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Announcements

● [put announcement here]
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Heapify

Input: Array

Output: Array re-ordered to be a heap

Idea: fixUp or fixDown all n elements in the array
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Heapify
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Given an arbitrary array 
(shown as a tree here) 
turn it into a heap
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Heapify
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Start at the lowest level, 
and call fixDown on each 
node (0 swaps per node)
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Heapify
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Do the same at the next 
lowest level (at most one 
swap per node)
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Heapify
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Do the same at the next 
lowest level (at most one 
swap per node)

✓
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Heapify
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Continue upwards (now at 
most 2 swaps per node)
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Heapify

1

4 6

108 2 7

Continue upwards (now at 
most 2 swaps per node)
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Heapify
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Continue upwards (now at 
most 2 swaps per node)
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Heapify

1

4 1

108 6 7

Continue upwards (now at 
most 2 swaps per node)
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✓



Heapify
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Heapify

At level log(n): Call fixDown on all n/2 nodes at this level (max 0 swaps each)

13



Heapify

At level log(n): Call fixDown on all n/2 nodes at this level (max 0 swaps each)

At level log(n)-1: Call fixDown on all n/4 nodes at this level (max 1 swaps each)
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Heapify

At level log(n): Call fixDown on all n/2 nodes at this level (max 0 swaps each)

At level log(n)-1: Call fixDown on all n/4 nodes at this level (max 1 swaps each)

At level log(n)-2: Call fixDown on all n/8 nodes at this level (max 2 swaps each)
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Heapify

At level log(n): Call fixDown on all n/2 nodes at this level (max 0 swaps each)

At level log(n)-1: Call fixDown on all n/4 nodes at this level (max 1 swaps each)

At level log(n)-2: Call fixDown on all n/8 nodes at this level (max 2 swaps each)

…

At level 1: Call fixDown on all 1 nodes at this level (max log(n) swaps each)
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Heapify
Sum the number of swaps 
required by each level
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Heapify
Pull out the n as a 
constant and distribute 
multiplication
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Heapify
Focus on the dominant 
term only
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Heapify
Change log(n) to infinity 
(can only increase 
complexity class if 
anything)
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Heapify
We can now treat the sum 
as a constant

This is known to 
converge to a constant
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Heapify
Therefore we can heapify 
an array of size n in O(n)
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Heapify
Therefore we can heapify 
an array of size n in O(n)

(but heap sort still 
requires n log(n) due to 
dequeue costs)
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Heapify

Consider the time required to add n items to a heap:
● Each add takes O(log(n))
● In total, n adds will take O(n log(n))
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Heapify

Consider the time required to add n items to a heap:
● Each add takes O(log(n))
● In total, n adds will take O(n log(n))

Now, consider the time required to turn n items into a heap with heapify:
● The total cost of heapify is O(n)
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Heapify

Consider the time required to add n items to a heap:
● Each add takes O(log(n))
● In total, n adds will take O(n log(n))

Now, consider the time required to turn n items into a heap with heapify:
● The total cost of heapify is O(n)

Often we can save time by performing a task in one big batch on all of the 
data, rather than handling each element one at a time
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Another Example

What is the cost to add n items to a sorted list, one at a time?
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Another Example

What is the cost to add n items to a sorted list, one at a time?
● Each item requires O(n) to add
● Adding all n items requires O(n2) total
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Another Example

What is the cost to add n items to a sorted list, one at a time?
● Each item requires O(n) to add
● Adding all n items requires O(n2) total

What is the cost to sort n items in a list?
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Another Example

What is the cost to add n items to a sorted list, one at a time?
● Each item requires O(n) to add
● Adding all n items requires O(n2) total

What is the cost to sort n items in a list?
● Using Merge Sort or Heap Sort, it would take O(n log(n))
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Heaps as Priority Queues

We now have an efficient implementation of the PriorityQueue ADT
● Java's PriorityQueue implementation uses a heap as well
● By default, it's a min heap, but can use a custom comparator as well
● Now we have what we need to revisit the shortest path problem
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Shortest Paths

Home Grandmama's 
House

Over the river
Through the woods

Across the treacherous mountains

BFS will always find the path with the fewest edges…

Not all edges in a real world graph are necessarily created equal!
Which path is actually the best/shortest?
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Desired Exploration Order - Closest Vertex
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C is 6 away from A

F is only 5 away…it is the 
closest unexplored vertex to A
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public void BFS(Graph graph, Vertex v) {

  Queue<TodoEntry> todo = new Queue<>();

  v.setLabel(VISITED);

  todo.enqueue(new TodoEntry(v,0));

  while (!todo.isEmpty()) {

    TodoEntry curr = todo.dequeue();

    for (Edge e : curr.vertex.outEdges) {

      if (e.label == UNEXPLORED) {

        Vertex w = e.to;

        if (w.label == UNEXPLORED) {

          w.setLabel(VISITED);

          todo.enqueue(new TodoEntry(w, curr.weight + e.weight));

