
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 23: Heaps

mailto:epmikida@buffalo.edu

Announcements

● PA2 autolab is live

2

PriorityQueue ADT

PriorityQueue<T>

void add(T value)

Insert value into the priority queue

T poll()

Remove the highest priority value in the priority queue

T peek()

Peek at the highest priority value in the priority queue

3

Priority Queues

Two mentalities…

Lazy: Keep everything a mess ("Selection Sort")

Proactive: Keep everything organized ("Insertion Sort")

4

Priority Queues

Operation Lazy Proactive

add O(1) O(n)

poll O(n) O(1)

peek O(n) O(1)

5

Priority Queues

Operation Lazy Proactive

add O(1) O(n)

poll O(n) O(1)

peek O(n) O(1)

Can we do better?
6

Priority Queues

Lazy - Fast add, Slow removal

Proactive - Slow add, Fast removal

??? - Fast(-ish) Enqueue, Fast(-ish) Dequeue

7

Priority Queues

Lazy - Fast add, Slow removal

Proactive - Slow add, Fast removal

??? - Fast(-ish) add, Fast(-ish) removal

8

Priority Queues

Idea: Keep the priority queue "kinda" sorted.

Hopefully "kinda" sorted is cheaper to maintain than a full sort,

but still gives us some of the benefits.

9

Priority Queues

Idea: Keep the priority queue "kinda" sorted.

Keep higher priority towards the front of the list,

and keep the front of the list more sorted than the back…

10

Binary Heaps

Challenge: If we are only "kinda" sorting, how do we know which elements
are actually sorted?

11

Binary Heaps

Idea: Organize the priority queue as a directed tree!

A directed edge from a to b means that a ≥ b

12

More Tree Terminology

Child - An adjacent node connected by an out-edge

13

More Tree Terminology

Child - An adjacent node connected by an out-edge

Leaf - A node with no children

14

More Tree Terminology

Child - An adjacent node connected by an out-edge

Leaf - A node with no children

Depth (of a node) - The number of edges from the root to the node

15

More Tree Terminology

Child - An adjacent node connected by an out-edge

Leaf - A node with no children

Depth (of a node) - The number of edges from the root to the node

Depth (of a tree) - The maximum depth of any node in the tree

16

More Tree Terminology

Child - An adjacent node connected by an out-edge

Leaf - A node with no children

Depth (of a node) - The number of edges from the root to the node

Depth (of a tree) - The maximum depth of any node in the tree

Level (of a node) - depth + 1

17

More Tree Terminology

A

B C

D

E F

A is the root

B and C are children of A
D is a child of C
E and F are children of D

B, E and F are leaves

The depth of A is 0, B and C: 1, D: 2, E and F: 3

The depth of the tree is 3
18

Binary Min Heaps

Organize our priority queue as a directed tree

Directed: A directed edge from a to b means that a ≤ b

19

Binary Min Heaps

Organize our priority queue as a directed tree

Directed: A directed edge from a to b means that a ≤ b

Binary: Max out-degree of 2 (easy to reason about)

20

Binary Min Heaps

Organize our priority queue as a directed tree

Directed: A directed edge from a to b means that a ≤ b

Binary: Max out-degree of 2 (easy to reason about)

Complete: Every "level" except the last is full (from left to right)

21

Binary Min Heaps

Organize our priority queue as a directed tree

Directed: A directed edge from a to b means that a ≤ b

Binary: Max out-degree of 2 (easy to reason about)

Complete: Every "level" except the last is full (from left to right)

Balanced: TBD (basically, all leaves are roughly at the same level)

22

Binary Min Heaps

Organize our priority queue as a directed tree

Directed: A directed edge from a to b means that a ≤ b

Binary: Max out-degree of 2 (easy to reason about)

Complete: Every "level" except the last is full (from left to right)

Balanced: TBD (basically, all leaves are roughly at the same level)

This makes it easy to encode into an array (later today)

23

Binary Min Heaps

Organize our priority queue as a directed tree

Directed: A directed edge from a to b means that a ≤ b

Binary: Max out-degree of 2 (easy to reason about)

Complete: Every "level" except the last is full (from left to right)

Balanced: TBD (basically, all leaves are roughly at the same level)

This makes it easy to encode into an array (later today)

