CSE 250: Ordering, Priority Queues
 Lecture 22

Oct 23, 2023

Reminders

- PA2: Implement Map Routing

1 Create an adjacency list (discussed today)
2 Find a path from A to B with the fewest intersections
3 Find a path from A to B with the shortest distance

- PA2 implementation due Sun, Nov 5 at 11:59 PM

New ADT: Priority Queue

PriorityQueue<E> (E must be ComparableComparable)

- public void add(E e): Add e to the queue.

■ public E peek(): Return the leastleast element added.

- public E remove(): Remove and return the leastleast element added.

Examples

How might we order the following?
■ "A+", "C", "B-"

- Taco Tuesday, Fish Friday, Meatless Monday

■ Serenity, Gamer, Julie, Garfield
■ Aardvark, Baboon, Capybara, Donkey, Echidna

Ordering

An ordering on type $A(A, \leq)$:

- A set of things of type A

■ A "relation" or comparator (\leq) that relates two things in the set.

■ Numerical Order

$$
5 \leq 30 \leq 999
$$

- Reverse-numerical order on the 2nd field $(E, 40) \leq(B, 10) \leq(D, 3)$
- Letter Grades $\mathbf{C}+\leq \mathbf{B}-\leq \mathbf{B} \leq \mathbf{B}+\leq \mathbf{A}-\leq \mathbf{A}$
- Compare first, then 2nd, 3rd, ... (Lexical Order)

$$
\mathrm{AA} \leq \mathrm{AM} \leq \mathrm{BZ} \leq \mathrm{CA} \leq \mathrm{CD}
$$

Ordering Properties

- Team $\mathbf{A} \leq$ Team \mathbf{B}

Team B won its match against Team A

- Team $\mathbf{B} \leq$ Team \mathbf{C}

Team C won its match against Team B

- Team $\mathbf{C} \leq$ Team \mathbf{A}

Team A won its match against Team C

Is this an ordering?

Ordering Properties

An ordering must be...

- Reflexive
- Antisymmetric
if $x \leq y$ and $y \leq x$ then $x=y$

■ Transitive

Another Example

Define an ordering over CSE Courses
(Course $1 \leq$ Course 2 iff Course 1 is a prereq of Course 2)

- CSE $115 \leq$ CSE 116
- CSE $116 \leq$ CSE 250
- CSE $115 \leq$ CSE 191

■ CSE 191 s CSE 250
Is this a valid ordering?

(Partial) Ordering Properties

A partial ordering must be...

- Reflexive

$$
x \leq x
$$

- Antisymmetric
if $x \leq y$ and $y \leq x$ then $x=y$

■ Transitive
if $x \leq y$ and $y \leq z$ then $x \leq z$

(Total) Ordering Properties

A total ordering must be...

■ Reflexive

$$
x \leq x
$$

- Antisymmetric

■ Transitive

■ Complete
if $x \leq y$ and $y \leq x$ then $x=y$
if $x \leq y$ and $y \leq z$ then $x \leq z$

Some Other Definitions

For an ordering (A, \leq)

- The greatest element is some $x \in A$ such that there is no $y \in A$ where $x \leq y$
- The least element is some $x \in A$ such that there is no $y \in A$ where $x \geq y$

A partial ordering may not have a unique greatest or least element

Describing an Ordering

\leq can be described explicitly, by a set of tuples:

$$
\{(a, a),(a, b),(a, c), \ldots,(b, b), \ldots,(z, z)\}
$$

If (x, y) is in the set, then $x \leq y$:

- $(a, a): a$ is less than or equal to a
- $(a, b): a$ is less than or equal to b
- (a, c) : a is less than or equal to c
- $(b, b): a$ is less than or equal to b
- $(z, z): z$ is less than or equal to z

Describing an Ordering

\leq can be described by a mathematical rule:

$$
\left\{(x, y) \mid x, y \in \mathbb{Z}, \exists a \in \mathbb{Z}^{+} \cup\{0\}: x+a=y\right\}
$$

$x \leq y$ iff x, y are integers and there is a non-negative integer a that you can add to x to get y.

Multiple Orderings

Multiple Orderings can be defined for the same set
■ RottenTomatoes vs Metacritic vs Box Office Gross

■ "Best Movie" first vs "Worst Movie" first

■ Number of swear words

We use subscripts to separate orderings ($\leq_{1}, \leq_{2}, \leq_{3}, \ldots$)

Transformations

We can transform orderings:
■ Reverse:
if $x \leq_{1} y$ then define $y \leq_{R} x$
■ Lexical: Given $\leq_{1}, \leq_{2}, \leq_{3}, \ldots$

- If $x \leq_{1} y$ then $x \leq_{L} y$
- If $x=1 y$ and $x \leq_{2} y$ then $x \leq_{L} y$
- If $x={ }_{1} y$ and $x={ }_{2} y$ and $x \leq_{3} y$ then $x \leq_{L} y$

Examples of Lexical Ordering

■ Names: First letter, then second letter, then third. . .
■ Movies: Average of reviews, then number of reviews
■ Records: First field, then second field, then third. . .
■ Sports Teams: Games won, points scored, speed of victory,

Ordering over Keys

\leq can be described as a ordering over a key derived from the element:

$$
\begin{gathered}
x \leq_{\text {edge }} y \text { iff weight }(x) \leq_{\text {weight }}(y) \\
x \leq_{\text {contact }} y \text { iff } \operatorname{name}(x) \leq_{L} \operatorname{name}(y)
\end{gathered}
$$

Here, we say that weight/name are keys.

