time, following it as far as we can ...then backtrack and try another

Recall

Searching the maze with a stack (Depth-First Search)
We try every path, one at a time, following it as far as we can ...then backtrack and try another

Searching with a queue? TBD...

Depth-First Search

Primary Goals

- Visit every vertex in graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- Construct a spanning tree for every connected component

Depth-First Search

Primary Goals

- Visit every vertex in graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- Construct a spanning tree for every connected component
- Side Effect: Compute connected components

Depth-First Search

Primary Goals

- Visit every vertex in graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- Construct a spanning tree for every connected component
- Side Effect: Compute connected components
- Side Effect: Compute a path between all connected vertices

Depth-First Search

Primary Goals

- Visit every vertex in graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- Construct a spanning tree for every connected component
- Side Effect: Compute connected components
- Side Effect: Compute a path between all connected vertices
- Side Effect: Determine if the graph is connected

Depth-First Search

Primary Goals

- Visit every vertex in graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- Construct a spanning tree for every connected component
- Side Effect: Compute connected components
- Side Effect: Compute a path between all connected vertices
- Side Effect: Determine if the graph is connected
- Side Effect: Identify cycles

Depth-First Search

Primary Goals

- Visit every vertex in graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- Construct a spanning tree for every connected component
- Side Effect: Compute connected components
- Side Effect: Compute a path between all connected vertices
- Side Effect: Determine if the graph is connected
- Side Effect: Identify cycles
- Complete in time $\mathbf{O}(|\mathbf{V}|+|E|)$

Depth-First Search

DFS

Input: Graph G = (V,E)
Output: Label every edge as:

- Spanning Edge: Part of the spanning tree
- Back Edge: Part of a cycle

Depth-First Search

DFS

Input: Graph G = (V,E)
Output: Label every edge as:

- Spanning Edge: Part of the spanning tree
- Back Edge: Part of a cycle

DFSOne

Input: Graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, start vertex $\boldsymbol{v} \in \mathbf{V}$
Output: Label every edge in v 's connected component

Depth-First Search

DFS

DFS

for (Edge e : graph.edges) \{
e.setLabel(UNEXPLORED);
\}
for (Vertex v : graph.vertices) \{
if (v.label == UNEXPLORED) \{
DFSOne(graph, v);
\}
\}
\}

Initialize all vertices and edges to UNEXPLORED

DFS

DFSOne

```
1 public void DFSOne(Graph graph, Vertex v) {
2 v.setLabel(VISITED);
    for (Edge e : v.outEdges) {
    if (e.label == UNEXPLORED) {
        Vertex w = e.to;
        if (w.label == UNEXPLORED) {
            e.setLabel(SPANNING);
                DFSOne(graph, w);
        } else {
            e.setLabel(BACK);
        }
    }
    }}
```


DFSOne

```
1 public void DFSOne(Graph graph, Vertex v) {
2 v.setLabel(VISITED); \leftarrowMark the vertex as VISITED (so we'll never try to visit it again)
f for (Edge e : v.outEdges) {

\section*{DFSOne}
```

1 public void DFSOne(Graph graph, Vertex v) {
2 v.setLabel(VISITED);
for (Edge e : v.outEdges) {
4 if (e.label == UNEXPLORED) {
Vertex w = e.to;
if (w.label == UNEXPLORED) {
e.setLabel(SPANNING);
DFSOne(graph, w);
} else {
e.setLabel(BACK);
}
}
Check every outgoing edge (every possible way we could leave the current vertex)

DFSOne

```
1 public void DFSOne(Graph graph, Vertex v) {
2 v.setLabel(VISITED);
    for (Edge e : v.outEdges) {
    if (e.label == UNEXPLORED) {
        Vertex w = e.to;
        if (w.label == UNEXPLORED) {
            e.setLabel(SPANNING);
        DFSOne(graph, w);
        } else {
            e.setLabel(BACK);
        }
1 2
1 3
}}
```


DFSOne

```
1 public void DFSOne(Graph graph, Vertex v) {
2 v.setLabel(VISITED);
    for (Edge e : v.outEdges) {
    if (e.label == UNEXPLORED) {
        Vertex w = e.to;
        if (w.label == UNEXPLORED) {
            e.setLabel(SPANNING); If it leads to an unexplored vertex, then it is a
                DFSOne(graph, w); spanning edge. Recursively explore that vertex.
        } else {
                e.setLabel(BACK);
        }
    }
}}
```


DFSOne

```
1 public void DFSOne(Graph graph, Vertex v) {
2 v.setLabel(VISITED);
    for (Edge e : v.outEdges) {
    if (e.label == UNEXPLORED) {
        Vertex w = e.to;
        if (w.label == UNEXPLORED) {
            e.setLabel(SPANNING);
                DFSOne(graph, w);
        } else {
                        e. setLabel(BACK); Otherwise, we just found a cycle
        }
    }
    }}
```


Detailed Example

Detailed Example

UNEXPLORED
UNSITED
SPANNING
BACK

Detailed Example

Detailed Example

UNEXPLORED		
VISITED		
UNEXPLORED		
SPANNING	$\frac{\text { Call Stack }}{\text { DFS(G) }}$	$(\rightarrow$ edges to list)
BACK		

BACK

Detailed Example

DFS vs Mazes

The DFS algorithm is like our stack-based maze solver (kind of)

- Mark each grid square with VISITED as we explore it
- Mark each path with SPANNING or BACK
- Only visit each vertex once (this differs from our maze search)

DFS vs Mazes

The DFS algorithm is like our stack-based maze solver (kind of)

- Mark each grid square with VISITED as we explore it
- Mark each path with SPANNING or BACK
- Only visit each vertex once (this differs from our maze search)
- DFS will not necessarily find the shortest paths

Depth-First Search Complexity

What's the complexity?