24

A max heap would
reverse this ordering

Valid Min Heaps

1

10 2

2031 4 5

1

2 1

25 2 1

5

5

6 8

97 10

25

Invalid Min Heaps

5

20 10

99 50 30

2

4 3

75 6

8

5

8 7

96 10

26

Invalid Min Heaps

5

20 10

99 50 30

2

4 3

75 6

8

5

8 7

96 10

27

Need to fill from left to right

Invalid Min Heaps

5

20 10

99 50 30

2

4 3

75 6

8

5

8 7

96 10

28

Need to fill from left to right Need complete levels

Invalid Min Heaps

5

20 10

99 50 30

2

4 3

75 6

8

5

8 7

96 10

29

Parents must be less than or
equal to children

Need to fill from left to right Need complete levels

Heaps

What is the depth of a binary heap containing n items?

Level 1: holds up to 1 item

Level 2: holds up to 2 items

Level 3: holds up to 4 items

Level 4: holds up to 8 items

…

Level i: holds up to 2i items

30

Heaps

What is the depth of a binary heap containing n items?

Level 1: holds up to 1 item

Level 2: holds up to 2 items

Level 3: holds up to 4 items

Level 4: holds up to 8 items

…

Level i: holds up to 2i items

31

Heaps

What is the depth of a binary heap containing n items?

Level 1: holds up to 1 item

Level 2: holds up to 2 items

Level 3: holds up to 4 items

Level 4: holds up to 8 items

…

Level i: holds up to 2i items

32

Heaps

What is the depth of a binary heap containing n items?

Level 1: holds up to 1 item

Level 2: holds up to 2 items

Level 3: holds up to 4 items

Level 4: holds up to 8 items

…

Level i: holds up to 2i items

33

Heaps

What is the depth of a binary heap containing n items?

Level 1: holds up to 1 item

Level 2: holds up to 2 items

Level 3: holds up to 4 items

Level 4: holds up to 8 items

…

Level i: holds up to 2i-1 items

34

Heaps

What is the depth of a binary heap containing n items?

35

Heaps

What is the depth of a binary heap containing n items?

36

The MinHeap ADT

void pushHeap(T value)
Place an item into the heap

T popHeap()
Remove and return the minimal element from the heap

T peek()
Peek at the minimal element in the heap

int size()
The number of elements in the heap

37

pushHeap

Idea: Insert the element at the next available spot, then fix the heap.

1. Call the insertion point current
2. While current != root and current > parent

a. Swap current with parent
b. Repeat with current ← parent

38

pushHeap

Idea: Insert the element at the next available spot, then fix the heap.

1. Call the insertion point current
2. While current != root and current < parent

a. Swap current with parent
b. Set current = parent

39

pushHeap

1

4 1

54 2 4

10

What if we add 3?

40

pushHeap
What if we add 3?

Place in the next available
spot

3
41

1

4 1

54 2 4

10

pushHeap
What if we enqueue 3?

Swap with parent if it is
smaller than the parent

4
42

1

4 1

53 2 4

10

pushHeap
What if we enqueue 3?

Continue swapping
upwards…

4
43

1

3 1

54 2 4

10

pushHeap
What if we enqueue 3?

Stop swapping when we
are no longer smaller than
our parent

4

✓

44

1

3 1

54 2 4

10

pushHeap

Idea: Insert the element at the next available spot, then fix the heap.

1. Call the insertion point current
2. While current != root and current < parent

a. Swap current with parent
b. Set current = parent

What is the complexity (or how many swaps occur)?

45

pushHeap

Idea: Insert the element at the next available spot, then fix the heap.

1. Call the insertion point current
2. While current != root and current < parent

a. Swap current with parent
b. Set current = parent

What is the complexity (or how many swaps occur)? O(log(n))

46

popHeap

Idea: Replace root with the last element then fix the heap

1. Start with current ← root
2. While current has a child > current

a. Swap current with its largest child
b. Repeat with current ← child

47

popHeap

Idea: Replace root with the last element then fix the heap

1. Start with current = root
2. While current has a child < current

a. Swap current with its smallest child
b. Set current = child

48

popHeap

1

3 1

54 2 4

10

What if we call popHeap?

4
49

popHeap
What if we call popHeap?

Remove and return the
root

4
50

3 1

54 2 4

10

popHeap
What if we call popHeap?

Make the last item the
new root

51

4

3 1

54 2 4

10

popHeap
What if we call popHeap?

