
CSE 250: Priority Queues, Heaps

CSE 250: Priority Queues, Heaps
Lecture 22

Oct 25, 2023

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Class Logistics

Reminders

PA2: Implement Map Routing
1 Create an adjacency list (discussed today)
2 Find a path from A to B with the fewest intersections
3 Find a path from A to B with the shortest distance

PA2 implementation due Sun, Nov 5 at 11:59 PM

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Recap

New ADT: Priority Queue

PriorityQueue<E> (E must be ComparableComparable)

public void add(E e): Add e to the queue.

public E peek(): Return the leastleast element added.

public E remove(): Remove and return the leastleast
element added.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Recap

Lazy Priority Queue

Base Data Structure: Linked List

public void add(T v) O(1)
Append v to the end of the linked list.

public T remove() O(N)
Traverse the list to find the least value and remove it.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Recap

Proactive Priority Queue

Base Data Structure: Linked List

public void add(T v) O(N)
Traverse the list to insert v in sorted order.

public T remove() O(1)
Remove the head of the list.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Recap

Sorting with a Priority Queue

1 public List<T> prioritySort(List<T> items,

2 PriorityQueue<T> pqueue)

3 {

4 T[] out = new T[items.size];

5 for(item : items){ pqueue.add(item) }

6 for(int i = 0; i < items.size; i++)

7 {

8 out[i] = items.remove()

9 }

10 return Arrays.asList(out)

11 }

With a lazy, or proactive queue, this is O(N2)?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Recap

Priority Queues

Operation Lazy Proactive
add O(1) O(N)

remove O(N) O(1)
peek O(N) O(1)

Can we do better?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Recap

Priority Queues

Lazy
Fast Enqueue, Slow Dequeue

Proactive
Slow Enqueue, Fast Dequeue

???
Fast(ish) Enqueue, Fast(ish) Dequeue

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Heaps

Priority Queues

Idea: Keep the priority queue ”kinda” sorted.

Keep larger items closer to the frontroot of the listtree.

The closer we are to the front of the listtree, the more sorted
it gets.

Challenge: How do we keep track of which items are sorted?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Heaps

Trees

Child
An adjacent node connected by an out-edge

Leaf
A node with no children

Depth of a node
The number of edges from the root to the node

Depth of a tree
The maximum depth of any node in the tree

Level of a node
The depth + 1

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Heaps

Priority Queue as a Tree

Directed A directed edge in the tree means ≤
Binary (max 2 children, easy to reason about)

Complete (every ’level’ except last is full)

For consistency, keep all nodes in the last level to the left.

This is a Min-Heap

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Heaps

Valid Min-Heaps

1

5

10 20

2

4 31

5

6

7 9

8

10 E

1

2

2

5 E

5

1

2 4

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Heaps

Invalid Min-Heaps

5

20

E 100

10

50 30

2

4

5

8 E

7

3

6 E

5

9

8 6

7

10 E

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Heaps

Heaps

What is the depth of a binary heap containing N items?

Level 1: up to 1 item

Level 2: up to 2 items

Level 3: up to 4 items

Level 4: up to 8 items

Level 5: up to 16 items
. . .

Level ℓ: up to 2ℓ items

N ≤ 21 + 22 + 23 + 24 + 25 + . . .+ 2ℓmax

What is the smallest allowable value of ℓmax?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Heaps

Heaps

What is the smallest allowable value of ℓmax?

N ≤
ℓmax∑
i=1

2i

N ≤ 2ℓmax+1 − 1

N

2
+ 1 = 2ℓmax

log

(
N

2
+ 1

)
= ℓmax

ℓmax = O(log (N))
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Heaps

The Heap Data Structure

public void pushHeap(T element)

Place an item onto the heap.

public T popHeap()

Remove the least item from the heap.

public T peekHeap()

Peek at the least element on the heap.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Heaps

pushHeap

Idea: Insert element at next available spot, then fix

53

6

7 9

835

10 E38

How many steps did fixing it take?
(2)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Heaps

pushHeap

1 public void fixUp(Node current)

2 {

3 Node parent = current.parent;

4

5 while(current.value > parent.value){

6

7 swap(current.value, parent.value);

8

9 current = parent; parent = current.parent;

10 }

11 }

What’s the complexity? (how many swaps are required?)
swaps = O(depth) =

O(log(N)), because the tree is complete

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Heaps

popHeap

Idea: Replace root with ’last’ element.

173

374

477

8 7E

7

5

8 7

≤

≤

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Heaps

popHeap

1 public void fixDown(Node current)

2 {

3 Node left = current.leftChild;

4 Node right = current.rightChild;

5

6 while(current.value < left.value OR

7 current.value < right.value){

8

9 Node nodeToSwap = min(left, right);

10

11 swap(current.value, nodeToSwap.value);

12

13 current = nodeToSwap; left = current.left;

14 right = current.right

15 }

16 }

What’s the complexity? (O(depth)) (= O(log(N) for this tree)
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Heaps

Priority Queues

Operation Lazy Proactive Heap
add O(1) O(N) O(log(N))

remove O(N) O(1) O(log(N))
peek O(N) O(1) O(1)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Heaps

Storing Heaps

Each layer has a maximum size (2ℓ)

Each layer grows left-to-right

Only the last layer grows

Idea: Use an ArrayList to store the heap.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Heaps

Storing Heaps

1

2

4

8 9

5

10 11

3

6

12

7

1

1 2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

Enqueue always

inserts at the end

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Heaps

Array Heap

pushHeap Amortized O(log(N)), Unqualified O(N)

Append to ArrayList O(N); Amortized O(1)
fixUp O(log(N))

popHeap Unqualified O(log(N))

Replace index 0 w/ Last Element O(1)
fixDown O(log(N))

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Priority Queues, Heaps

Heaps

Heap Priority Queue

public void add(T elem)

pushHeap(elem)

public T remove()

return popHeap();

public T peek(T)

Return the item at the top of the heap.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

