CSE 250: Priority Queues, Heaps

CSE 250: Priority Queues, Heaps

Lecture 22

Oct 25, 2023

CSE 250: Priority Queues, Heaps

L Class Logistics

Reminders

m PA2: Implement Map Routing

Create an adjacency list (discussed today)
Find a path from A to B with the fewest intersections
Find a path from A to B with the shortest distance

m PA2 implementation due Sun, Nov 5 at 11:59 PM

CSE 250: Priority Queues, Heaps
L Recap

New ADT: Priority Queue

PriorityQueue<E> (E must be ComparableComparable)
m public void add(E e): Add e to the queue.
m public E peek(): Return the Jeast/east element added.

m public E remove(): Remove and return the least/east
element added.

CSE 250: Priority Queues, Heaps
L Recap

Lazy Priority Queue

Base Data Structure: Linked List

m public void add(T v) 0(1)
Append v to the end of the linked list.
m public T remove() O(N)

Traverse the list to find the least value and remove it.

CSE 250: Priority Queues, Heaps
L Recap

Proactive Priority Queue

Base Data Structure: Linked List
m public void add(T v) O(N)
Traverse the list to insert v in sorted order.

m public T remove() 0o(1)
Remove the head of the list.

CSE 250: Priority Queues, Heaps
L Recap

Sorting with a Priority Queue

1 public List<T> prioritySort(List<T> items,
2 PriorityQueue<T> pqueue)
3l o

4 T[] out = new T[items.sizel;

5 for(item : items){ pqueue.add(item) }
6 for(int i = 0; i < items.size; i++)

7 {

8 out[i] = items.remove()

9 }

10 return Arrays.asList(out)

11 }

With a lazy, or proactive queue, this is O(N?)?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps
L Recap

Priority Queues

Operation ‘ Lazy Proactive
add 0(1) O(N)
remove | O(N) 0(1)
peek O(N) 0(1)

Can we do better?

CSE 250: Priority Queues, Heaps
L Recap

Priority Queues

m Lazy
Fast Enqueue, Slow Dequeue
m Proactive
Slow Enqueue, Fast Dequeue
m ?77?
Fast(ish) Enqueue, Fast(ish) Dequeue

CSE 250: Priority Queues, Heaps
L Heaps

Priority Queues

Idea: Keep the priority queue "kinda" sorted.
m Keep larger items closer to the frontroot of the listtree.

m The closer we are to the front of the listtree, the more sorted
it gets.

Challenge: How do we keep track of which items are sorted?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps
L Heaps

Trees

m Child
An adjacent node connected by an out-edge

m Leaf
A node with no children

m Depth of a node
The number of edges from the root to the node

m Depth of a tree
The maximum depth of any node in the tree

m Level of a node
The depth + 1

CSE 250: Priority Queues, Heaps
L Heaps

Priority Queue as a Tree

m Directed A directed edge in the tree means <
m Binary (max 2 children, easy to reason about)

m Complete (every 'level except last is full)
m For consistency, keep all nodes in the last level to the left.

This is a Min-Heap

v
fal
@
o}

T

£

=
=
©
>

CSE 250: Priority Queues, Heaps

CSE 250: Priority Queues, Heaps
L Heaps

Invalid Min-Heaps

5

2
A 5
20 10 fiW 3 7
o O -
éﬂL\ 8 6 10

CSE 250: Priority Queues, Heaps
L Heaps

What is the depth of a binary heap containing N items?

Level 1: up to 1 item

Level 2: up to 2 items

|

m Level 3: up to 4 items
m Level 4: up to 8 items
|

Level 5: up to 16 items

Level £: up to 2¢ items

N <2422 123 1 0% 1051 4 ofmax

What is the smallest allowable value of £,,,,7

CSE 250: Priority Queues, Heaps
L Heaps

Heaps

What is the smallest allowable value of £,,2x?

emax

N < 22"
i=1

N S 2Zmax+1 _ 1

N
_ 1 — 2€max
5 +

N
log <2 + 1> = ¥ max

{max = O(log (N))

CSE 250: Priority Queues, Heaps
L Heaps

The Heap Data Structure

m public void pushHeap(T element)
Place an item onto the heap.
m public T popHeap()
Remove the least item from the heap.
m public T peekHeap()
Peek at the least element on the heap.

CSE 250: Priority Queues, Heaps
L Heaps

pushHeap

Idea: Insert element at next available spot, then fix

53

How many steps did fixing it take?

(2)

CSE 250: Priority Queues, Heaps
L Heaps

pushHeap
1 public void fixUp(Node current)
2 {
3 Node parent = current.parent;
4
5 while(current.value > parent.value){
6
7 swap(current.value, parent.value);
8
9 current = parent; parent = current.parent;
10 }
11 3

What’s the complexity? (how many swaps are required?)
swaps = O(depth) =
O(log(N)), because the tree is complete

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps
L Heaps

popHeap

Idea: Replace root with 'last’ element.

ESaae

47 7| 8 7

(_JL\

8 7

CSE 250: Priority Queues, Heaps
L Heaps

popHeap

1 |public void fixDown(Node current)

2| {

3 Node left = current.leftChild;

4 Node right = current.rightChild;

5

6| while(current.value < left.value OR

7 current.value < right.value)q{

8

9 Node nodeToSwap = min(left, right);

10

11 swap(current.value, nodeToSwap.value) ;
12

13 current = nodeToSwap; left = current.left;
14 right = current.right
15 }

16|}

What's the complexity? (O(depth)) (= O(log(N) for this tree)

ersity at Buffal

CSE 250: Priority Queues, Heaps
L Heaps

Priority Queues

Operation ‘ Lazy Proactive Heap
add 0o(1) O(N) O(log(N))
remove O(N) 0o(1) O(log(N))

peek O(N) 0(1) 0(1)

CSE 250: Priority Queues, Heaps
L Heaps

Storing Heaps

m Each layer has a maximum size (2¢)
m Each layer grows left-to-right

m Only the last layer grows

Idea: Use an ArrayList to store the heap.

CSE 250: Priority Queues, Heaps
L Heaps

Storing Heaps

inserts at the end

f_MF_M

r*wr*wr*wr*w

10

11

12

13

tl2]s]4fs]e]7|s]ofw0]1]12]13] | |

CSE 250: Priority Queues, Heaps
L Heaps

Array Heap
m pushHeap Amortized O(log(N)), Unqualified O(N)
m Append to ArraylList O(N); Amortized O(1)
m fixUp O(log(N))
m popHeap Unqualified O(log(N))
m Replace index 0 w/ Last Element (1)

o)
m fixDown O(log(N))

CSE 250: Priority Queues, Heaps
L Heaps

Heap Priority Queue

® public void add(T elem)
m pushHeap(elem)

m public T remove()
m return popHeap();

m public T peek(T)
m Return the item at the top of the heap.