Check for our smallest
child

52

4

3 1

54 2 4

10

popHeap
What if we call popHeap?

If the smallest child is
smaller than us, swap

53

1

3 4

54 2 4

10

popHeap
What if we call popHeap?

Continue swapping down
the tree as necessary…

54

1

3 4

54 2 4

10

popHeap
What if we call popHeap?

Continue swapping down
the tree as necessary…

55

1

3 2

54 4 4

10

popHeap
What if we call popHeap?

Stop swapping when our
children are no longer
bigger

✓

56

1

3 2

54 4 4

10

popHeap

Idea: Replace root with the last element then fix the heap

1. Start with current = root
2. While current has a child < current

a. Swap current with its smallest child
b. Set current = child

What is the complexity (or how many swaps occur)?

57

popHeap

Idea: Replace root with the last element then fix the heap

1. Start with current = root
2. While current has a child < current

a. Swap current with its smallest child
b. Set current = child

What is the complexity (or how many swaps occur)? O(log(n))

58

Priority Queues

Operation Lazy Proactive Heap

add O(1) O(n) O(log(n))

poll O(n) O(1) O(log(n))

peek O(n) O(1) O(1)

59

Storing heaps

Notice that:
1. Each level has a maximum size
2. Each level grows left-to-right
3. Only the last layer grows

How can we compactly store a heap?

60

Storing heaps

Notice that:
1. Each level has a maximum size
2. Each level grows left-to-right
3. Only the last layer grows

How can we compactly store a heap?

Idea: Use an ArrayList

61

Storing Heaps
How can we store this
heap in an array buffer?

62

4

1

3 1

54 2 4

10

Storing Heaps
How can we store this
heap in an array buffer?

63

4

1

3 1

54 2 4

10

Storing Heaps
How can we store this
heap in an array buffer?

1 64

4

1

3 1

54 2 4

10

Storing Heaps
How can we store this
heap in an array buffer?

1 3 1 65

4

1

3 1

54 2 4

10

Storing Heaps
How can we store this
heap in an array buffer?

1 3 1 4 5 2 4 66

4

1

3 1

54 2 4

10

Storing Heaps
How can we store this
heap in an array buffer?

1 3 1 4 5 2 4 10 4 67

4

1

3 1

54 2 4

10

Storing Heaps
How can we store this
heap in an array buffer?

1 3 1 4 5 2 4 10 4 68

4

1

3 1

54 2 4

10

Storing Heaps
How can we store this
heap in an array buffer?

2

2

Enqueue always inserts at the
arrays end (then we fixup)

69

4

1

3 1

54 2 4

10

1 3 1 4 5 2 4 10 4

Runtime Analysis

pushHeap
● Append to ArrayBuffer: amortized O(1) (worst-case O(n))
● fixUp: O(log(n)) fixes, each one costs O(1) = O(n log(n))
● Total: amortized O(n log(n)) (worst-case O(n))

dequeue
● Remove end of ArrayBuffer: O(1)
● fixDown: O(log(n)) fixes, each one costs O(1) = O(n log(n))
● Total: worst-case O(n log(n))

70

Runtime Analysis

pushHeap
● Append to ArrayList: amortized O(1) (unqualified O(n))
● fixUp: O(log(n)) fixes, each one costs O(1) = O(n log(n))
● Total: amortized O(n log(n)) (worst-case O(n))

dequeue
● Remove end of ArrayBuffer: O(1)
● fixDown: O(log(n)) fixes, each one costs O(1) = O(n log(n))
● Total: worst-case O(n log(n))

71

Runtime Analysis

pushHeap
● Append to ArrayList: amortized O(1) (unqualified O(n))
● fixUp: O(log(n)) fixes, each one costs O(1) = O(log(n))
● Total: amortized O(n log(n)) (worst-case O(n))

dequeue
● Remove end of ArrayBuffer: O(1)
● fixDown: O(log(n)) fixes, each one costs O(1) = O(n log(n))
● Total: worst-case O(n log(n))

72

Runtime Analysis

pushHeap
● Append to ArrayList: amortized O(1) (unqualified O(n))
● fixUp: O(log(n)) fixes, each one costs O(1) = O(log(n))
● Total: amortized O(log(n)) (unqualified O(n))

dequeue
● Remove end of ArrayBuffer: O(1)
● fixDown: O(log(n)) fixes, each one costs O(1) = O(n log(n))
● Total: worst-case O(n log(n))

