
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 24: Shortest Path (revisited)

mailto:epmikida@buffalo.edu

Announcements

● [put announcement here]

2

Heapify

Input: Array

Output: Array re-ordered to be a heap

Idea: fixUp or fixDown all n elements in the array

3

Heapify

6

4 7

108 2 1

Given an arbitrary array
(shown as a tree here)
turn it into a heap

4

Heapify

6

4 7

108 2 1

Start at the lowest level,
and call fixDown on each
node (0 swaps per node)

5

Heapify

6

4 7

108 2 1

Do the same at the next
lowest level (at most one
swap per node)

6

Heapify

6

4 1

108 2 7

Do the same at the next
lowest level (at most one
swap per node)

✓

7

Heapify

6

4 1

108 2 7

Continue upwards (now at
most 2 swaps per node)

8

Heapify

1

4 6

108 2 7

Continue upwards (now at
most 2 swaps per node)

9

Heapify

1

4 1

108 6 7

Continue upwards (now at
most 2 swaps per node)

10

Heapify

1

4 1

108 6 7

Continue upwards (now at
most 2 swaps per node)

11

✓

Heapify

12

Heapify

At level log(n): Call fixDown on all n/2 nodes at this level (max 0 swaps each)

13

Heapify

At level log(n): Call fixDown on all n/2 nodes at this level (max 0 swaps each)

At level log(n)-1: Call fixDown on all n/4 nodes at this level (max 1 swaps each)

14

Heapify

At level log(n): Call fixDown on all n/2 nodes at this level (max 0 swaps each)

At level log(n)-1: Call fixDown on all n/4 nodes at this level (max 1 swaps each)

At level log(n)-2: Call fixDown on all n/8 nodes at this level (max 2 swaps each)

15

Heapify

At level log(n): Call fixDown on all n/2 nodes at this level (max 0 swaps each)

At level log(n)-1: Call fixDown on all n/4 nodes at this level (max 1 swaps each)

At level log(n)-2: Call fixDown on all n/8 nodes at this level (max 2 swaps each)

…

At level 1: Call fixDown on all 1 nodes at this level (max log(n) swaps each)

16

Heapify
Sum the number of swaps
required by each level

17

Heapify
Pull out the n as a
constant and distribute
multiplication

18

Heapify
Focus on the dominant
term only

19

Heapify
Change log(n) to infinity
(can only increase
complexity class if
anything)

20

Heapify
We can now treat the sum
as a constant

This is known to
converge to a constant

21

Heapify
Therefore we can heapify
an array of size n in O(n)

22

Heapify
Therefore we can heapify
an array of size n in O(n)

(but heap sort still
requires n log(n) due to
dequeue costs)

23

Heapify

Consider the time required to add n items to a heap:
● Each add takes O(log(n))
● In total, n adds will take O(n log(n))

24

Heapify

Consider the time required to add n items to a heap:
● Each add takes O(log(n))
● In total, n adds will take O(n log(n))

Now, consider the time required to turn n items into a heap with heapify:
● The total cost of heapify is O(n)

25

Heapify

Consider the time required to add n items to a heap:
● Each add takes O(log(n))
● In total, n adds will take O(n log(n))

Now, consider the time required to turn n items into a heap with heapify:
● The total cost of heapify is O(n)

Often we can save time by performing a task in one big batch on all of the
data, rather than handling each element one at a time

26

Another Example

What is the cost to add n items to a sorted list, one at a time?

27

Another Example

What is the cost to add n items to a sorted list, one at a time?
● Each item requires O(n) to add
● Adding all n items requires O(n2) total

28

Another Example

What is the cost to add n items to a sorted list, one at a time?
● Each item requires O(n) to add
● Adding all n items requires O(n2) total

What is the cost to sort n items in a list?

29

Another Example

What is the cost to add n items to a sorted list, one at a time?
● Each item requires O(n) to add
● Adding all n items requires O(n2) total

What is the cost to sort n items in a list?
● Using Merge Sort or Heap Sort, it would take O(n log(n))

30

Heaps as Priority Queues

We now have an efficient implementation of the PriorityQueue ADT
● Java's PriorityQueue implementation uses a heap as well
● By default, it's a min heap, but can use a custom comparator as well
● Now we have what we need to revisit the shortest path problem

31

Shortest Paths

Home Grandmama's
House

Over the river
Through the woods

Across the treacherous mountains

BFS will always find the path with the fewest edges…

Not all edges in a real world graph are necessarily created equal!
Which path is actually the best/shortest?

