CSE 250: Binary Search Trees Lecture 25

Oct 30, 2023

C 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Reminders

PA2: Implement Map Routing

- 1 Create an adjacency list (discussed today)
- 2 Find a path from A to B with the fewest intersections
- **3** Find a path from A to B with the shortest distance

PA2 implementation due Sun, Nov 5 at 11:59 PM

Recap

Trees

Child

An adjacent node connected by an out-edge

Leaf

A node with no children

Depth of a node The number of edges from the root to the node

Depth of a tree

The maximum depth of any node in the tree

• Level of a node The depth + 1

Collections

Sequence/List

An ordered collection of non-unique elements

Set

An unordered collection of unique elements

Bag

An unordered collection of non-unique elements

Recap

Heap Sort

Recap

Heaps

- Binary Tree
 - Each element has (at most) 2 children.
- Heap Constraint
 - Each node is lesser than its descendants.
- **Complete** Tree
 - Each level (except the last) is full.

CSE 250: Binary Search Trees

Binary Search

CSE 250: Binary Search Trees

Binary Search Trees

Binary Search [Tree]

Binary Tree

Each element has (at most) 2 children.

Binary Search Tree Constraint

- Each node has a value.
- Each node's value is greater than its left descendants
- Each node's value is lesser than (or equal to) its right descendants
- Set Constraint [optional]
 - Each node's value is unique.

We'll work with sets at first.

Binary Search Trees

```
public class TreeNode<T>
{
    T value;
    Optional< TreeNode<T> left = Optional.empty();
    Optional< TreeNode<T> right = Optional.empty();
    /* ... */
    }
```

Binary Search Trees - Find

Find

For the current node (starting at the root):

- Is the target element...
 - ... equal to the value at this node?
 - Return the value at this node
 - ... lesser than the value at this node?
 - Recur down the left tree
 - ... greater than the value at this node?
 - Recur down the right tree

Binary Search Trees - Find

```
public Optional<T> find(T elem)
1
2
     Ł
       if(elem.equals(value)){ return Optional.of(value); }
3
       if(elem.compareTo(value) < 0){</pre>
4
         if(left.isPresent){ return left.get().find(elem); }
5
         else {
                                return Optional.empty(); }
6
       } else {
7
         if(right.isPresent){ return right.get().find(elem); }
8
         else {
                                return Optional.empty(); }
9
       }
10
     }
11
```

Binary Search Trees - Find

What's the worst-case (Big-O) complexity of find?

$$T(ext{node}) < egin{cases} 0 & ext{if node.isEmpty} \ 1 + ext{max}(T(ext{node.left}), & \ T(ext{node.right})) & ext{otherwise} \end{cases}$$

This is the **depth** of the tree.

Binary Search Trees - Insert

Insert

For the current node (starting at the root):

- Is the target element...
 - ... equal to the value at this node?
 - Ignore: No duplicates in a set (If bag, recur right instead)
 - ... lesser than the value at this node?
 - If the left tree is empty, insert there
 - Otherwise, recur down the left tree
 - ... greater than the value at this node?
 - If the right tree is empty, insert there
 - Otherwise, recur down the right tree

Binary Search Trees - Insert

```
public void insert(T elem)
1
2
       if(elem.equals(value)){ return; }
3
       if(elem.compareTo(value) < 0){</pre>
4
         if(left.isPresent){ return left.get().find(elem); }
5
         else { left = Optional.of(new TreeNode(elem));
6
                 return: }
7
       } else {
8
         if(right.isPresent){ return right.get().find(elem); }
9
         else { right = Optional.of(new TreeNode(elem));
10
                return; }
11
       }
12
     }
13
```

Binary Search Trees - Insert

What's the worst-case (Big-O) complexity of insert?

$$T(ext{node}) < egin{cases} 0 & ext{if node.isEmpty} \ 1 + ext{max}(T(ext{node.left}), & \ T(ext{node.right})) & ext{otherwise} \end{cases}$$

This is the **depth** of the tree.

Binary Search Trees - Remove

For the current node (starting at the root):

- Is the target element...
 - equal to the value at this node?
 - Remove the node from its parent
 - Replace it with the left subtree
 - Insert the right subtree under the left subtree
 - I ... lesser than the value at this node?
 - If the left tree is empty, insert there
 - Otherwise, recur down the left tree
 - ... greater than the value at this node?
 - If the right tree is empty, insert there
 - Otherwise, recur down the right tree

Binary Search Trees - Remove

What's the worst-case (Big-O) complexity of remove?

- Find the node to remove
- Reinsert the right subtree
 - **1** Option 1: Insert every element in the right subtree
 - 2 Option 2: Insert the right subtree as a batch

O(depth)

O(N)O(depth)

Total: *O*(depth)

Binary Search Trees

Operation	Runtime
find	O(d)
insert	O(d)
remove	O(d)

What's this in terms of N? (O(N))Does it need to be that bad?