
CSE 250: Binary Search Trees

CSE 250: Binary Search Trees
Lecture 25

Oct 30, 2023

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Binary Search Trees

Class Logistics

Reminders

PA2: Implement Map Routing
1 Create an adjacency list (discussed today)
2 Find a path from A to B with the fewest intersections
3 Find a path from A to B with the shortest distance

PA2 implementation due Sun, Nov 5 at 11:59 PM

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Binary Search Trees

Recap

Trees

Child
An adjacent node connected by an out-edge

Leaf
A node with no children

Depth of a node
The number of edges from the root to the node

Depth of a tree
The maximum depth of any node in the tree

Level of a node
The depth + 1

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Binary Search Trees

Recap

Collections

Sequence/List
An ordered collection of non-unique elements

Set
An unordered collection of unique elements

Bag
An unordered collection of non-unique elements

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Binary Search Trees

Recap

Heap Sort

Inputs: 7 4 8 2 5 3 9

Outputs: 2 3 4 5 7 8 9

7 44 7 8 22 72 4 5 33 8 993 98 994 9 9595 97 997 989

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Binary Search Trees

Recap

Heaps

Binary Tree

Each element has (at most) 2 children.

Heap Constraint

Each node is lesser than its descendants.

Complete Tree

Each level (except the last) is full.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Binary Search Trees

Binary Search Trees

Binary Search

1 5 33 49 77 85 88495 33

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Binary Search Trees

Binary Search Trees

Binary Search

1 5 33 49 77 85 88

49

5 33

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Binary Search Trees

Binary Search Trees

Binary Search

1 5 33 49 77 85 88

49

5

33

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Binary Search Trees

Binary Search Trees

Binary Search [Tree]

1 5 33 49 77 85 88

49

5

33

85

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Binary Search Trees

Binary Search Trees

Binary Search Trees

Binary Tree

Each element has (at most) 2 children.

Binary Search Tree Constraint

Each node has a value.
Each node’s value is greater than its left descendants
Each node’s value is lesser than (or equal to) its right
descendants

Set Constraint [optional]
Each node’s value is unique.

We’ll work with sets at first.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Binary Search Trees

Binary Search Trees

Binary Search Trees

1 public class TreeNode<T>

2 {

3 T value;

4 Optional< TreeNode<T> > left = Optional.empty();

5 Optional< TreeNode<T> > right = Optional.empty();

6

7 /* ... */

8 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Binary Search Trees

Binary Search Trees

Binary Search Trees - Find

Find
For the current node (starting at the root):

Is the target element...
... equal to the value at this node?

Return the value at this node

... lesser than the value at this node?

Recur down the left tree

... greater than the value at this node?

Recur down the right tree

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Binary Search Trees

Binary Search Trees

Binary Search Trees - Find

1 public Optional<T> find(T elem)

2 {

3 if(elem.equals(value)){ return Optional.of(value); }

4 if(elem.compareTo(value) < 0){

5 if(left.isPresent){ return left.get().find(elem); }

6 else { return Optional.empty(); }

7 } else {

8 if(right.isPresent){ return right.get().find(elem); }

9 else { return Optional.empty(); }

10 }

11 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Binary Search Trees

Binary Search Trees

Binary Search Trees - Find

What’s the worst-case (Big-O) complexity of find?

T (node) <


0 if node.isEmpty

1 + max(T (node.left),

T (node.right)) otherwise

This is the depth of the tree.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Binary Search Trees

Binary Search Trees

Binary Search Trees - Insert

Insert
For the current node (starting at the root):

Is the target element...
... equal to the value at this node?

Ignore: No duplicates in a set
(If bag, recur right instead)

... lesser than the value at this node?

If the left tree is empty, insert there
Otherwise, recur down the left tree

... greater than the value at this node?

If the right tree is empty, insert there
Otherwise, recur down the right tree

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Binary Search Trees

Binary Search Trees

Binary Search Trees - Insert

1 public void insert(T elem)

2 {

3 if(elem.equals(value)){ return; }

4 if(elem.compareTo(value) < 0){

5 if(left.isPresent){ return left.get().find(elem); }

6 else { left = Optional.of(new TreeNode(elem));

7 return; }

8 } else {

9 if(right.isPresent){ return right.get().find(elem); }

10 else { right = Optional.of(new TreeNode(elem));

11 return; }

12 }

13 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Binary Search Trees

Binary Search Trees

Binary Search Trees - Insert

What’s the worst-case (Big-O) complexity of insert?

T (node) <


0 if node.isEmpty

1 + max(T (node.left),

T (node.right)) otherwise

This is the depth of the tree.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Binary Search Trees

Binary Search Trees

Binary Search Trees - Remove

For the current node (starting at the root):

Is the target element...
... equal to the value at this node?

Remove the node from its parent
Replace it with the left subtree
Insert the right subtree under the left subtree

... lesser than the value at this node?

If the left tree is empty, insert there
Otherwise, recur down the left tree

... greater than the value at this node?

If the right tree is empty, insert there
Otherwise, recur down the right tree

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Binary Search Trees

Binary Search Trees

Binary Search Trees - Remove

What’s the worst-case (Big-O) complexity of remove?

Find the node to remove O(depth)

Reinsert the right subtree

1 Option 1: Insert every element in the right subtree O(N)
2 Option 2: Insert the right subtree as a batch O(depth)

Total: O(depth)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Binary Search Trees

Binary Search Trees

Binary Search Trees

Operation Runtime
find O(d)
insert O(d)
remove O(d)

What’s this in terms of N? (O(N))
Does it need to be that bad?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY


	Class Logistics
	Recap
	Binary Search Trees