DFS

DFS

DFS

```
1 public void DFS(Graph graph) {
2 ©(|V|)
3 (O(|E|)
4 for (Vertex v : graph.vertices) {
if (v.label == UNEXPLORED) {
6 DFSOne(graph, v);
7 }
8
9}
```


DFS

```
1 public void DFS(Graph graph) {
2 ©(|V|)
3 (O(|E|)
4 for (Vertex v : graph.vertices) {
if (v.label == UNEXPLORED) {
6 \Theta(???)
7 }
8
9 }
```


DFSOne

```
1 public void DFSOne(Graph graph, Vertex v) {
2 v.setLabel(VISITED);
    for (Edge e : v.outEdges) {
    if (e.label == UNEXPLORED) {
        Vertex w = e.to;
        if (w.label == UNEXPLORED) {
            e.setLabel(SPANNING);
                DFSOne(graph, w);
        } else {
            e.setLabel(BACK);
        }
    }
    }}
```


DFSOne

```
1 public void DFSOne(Graph graph, Vertex v) {
2 \Theta(1)
for (Edge e : v.outEdges) {
    if (e.label == UNEXPLORED) {
        \Theta(1)
        if (w.label == UNEXPLORED) {
            0(1)
                \Theta(?? ?)
            } else {
                \Theta(1)
        }
        }
13 }}
```


Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?
Observation: DFSOne is called on each vertex at most once
If v.label == VISITED, both DFS, and DFSOne skip it

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?
Observation: DFSOne is called on each vertex at most once
If v.label == VISITED, both DFS, and DFSOne skip it $O(|V|)$ calls to DFSOne

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?
Observation: DFSOne is called on each vertex at most once
If v.label == VISITED, both DFS, and DFSOne skip it $O(|V|)$ calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls?

DFSOne

```
1 public void DFSOne(Graph graph, Vertex v) {
2 \Theta(1)
for (Edge e : v.outEdges) {
    if (e.label == UNEXPLORED) {
        \Theta(1)
        if (w.label == UNEXPLORED) {
            0(1)
                \Theta(?? ?)
            } else {
                \Theta(1)
        }
        }
13 }}
```


DFSOne

```
1 public void DFSOne(Graph graph, Vertex v) {
2 O(1)
3 for (Edge e : v.outEdges) {
| \Theta(1)
5 }
6 }
```


DFSOne

```
1 public void DFSOne(Graph graph, Vertex v) {
2 \Theta(1)
3 \Theta(\operatorname{deg}(v))
4 }
```


Depth-First Search Complexity

How many times do we call DFSOne on each vertex?
Observation: DFSOne is called on each vertex at most once
If v.label == VISITED, both DFS, and DFSOne skip it $O(|V|)$ calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls?

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?
Observation: DFSOne is called on each vertex at most once

$$
\begin{aligned}
\text { If } v . \text { label }== & \text { VISITED, both DFS, and DFSOne skip it } \\
& O(|V|) \text { calls to DFSOne }
\end{aligned}
$$

What's the runtime of DFSOne excluding the recursive calls? O(deg(v))

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

$$
\sum_{v \in V} O(\operatorname{deg}(v))
$$

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

$$
\begin{aligned}
& \sum_{v \in V} O(\operatorname{deg}(v)) \\
& =O\left(\sum_{v \in V} \operatorname{deg}(v)\right)
\end{aligned}
$$

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

$$
\begin{aligned}
& \sum_{v \in V} O(\operatorname{deg}(v)) \\
& =O\left(\sum_{v \in V} \operatorname{deg}(v)\right) \\
& =O(2|E|)
\end{aligned}
$$

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

$$
\begin{aligned}
& \sum_{v \in V} O(\operatorname{deg}(v)) \\
& =O\left(\sum_{v \in V} \operatorname{deg}(v)\right) \\
& =O(2|E|) \\
& =O(|E|)
\end{aligned}
$$

Depth-First Search Complexity

In summary...

Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED

Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED $\mathbf{O}(|\mathbf{V}|)$

Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED $\mathbf{O}(|\mathbf{V}|)$
2. Mark the edges UNVISITED

Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED
$O(|V|)$
2. Mark the edges UNVISITED

$O(|E|)$

Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED

$$
O(|V|)
$$

2. Mark the edges UNVISITED $0(|E|)$
3. DFS vertex loop

Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED

$$
O(|V|)
$$

2. Mark the edges UNVISITED
3. DFS vertex loop $0(|E|)$
$0(|V|)$ iterations

Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED

$$
O(|V|)
$$

2. Mark the edges UNVISITED
3. DFS vertex loop O(IE|)
$O(|V|)$ iterations
4. All calls to DFSOne

Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED

O(IVI)
2. Mark the edges UNVISITED
3. DFS vertex loop
4. All calls to DFSOne $O(|E|)$
$O(|V|)$ iterations
$O(|E|)$ total

Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED
2. Mark the edges UNVISITED
3. DFS vertex loop
4. All calls to DFSOne

O(IVI)
$O(|E|)$
$O(|V|)$ iterations
$O(|E|)$ total

$$
O(|V|+|E|)
$$