Desired Exploration Order - Closest Vertex

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

A

B

C

D E

SPANNING

CROSS

6 40

2
3

1
10

4

5

4

F

Desired Exploration Order - Closest Vertex

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

A

B

C

D E

SPANNING

CROSS

6 40

2
3

1
10

4

✓

5

4

F

Desired Exploration Order - Closest Vertex

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

A

B

C

D E

SPANNING

CROSS

6 40

2
3

1
10

4

✓

✓

5

4

F

Desired Exploration Order - Closest Vertex

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

A

B

C

D E

SPANNING

CROSS

6 40

2
3

1
10

4

✓ ✓

✓

5

4

F

Desired Exploration Order - Closest Vertex

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

A

B

C

D E

SPANNING

CROSS

6 40

2
3

1
10

4

✓ ✓

✓

5

4

C is 6 away from A

F is only 5 away…it is the
closest unexplored vertex to A

F

Desired Exploration Order - Closest Vertex

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

A

B

C

D E

SPANNING

CROSS

6 40

2
3

1
10

4

✓

✓ ✓

✓

5

4

F

Desired Exploration Order - Closest Vertex

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

A

B

C

D E

SPANNING

CROSS

6 40

2
3

1
10

4

✓

✓ ✓

✓

✓

5

4

F

Desired Exploration Order - Closest Vertex

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

A

B

C

D E

SPANNING

CROSS

6 40

2
3

1
10

4

✓

✓ ✓

✓

✓

✓

5

4
Path Found!

F

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void BFS(Graph graph, Vertex v) {

 Queue<TodoEntry> todo = new Queue<>();

 v.setLabel(VISITED);

 todo.enqueue(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.dequeue();

 for (Edge e : curr.vertex.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 todo.enqueue(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

} 41

We want to be able to dequeue
in order of weight…but how?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void ShortestPath(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 v.setLabel(VISITED);

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 for (Edge e : curr.vertex.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

} 42

Use a PriorityQueue (with lower
weights having high priority)

Is this enough?

PriorityQueue Attempt #1

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

A

B

C

D E

SPANNING

CROSS

6 40

2
3

1
10

4

✓

5

4

F

PriorityQueue
(A, 0)

PriorityQueue Attempt #1

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

A

B

C

D E

SPANNING

CROSS

6 40

2
3

1
10

4

✓

5

4

F

PriorityQueue
(A, 0)

Remove (A, 0) from the PriorityQueue…

PriorityQueue Attempt #1

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

A

B

C

D E

SPANNING

CROSS

6 40

2
3

1
10

4

✓

✓ ✓

✓

✓

5

4

F

PriorityQueue
(A, 0)
(B,6)
(D,3)
(F,5)
(E,40)

Remove (A, 0) from the PriorityQueue…
…and add it's neighbors

PriorityQueue Attempt #1

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

A

B

C

D E

SPANNING

CROSS

6 40

2
3

1
10

4

✓

✓ ✓

✓

✓

5

4

F

PriorityQueue
(A, 0)
(B,6)
(D,3)
(F,5)
(E,40) We've just marked E as visited! Have we found the

shortest path to E?

PriorityQueue Attempt #1

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

A

B

C

D E

SPANNING

CROSS

6 40

2
3

1
10

4

✓

✓ ✓

✓

✓

5

4

F

PriorityQueue
(A, 0)
(B,6)
(D,3)
(F,5)
(E,40) We've just marked E as visited! Have we found the

shortest path to E?
When should we consider something VISITED?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void ShortestPath(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 v.setLabel(VISITED);

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 for (Edge e : curr.vertex.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

} 48

When we add w to the
PriorityQueue, there still may
be other shorter paths, so we
can't consider w VISITED yet

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void ShortestPath(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 v.setLabel(VISITED);

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 for (Edge e : curr.vertex.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

} 49

When we add w to the
PriorityQueue, there still may
be other shorter paths, so we
can't consider w VISITED yet

When can we consider a vertex visited?
In other words, when do we know we've found the shortest path to a vertex?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void ShortestPath(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 v.setLabel(VISITED);

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

} 50

How about when we dequeue?

When can we consider a vertex visited?
In other words, when do we know we've found the shortest path to a vertex?