        }

      }

    }

  }

} 41

We want to be able to dequeue 
in order of weight…but how?
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public void ShortestPath(Graph graph, Vertex v) {

  PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

  v.setLabel(VISITED);

  todo.add(new TodoEntry(v,0));

  while (!todo.isEmpty()) {

    TodoEntry curr = todo.poll();

    for (Edge e : curr.vertex.outEdges) {

      if (e.label == UNEXPLORED) {

        Vertex w = e.to;

        if (w.label == UNEXPLORED) {

          w.setLabel(VISITED);

          todo.add(new TodoEntry(w, curr.weight + e.weight));

        }

      }

    }

  }

} 42

Use a PriorityQueue (with lower 
weights having high priority)

Is this enough?
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PriorityQueue Attempt #1
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PriorityQueue
(A, 0)

Remove (A, 0) from the PriorityQueue…



PriorityQueue Attempt #1
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PriorityQueue
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Remove (A, 0) from the PriorityQueue…
…and add it's neighbors



PriorityQueue Attempt #1
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(E,40) We've just marked E as visited! Have we found the 

shortest path to E?



PriorityQueue Attempt #1
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PriorityQueue
(A, 0)
(B,6)
(D,3)
(F,5)
(E,40) We've just marked E as visited! Have we found the 

shortest path to E?
When should we consider something VISITED?
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public void ShortestPath(Graph graph, Vertex v) {

  PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

  v.setLabel(VISITED);

  todo.add(new TodoEntry(v,0));

  while (!todo.isEmpty()) {

    TodoEntry curr = todo.poll();

    for (Edge e : curr.vertex.outEdges) {

      if (e.label == UNEXPLORED) {

        Vertex w = e.to;

        if (w.label == UNEXPLORED) {

          w.setLabel(VISITED);

          todo.add(new TodoEntry(w, curr.weight + e.weight));

        }

      }

    }

  }

} 48

When we add w to the 
PriorityQueue, there still may 
be other shorter paths, so we 
can't consider w VISITED yet
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public void ShortestPath(Graph graph, Vertex v) {

  PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

  v.setLabel(VISITED);

  todo.add(new TodoEntry(v,0));

  while (!todo.isEmpty()) {

    TodoEntry curr = todo.poll();

    for (Edge e : curr.vertex.outEdges) {

      if (e.label == UNEXPLORED) {

        Vertex w = e.to;

        if (w.label == UNEXPLORED) {

          w.setLabel(VISITED);

          todo.add(new TodoEntry(w, curr.weight + e.weight));

        }

      }

    }

  }

} 49

When we add w to the 
PriorityQueue, there still may 
be other shorter paths, so we 
can't consider w VISITED yet

When can we consider a vertex visited?
In other words, when do we know we've found the shortest path to a vertex?
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public void ShortestPath(Graph graph, Vertex v) {

  PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

  v.setLabel(VISITED);

  todo.add(new TodoEntry(v,0));

  while (!todo.isEmpty()) {

    TodoEntry curr = todo.poll();

    curr.vertex.setLabel(VISITED);

    for (Edge e : curr.vertex.outEdges) {

      if (e.label == UNEXPLORED) {

        Vertex w = e.to;

        if (w.label == UNEXPLORED) { 

          todo.add(new TodoEntry(w, curr.weight + e.weight));

        }

      }

    }

  }

} 50

How about when we dequeue?

When can we consider a vertex visited?
In other words, when do we know we've found the shortest path to a vertex?
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PriorityQueue Attempt #2
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Mark A as VISITED because we just dequeued it. We now know 
there's no better path to A



PriorityQueue Attempt #2
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Mark A as VISITED because we just dequeued it. We now know 
there's no better path to A

Add the neighbors of A to the Priority Queue, but don't mark as 
VISITED yet
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Mark D as visited because we've found the shortest path to 
D. What should we add to the PQ now?



PriorityQueue Attempt #2
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We know now we could get to B in at least 5, and C in at 
most 13.
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PriorityQueue Attempt #2
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We've already visited B so we can ignore this
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PriorityQueue Attempt #2
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We've dequeued E, so we've found the shortest 
possible path to get there! (Anything else still left in 
the PriorityQueue is a longer path)
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public void Djikstras(Graph graph, Vertex v) {

  PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

  todo.add(new TodoEntry(v,0));

  while (!todo.isEmpty()) {

    TodoEntry curr = todo.poll();

    if (curr.vertex.label == UNEXPLORED) {

      curr.vertex.setLabel(VISITED);

      for (Edge e : curr.vertex.outEdges) {

        Vertex w = e.to;

        if (w.label == UNEXPLORED) { 

          todo.add(new TodoEntry(w, curr.weight + e.weight));

        }

      }

    }

  }

}

61
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public void Djikstras(Graph graph, Vertex v) {

  PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

  todo.add(new TodoEntry(v,0));

  while (!todo.isEmpty()) {

    TodoEntry curr = todo.poll();

    if (curr.vertex.label == UNEXPLORED) {

      curr.vertex.setLabel(VISITED);

      for (Edge e : curr.vertex.outEdges) {

        Vertex w = e.to;

        if (w.label == UNEXPLORED) { 

          todo.add(new TodoEntry(w, curr.weight + e.weight));

        }

      }

    }

  }

}

62

Create a new PriorityQueue and 
insert the starting point with a 
distance of 0
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public void Djikstras(Graph graph, Vertex v) {

  PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

  todo.add(new TodoEntry(v,0));

  while (!todo.isEmpty()) {

    TodoEntry curr = todo.poll();

    if (curr.vertex.label == UNEXPLORED) {

      curr.vertex.setLabel(VISITED);

      for (Edge e : curr.vertex.outEdges) {

        Vertex w = e.to;

        if (w.label == UNEXPLORED) { 

          todo.add(new TodoEntry(w, curr.weight + e.weight));

        }

      }

    }

  }

}

63

When we pull something out of the 
PriorityQueue, if it is still 
UNEXPLORED then we just found 
the shortest path to that vertex, and 
we can mark it as VISITED
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public void Djikstras(Graph graph, Vertex v) {

  PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

  todo.add(new TodoEntry(v,0));

  while (!todo.isEmpty()) {

    TodoEntry curr = todo.poll();

    if (curr.vertex.label == UNEXPLORED) {

      curr.vertex.setLabel(VISITED);

      for (Edge e : curr.vertex.outEdges) {

        Vertex w = e.to;

        if (w.label == UNEXPLORED) { 

          todo.add(new TodoEntry(w, curr.weight + e.weight));

        }

      }

    }

  }

}

64

Add each unexplored neighbor to the PriorityQueue.
Set it's distance equal to our current distance plus the weight of the 
edge to get to the neighbor.
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public void Djikstras(Graph graph, Vertex v) {

  PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

  todo.add(new TodoEntry(v,0));

  while (!todo.isEmpty()) {

    TodoEntry curr = todo.poll();

    if (curr.vertex.label == UNEXPLORED) {

      curr.vertex.setLabel(VISITED);

      for (Edge e : curr.vertex.outEdges) {

        Vertex w = e.to;

        if (w.label == UNEXPLORED) { 

          todo.add(new TodoEntry(w, curr.weight + e.weight));

        }

      }

    }

  }

}

65

What is the complexity?
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public void Djikstras(Graph graph, Vertex v) {

  PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

  todo.add(new TodoEntry(v,0));

  while (!todo.isEmpty()) {

    TodoEntry curr = todo.poll();

    if (curr.vertex.label == UNEXPLORED) {

      curr.vertex.setLabel(VISITED);

      for (Edge e : curr.vertex.outEdges) {

        Vertex w = e.to;

        if (w.label == UNEXPLORED) { 

          todo.add(new TodoEntry(w, curr.weight + e.weight));

        }

      }

    }

  }

}

66

What is the complexity?

We know removal from a 
PriorityQueue is 

O(log(todo.size())

How big can todo get?
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public void Djikstras(Graph graph, Vertex v) {

  PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

  todo.add(new TodoEntry(v,0));

  while (!todo.isEmpty()) {

    TodoEntry curr = todo.poll();

    if (curr.vertex.label == UNEXPLORED) {

      curr.vertex.setLabel(VISITED);

      for (Edge e : curr.vertex.outEdges) {

        Vertex w = e.to;

        if (w.label == UNEXPLORED) { 

          todo.add(new TodoEntry(w, curr.weight + e.weight));

        }

      }

    }

  }

}

67

What is the complexity?

We know removal from a 
PriorityQueue is 

O(log(todo.size())

How big can todo get? |E|

Each vertex may be added once per incoming edge. So 
the size of the PriorityQueue can get as large as |E|
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public void Djikstras(Graph graph, Vertex v) {

  PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

  todo.add(new TodoEntry(v,0));

  while (!todo.isEmpty()) {

    TodoEntry curr = todo.poll();

    if (curr.vertex.label == UNEXPLORED) {

      curr.vertex.setLabel(VISITED);

      for (Edge e : curr.vertex.outEdges) {

        Vertex w = e.to;

        if (w.label == UNEXPLORED) { 

          todo.add(new TodoEntry(w, curr.weight + e.weight));

        }

      }

    }

  }

}

68

What is the complexity? O(|V| + |E| log(|E|))

We know removal from a 
PriorityQueue is 

O(log(todo.size())

How big can todo get? |E|

Label the |V| vertices |E| adds/removes to the PriorityQueue



Djikstra's Algorithm

● Many tweaks can be made
○ What if instead of enqueuing a vertex we've already seen we just update 

the existing value in our heap?
○ How can we track the actual path?

■ Build a map of reverse lookups (just like for BFS/DFS)


