CSE 250: Priority Queues, Heaps Lecture 22

Oct 25, 2023

C 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Reminders

PA2: Implement Map Routing

- 1 Create an adjacency list (discussed today)
- 2 Find a path from A to B with the fewest intersections
- **3** Find a path from A to B with the shortest distance

PA2 implementation due Sun, Nov 5 at 11:59 PM

New ADT: Priority Queue

PriorityQueue<E> (E must be ComparableComparable)

- public void add(E e): Add e to the queue.
- public E peek(): Return the leastleast element added.
- public E remove(): Remove and return the leastleast element added.

Lazy Priority Queue

Base Data Structure: Linked List

- public void add(T v) O(1) Append v to the end of the linked list.
- public T remove() O(N)
 Traverse the list to find the least value and remove it.

Proactive Priority Queue

Base Data Structure: Linked List

O(N)public void add(T v) Traverse the list to insert v in sorted order.

O(1)

public T remove() Remove the head of the list. Recap

Sorting with a Priority Queue

```
public List<T> prioritySort(List<T> items,
1
                                    PriorityQueue<T> pqueue)
2
     ł
3
       T[] out = new T[items.size];
4
       for( item : items ){ pqueue.add(item) }
5
       for( int i = 0; i < items.size; i++ )</pre>
6
       ł
7
         out[i] = items.remove()
8
       }
9
       return Arrays.asList(out)
10
     }
11
```

With a lazy, or proactive queue, this is $O(N^2)$?

Recap

Priority Queues

Operation	Lazy	Proactive
add	O(1)	<i>O</i> (<i>N</i>)
remove	O(N)	O(1)
peek	<i>O</i> (<i>N</i>)	O(1)

Can we do better?

Priority Queues

Lazy

Fast Enqueue, Slow Dequeue

Proactive

Slow Engueue, Fast Degueue

■ ???

Fast(ish) Enqueue, Fast(ish) Dequeue

Idea: Keep the priority queue "kinda" sorted.

- Keep larger items closer to the frontroot of the listtree.
- The closer we are to the front of the listtree, the more sorted it gets.

Challenge: How do we keep track of which items are sorted?

Trees

Child

An adjacent node connected by an out-edge

Leaf

A node with no children

Depth of a node The number of edges from the root to the node

Depth of a tree

The maximum depth of any node in the tree

• Level of a node The depth + 1

Priority Queue as a Tree

- \blacksquare Directed A directed edge in the tree means \leq
- Binary (max 2 children, easy to reason about)
- **Complete** (every 'level' except last is full)
 - For consistency, keep all nodes in the last level to the left.

This is a Min-Heap

Valid Min-Heaps

Invalid Min-Heaps

What is the depth of a **binary** heap containing N items?

- Level 1: up to 1 item
- Level 2: up to 2 items
- Level 3: up to 4 items
- Level 4: up to 8 items
- Level 5: up to 16 items
- Level ℓ : up to 2^{ℓ} items

$$N \leq 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + \ldots + 2^{\ell_{max}}$$

What is the smallest allowable value of ℓ_{max} ?

. . .

What is the smallest allowable value of ℓ_{max} ?

$$\begin{split} & \mathsf{N} \leq \sum_{i=1}^{\ell_{max}} 2^i \\ & \mathsf{N} \leq 2^{\ell_{max}+1} - 1 \\ & \frac{\mathsf{N}}{2} + 1 = 2^{\ell_{max}} \\ & \log\left(\frac{\mathsf{N}}{2} + 1\right) = \ell_{max} \end{split}$$

$$\ell_{max} = O(\log{(N)})$$

The Heap Data Structure

- public void pushHeap(T element) Place an item onto the heap.
- public T popHeap() Remove the least item from the heap.
- public T peekHeap()
 Peek at the least element on the heap.

pushHeap

Idea: Insert element at next available spot, then fix

How many steps did fixing it take? (2)

pushHeap

```
public void fixUp(Node current)
1
2
       Ł
         Node parent = current.parent;
3
4
         while(current.value > parent.value){
5
6
           swap( current.value, parent.value );
7
8
           current = parent; parent = current.parent;
9
         }
10
       }
11
```

What's the complexity? (how many swaps are required?) # swaps = O(depth) = $O(\log(N))$, because the tree is complete

popHeap

Idea: Replace root with 'last' element.

popHeap

```
public void fixDown(Node current)
1
   ł
2
     Node left = current.leftChild;
3
     Node right = current.rightChild;
4
5
     while(current.value < left.value OR
6
           current.value < right.value){</pre>
7
8
       Node nodeToSwap = min(left, right);
9
10
       swap( current.value, nodeToSwap.value );
11
12
       current = nodeToSwap; left = current.left;
13
                               right = current.right
14
     3
15
  }
16
```

What's the complexity? $(O(depth)) (= O(\log(N) \text{ for this tree})$

Operation	Lazy	Proactive	Heap
add	O(1)	O(N)	$O(\log(N))$
remove	O(N)	O(1)	$O(\log(N))$
peek	O(N)	O(1)	O(1)

Storing Heaps

- Each layer has a maximum size (2^{ℓ})
- Each layer grows left-to-right
- Only the last layer grows

Idea: Use an ArrayList to store the heap.

Storing Heaps

Array Heap

- pushHeap Amortized O(log(N)), Unqualified O(N)
 Append to ArrayList O(N); Amortized O(1)
 - fixUp

fixDown

Replace index 0 w/ Last Element

popHeap

Unqualified $O(\log(N))$ O(1) $O(\log(N))$

 $O(\log(N))$

└─ Heaps

Heap Priority Queue

public void add(T elem)

pushHeap(elem)

public T remove()

return popHeap();

public T peek(T)

Return the item at the top of the heap.