PriorityQueue Attempt #2

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

A

B

C

D E

6 40

2
3

1
10

4

5

4

F

PriorityQueue
(A, 0)

PriorityQueue Attempt #2

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

PriorityQueue
(A, 0)

A

B

C

D E

6 40

2
3

1
10

4

✓

5

4

F

Mark A as VISITED because we just dequeued it. We now know
there's no better path to A

PriorityQueue Attempt #2

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

PriorityQueue
(A, 0)
(B,6)
(D,3)
(F,5)
(E,40)

A

B

C

D E

6 40

2
3

1
10

4

✓

5

4

F

Mark A as VISITED because we just dequeued it. We now know
there's no better path to A

Add the neighbors of A to the Priority Queue, but don't mark as
VISITED yet

PriorityQueue Attempt #2

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

PriorityQueue
(A, 0)
(B,6)
(D,3)
(F,5)
(E,40)

A

B

C

D E

6 40

2
3

1
10

4

✓

✓

5

4

F

Mark D as visited because we've found the shortest path to
D. What should we add to the PQ now?

PriorityQueue Attempt #2

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

PriorityQueue
(A, 0)
(B,6)
(D,3)
(F,5)
(E,40)
(B,5)
(C,13)

A

B

C

D E

6 40

2
3

1
10

4

✓

✓

5

4

F

We know now we could get to B in at least 5, and C in at
most 13.

PriorityQueue Attempt #2

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

PriorityQueue
(A, 0)
(B,6)
(D,3)
(F,5)
(E,40)
(B,5)
(C,13)
(E,9)

A

B

C

D E

6 40

2
3

1
10

4

✓

✓

✓

5

4

F

PriorityQueue Attempt #2

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

PriorityQueue
(A, 0)
(B,6)
(D,3)
(F,5)
(E,40)
(B,5)
(C,13)
(E,9)
(C,6)

A

B

C

D E

6 40

2
3

1
10

4

✓

✓ ✓

✓

5

4

F

PriorityQueue Attempt #2

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

PriorityQueue
(A, 0)
(B,6)
(D,3)
(F,5)
(E,40)
(B,5)
(C,13)
(E,9)
(C,6)

A

B

C

D E

6 40

2
3

1
10

4

✓

✓ ✓

✓

5

4

F

We've already visited B so we can ignore this

PriorityQueue Attempt #2

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

PriorityQueue
(A, 0)
(B,6)
(D,3)
(F,5)
(E,40)
(B,5)
(C,13)
(E,9)
(C,6)
(E,10)

A

B

C

D E

6 40

2
3

1
10

4

✓

✓ ✓

✓

✓

5

4

F

PriorityQueue Attempt #2

✓

UNEXPLORED

START

TARGET

VISITED

UNEXPLORED

PriorityQueue
(A, 0)
(B,6)
(D,3)
(F,5)
(E,40)
(B,5)
(C,13)
(E,9)
(C,6)
(E,10)

A

B

C

D E

6 40

2
3

1
10

4

✓

✓ ✓

✓

✓

✓

5

4

F

We've dequeued E, so we've found the shortest
possible path to get there! (Anything else still left in
the PriorityQueue is a longer path)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

62

Create a new PriorityQueue and
insert the starting point with a
distance of 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

63

When we pull something out of the
PriorityQueue, if it is still
UNEXPLORED then we just found
the shortest path to that vertex, and
we can mark it as VISITED

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

64

Add each unexplored neighbor to the PriorityQueue.
Set it's distance equal to our current distance plus the weight of the
edge to get to the neighbor.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

65

What is the complexity?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

66

What is the complexity?

We know removal from a
PriorityQueue is

O(log(todo.size())

How big can todo get?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

67

What is the complexity?

We know removal from a
PriorityQueue is

O(log(todo.size())

How big can todo get? |E|

Each vertex may be added once per incoming edge. So
the size of the PriorityQueue can get as large as |E|

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

68

What is the complexity? O(|V| + |E| log(|E|))

We know removal from a
PriorityQueue is

O(log(todo.size())

How big can todo get? |E|

Label the |V| vertices |E| adds/removes to the PriorityQueue

Djikstra's Algorithm

● Many tweaks can be made
○ What if instead of enqueuing a vertex we've already seen we just update

the existing value in our heap?
○ How can we track the actual path?

■ Build a map of reverse lookups (just like for BFS/DFS)