73

Runtime Analysis

pushHeap
● Append to ArrayList: amortized O(1) (unqualified O(n))
● fixUp: O(log(n)) fixes, each one costs O(1) = O(log(n))
● Total: amortized O(log(n)) (unqualified O(n))

popHeap
● Remove end of ArrayBuffer: O(1)
● fixDown: O(log(n)) fixes, each one costs O(1) = O(n log(n))
● Total: worst-case O(n log(n))

74

Runtime Analysis

pushHeap
● Append to ArrayList: amortized O(1) (unqualified O(n))
● fixUp: O(log(n)) fixes, each one costs O(1) = O(log(n))
● Total: amortized O(log(n)) (unqualified O(n))

popHeap
● Remove end of ArrayList: O(1)
● fixDown: O(log(n)) fixes, each one costs O(1) = O(n log(n))
● Total: worst-case O(n log(n))

75

Runtime Analysis

pushHeap
● Append to ArrayList: amortized O(1) (unqualified O(n))
● fixUp: O(log(n)) fixes, each one costs O(1) = O(log(n))
● Total: amortized O(log(n)) (unqualified O(n))

popHeap
● Remove end of ArrayList: O(1)
● fixDown: O(log(n)) fixes, each one costs O(1) = O(log(n))
● Total: worst-case O(n log(n))

76

Runtime Analysis

pushHeap
● Append to ArrayList: amortized O(1) (unqualified O(n))
● fixUp: O(log(n)) fixes, each one costs O(1) = O(log(n))
● Total: amortized O(log(n)) (unqualified O(n))

popHeap
● Remove end of ArrayList: O(1)
● fixDown: O(log(n)) fixes, each one costs O(1) = O(log(n))
● Total: O(log(n))

77

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

7, 4, 8, 2, 5, 3, 9

78

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

7

7, 4, 8, 2, 5, 3, 9

79

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

7 4

7, 4, 8, 2, 5, 3, 9

80

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

7 4

7, 4, 8, 2, 5, 3, 9

?

81

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

4 7

7, 4, 8, 2, 5, 3, 9

?

82

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

4 7 8

7, 4, 8, 2, 5, 3, 9

83

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

4 7 8

7, 4, 8, 2, 5, 3, 9

?

84

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

4 7 8 2

7, 4, 8, 2, 5, 3, 9

85

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

4 7 8 2

7, 4, 8, 2, 5, 3, 9

?

86

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

4 2 8 7

7, 4, 8, 2, 5, 3, 9

?

87

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

4 2 8 7

7, 4, 8, 2, 5, 3, 9

?

88

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

2 4 8 7

7, 4, 8, 2, 5, 3, 9

?

89

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

2 4 8 7 5

7, 4, 8, 2, 5, 3, 9

90

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

2 4 8 7 5

7, 4, 8, 2, 5, 3, 9

?

91

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

2 4 8 7 5 3

7, 4, 8, 2, 5, 3, 9

92

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

2 4 8 7 5 3

7, 4, 8, 2, 5, 3, 9

?

93

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

2 4 3 7 5 8

7, 4, 8, 2, 5, 3, 9

?

94

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

2 4 3 7 5 8

7, 4, 8, 2, 5, 3, 9

?

95

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

2 4 3 7 5 8 9

7, 4, 8, 2, 5, 3, 9

96

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

2 4 3 7 5 8 9

7, 4, 8, 2, 5, 3, 9

?

97

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

2 4 3 7 5 8 9

7, 4, 8, 2, 5, 3, 9

98

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

4 3 7 5 8 9

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
99

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

9 4 3 7 5 8

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
100

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

9 4 3 7 5 8

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
101

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

3 4 9 7 5 8

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
102

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

3 4 9 7 5 8

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
103

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

3 4 8 7 5 9

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
104

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

3 4 8 7 5 9

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
105

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

4 8 7 5 9

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
106

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

9 4 8 7 5

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
107

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

9 4 8 7 5

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
108

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

4 9 8 7 5

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
109

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

4 9 8 7 5

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
110

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

4 5 8 7 9

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
111

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

4 5 8 7 9

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
112

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

5 8 7 9

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
113

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

9 5 8 7

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
114

A few moments later…

115

Heap Sort

1. Insert items into heap
2. Reconstruct sequence with dequeue

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
116

Heap Sort

117

Heap Sort

Enqueue element i: O(log(i))

118

Heap Sort

Enqueue element i: O(log(i))

Dequeue element i: O(log(n - i)))

119

Heap Sort

Enqueue element i: O(log(i))

Dequeue element i: O(log(n - i)))

120

Heap Sort

Enqueue element i: O(log(i))

Dequeue element i: O(log(n - i)))

121

Updating Heap Elements

What if we want to update a value in our Heap?