Topological Sort

A topological sort of a partial order $\left(A, \leq_{1}\right)$ is any total order $\left(A, \leq_{2}\right)$ that "agrees" with $\left(A, \leq_{1}\right)$.

For any two elements $x, y \in A$:

- If $x \leq_{1} y$ then $x \leq_{2} y$
- If $y \leq_{1} x$ then $y \leq_{2} x$
- Otherwise, either $x \leq_{2} y$ or $y \leq_{2} x$

Topological Sort

The following are all topological sorts over our partial order from earlier:

■ CSE 115, CSE 116, CSE 191, CSE 241, CSE 250

- CSE 241, CSE 115, CSE 116, CSE 191, CSE 250

■ CSE 115, CSE 191, CSE 116, CSE 250, CSE 241
(In this case, the partial ordering is a schedule requirement, and each topological sort is a possible schedule)
... back to our ordering-based ADT

New ADT: Priority Queue

PriorityQueue<E> (E must be ComparableComparable)

- public void add(E e): Add e to the queue.

■ public E peek(): Return the leastleast element added.

- public E remove(): Remove and return the leastleast element added.

Priority Queues

- add(5)
- add (9)
- add(2)

■ add(7)

- peek() $\rightarrow 2$

■ remove() $\rightarrow 2$

- size() $\rightarrow 3$
- peek() $\rightarrow 5$
- remove() $\rightarrow 5$
- remove() $\rightarrow 7$
- remove() $\rightarrow 9$

■ size() $\rightarrow 0$

How do we store this?

- Insertion Order?
$[5,9,2,7]$
- Sorted Order?
$[2,5,7,9]$
■ Reverse Sorted Order? [9, 7, 5, 2]

Priority Queues

There are two mentalities...
■ Lazy: Keep everything a mess.
■ Proactive: Keep everything organized.

"Selection Sort"
"Insertion Sort"

Lazy Priority Queue

Base Data Structure: Linked List

- public void add(T v)

Append v to the end of the linked list.

- public T remove()
$O(N)$
Traverse the list to find the least value and remove it.

Sorting with a Priority Queue

```
public List<T> prioritySort(List<T> items,
                                PriorityQueue<T> pqueue)
{
    T[] out = new T[items.size];
    for( item : items ){ pqueue.add(item) } \longleftarrow Add to pqueue
    for( int i = 0; i < items.size; i++ )
    {
        out[i] = items.remove() \leftarrow Remove from pqueue
        }
    return Arrays.asList(out)
}
```


Selection Sort (with a Lazy P.Queue)

Input / Output

Input	$(7,4,8,2,5,3,9)$	()
Step 1	$(4,8,2,5,3,9)$	(7)
Step 2	$(8,2,5,3,9)$	$(7,4)$
\ldots	\ldots	\ldots
Step n	()	$(7,4,8,2,5,3,9)$
Step $\mathrm{n}+1$	$[2,-,-,-,-,-]$	$(7,4,8,5,3,9)$
Step $\mathrm{n}+2$	$[2,3,-,-,-,-]$	$(7,4,8,5,9)$
Step $\mathrm{n}+3$	$[2,3,4,-,-,-]$,	$(7,8,5,9)$
\ldots	\ldots	\ldots
Step 2 n	$[2,3,4,5,7,8,9]$	()

Sorting with a Priority Queue

```
public List<T> prioritySort(List<T> items,
                                PriorityQueue<T> pqueue)
{
    T[] out = new T[items.size];
    for( item : items ){ pqueue.add(item) }
    for( int i = 0; i < items.size; i++ )
    {
        out[i] = items.remove()
    }
    return Arrays.asList(out)
}
```

What is the complexity (with a lazy P.Queue)? $O\left(n^{2}\right)$

Proactive Priority Queue

Base Data Structure: Linked List

- public void add(T v)

Traverse the list to insert v in sorted order.
■ public T remove()
Remove the head of the list.

Selection Sort (with a Proactive P.Queue)

Input / Output

Input	$(7,4,8,2,5,3,9)$	()
Step 1	$(4,8,2,5,3,9)$	(7)
Step 2	$(8,2,5,3,9)$	$(4,7)$
Step 3	$(2,5,3,9)$	$(4,7,8)$

()
[2, -, -, -, -, -, -]
$(2,3,4,5,7,8,9)$
Step $\mathrm{n}+1$
[2, 3, -, -, -, -, -]
Step n+2
$(3,4,5,7,8,9)$
$(4,5,7,8,9)$

Step Rn $\quad[2,3,4,5,7,8,9]$
Step Rn $\quad[2,3,4,5,7,8,9]$

Sorting with a Priority Queue

```
public List<T> prioritySort(List<T> items,
                                PriorityQueue<T> pqueue)
{
    T[] out = new T[items.size];
    for( item : items ){ pqueue.add(item) }
    for( int i = 0; i < items.size; i++ )
    {
        out[i] = items.remove()
    }
    return Arrays.asList(out)
}
```

What is the complexity (with a proactive P.Queue)? $O\left(n^{2}\right)$

Priority Queues

Operation	Lazy	Proactive
add	$O(1)$	$O(N)$
remove	$O(N)$	$O(1)$
peek	$O(N)$	$O(1)$

Can we do better?