After update we can just call fixUp or fixDown based on the new value

Can we apply this idea to an entire array?

122

Updating Heap Elements

What if we want to update a value in our Heap?

After update we can just call fixUp or fixDown based on the new value

Can we apply this idea to an entire array?

123

update
What if we change the
value of the 3 node to 9?

124

1

3 1

5 2 4

8

7

update
We now have to fixUp or
fixDown based on the
new value

125

1

9 1

5 2 4

8

7

update
We now have to fixUp or
fixDown based on the
new value

126

1

5 1

9 2 4

8

7

update
We now have to fixUp or
fixDown based on the
new value

127

1

5 1

8 2 4

9

7

update
We now have to fixUp or
fixDown based on the
new value

✓
128

1

5 1

8 2 4

9

7

Updating Heap Elements

What if we want to update a value in our Heap?

After update we can just call fixUp or fixDown based on the new value

Can we apply this idea to an entire array?

129

Updating Heap Elements

What if we want to update a value in our Heap?

After update we can just call fixUp or fixDown based on the new value

Can we apply this idea to an entire array?

130

Heapify

Input: Array

Output: Array re-ordered to be a heap

131

Heapify

Input: Array

Output: Array re-ordered to be a heap

Idea: fixUp or fixDown all n elements in the array

132

Heapify

Input: Array

Output: Array re-ordered to be a heap

Idea: fixUp or fixDown all n elements in the array

Given the cost of fixUp and fixDown what do we expect the complexity
Heapify will be?

133

Heapify

6

4 7

108 2 1

Given an arbitrary array
(shown as a tree here)
turn it into a heap

134

Heapify

6

4 7

108 2 1

Start at the lowest level,
and call fixDown on each
node (0 swaps per node)

135

Heapify

6

4 7

108 2 1

Do the same at the next
lowest level (at most one
swap per node)

136

Heapify

6

4 1

108 2 7

Do the same at the next
lowest level (at most one
swap per node)

✓

137

Heapify

6

4 1

108 2 7

Continue upwards (now at
most 2 swaps per node)

138

Heapify

1

4 6

108 2 7

Continue upwards (now at
most 2 swaps per node)

139

Heapify

1

4 1

108 6 7

Continue upwards (now at
most 2 swaps per node)

140

Heapify

1

4 1

108 6 7

Continue upwards (now at
most 2 swaps per node)

141

✓

Heapify

142

Heapify

At level log(n): Call fixDown on all n/2 nodes at this level (max 0 swaps each)

143

Heapify

At level log(n): Call fixDown on all n/2 nodes at this level (max 0 swaps each)

At level log(n)-1: Call fixDown on all n/4 nodes at this level (max 1 swaps each)

144

Heapify

At level log(n): Call fixDown on all n/2 nodes at this level (max 0 swaps each)

At level log(n)-1: Call fixDown on all n/4 nodes at this level (max 1 swaps each)

At level log(n)-2: Call fixDown on all n/8 nodes at this level (max 2 swaps each)

145

Heapify

At level log(n): Call fixDown on all n/2 nodes at this level (max 0 swaps each)

At level log(n)-1: Call fixDown on all n/4 nodes at this level (max 1 swaps each)

At level log(n)-2: Call fixDown on all n/8 nodes at this level (max 2 swaps each)

…

At level 1: Call fixDown on all 1 nodes at this level (max log(n) swaps each)

146

Heapify
Sum the number of swaps
required by each level

147

Heapify
Pull out the n as a
constant and distribute
multiplication

148

Heapify
Focus on the dominant
term only

149

Heapify
Change log(n) to infinity
(can only increase
complexity class if
anything)

150

Heapify
We can now treat the sum
as a constant

This is known to
converge to a constant

151

Heapify
Therefore we can heapify
an array of size n in O(n)

152

Heapify
Therefore we can heapify
an array of size n in O(n)

(but heap sort still
requires n log(n) due to
dequeue costs)

153

