CSE 250

Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Lec 27: AVL Trees

Announcements

- PA2 due Sunday (last day to submit with grace days/penalty is Tues)
- WA4 coming soon
- Midterm \#2 on Friday

BST Operations

Operation	Runtime
find	$O(d)$
insert	$O(d)$
remove	$O(d)$
What is the runtime in terms of $n ? O(n)$	
$\log (n) \leq d \leq n$	

Tree Depth vs Size

If height(left) \approx height(right)

If height(left) < height(right)

Tree Depth vs Size

If height(left) \approx height(right)

If height(left) < height(right)

Keeping Depth Small - Two Approaches

Option 1
Keep tree balanced: subtrees +/-1 of each other in height
(add a field to track amount of "imbalance")

Option 2

Keep leaves at some minimum depth (d/2)
(Add a color to each node marking it as "red" or "black")

Balanced Trees

Balanced Trees are good: Faster find, insert, remove

Balanced Trees

Balanced Trees are good: Faster find, insert, remove What do we mean by balanced?

Balanced Trees

Balanced Trees are good: Faster find, insert, remove What do we mean by balanced? |height(right) - height(left)| ≤ 1

Balanced Trees

Balanced Trees are good: Faster find, insert, remove What do we mean by balanced? |height(right) - height(left)| ≤ 1 How do we keep a tree balanced?

Rebalancing Trees (rotations)

Rebalancing Trees (rotations)

Rotate(A, B)

Rebalancing Trees (rotations)

Rotate(A, B)

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Rotate(A, B)

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child Is ordering maintained?

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child Is ordering maintained? Yes!

Rotate(A, B)

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child Is ordering maintained? Yes!

Complexity?

Rotate(A, B)

Rebalancing Trees (rotations)

A became B's left child
B's left child became A's right child Is ordering maintained? Yes!

Complexity? O(1)

Rotate(A, B)

Rebalancing Trees (rotations)

A became B's left child
B's left child became A's right child Is ordering maintained? Yes!

Complexity? O(1)
This is called a left rotation
(right rotation is the opposite)

Rebalancing Trees (rotations)

A became B's left child
B's left child became A's right child Is ordering maintained? Yes!

Complexity? O(1)
How does a rotation affect height?
This is called a left rotation
(right rotation is the opposite)

Rebalancing Trees (rotations)

Before Rotation (what is the height of A?):

Rotate(A, B)

Rebalancing Trees (rotations)

> Before Rotation (what is the height of A?): $h(A)=1+\max (h(X), 1+\max (h(Y), h(Z))$

Rotate(A, B)

Rebalancing Trees (rotations)

Rebalancing Trees (rotations)

> Before Rotation (what is the height of A?): $h(A)=1+\max (h(X), 1+\max (h(Y), h(Z))$

After Rotation (what is the height of B ?): $h(B)=1+\max (1+\max (h(X), h(Y)), h(Z))$

Rebalancing Trees (rotations)

Before Rotation (what is the height of \mathbf{A} ?): $\mathrm{h}(\mathrm{A})=1+\max (\mathrm{h}(\mathrm{X}), 1+\max (\mathrm{h}(\mathrm{Y}), \mathrm{h}(\mathrm{Z}))$

After Rotation (what is the height of B ?): $h(B)=1+\max (1+\max (h(X), h(Y)), h(Z))$

- If \mathbf{X} was the tallest of $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ our total height increased by 1.
- If \mathbf{Z} was the tallest our total height decreased by 1.
- If $\mathbf{X , Z}$ same height, or \mathbf{Y} is the tallest
 then total is unchanged

B

Rebalancing Trees (rotations)

Before Rotation (what is the height of \mathbf{A} ?):

B

$h(A)=1+m a$ Therefore, a single left (or right) rotation can After Rotation change the height of the tree by +1/0/-1
$h(B)=1+\max (1+\max (h(X), h(Y)), h(Z))$

- If \mathbf{X} was the tallest of $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ our total height increased by 1 .
- If \mathbf{Z} was the tallest our total height decreased by 1 .
- If \mathbf{X}, \mathbf{Z} same height, or \mathbf{Y} is the tallest
 then total is unchanged

AVL Trees

AVL Trees

An AVL tree (Adelson-V्Velsky and Landis) is a BST where every subtree is depth-balanced Remember: Tree depth = height(root)
Balanced: |height(root.right) - height(root.left)| ≤ 1

AVL Trees

Define balance(v) = height(v.right) - height(v.Left)
Goal: Maintaining balance $(v) \in\{-1,0,1\}$

- balance $(v)=0 \quad \rightarrow$ " v is balanced"
- balance(v) = -1 \rightarrow " v is left-heavy"
- balance $(v)=1 \rightarrow " v$ is right-heavy"

AVL Trees

Define balance(v) = height(v.right) - height(v.Left)
Goal: Maintaining balance $(v) \in\{-1,0,1\}$

- balance $(v)=0 \quad \rightarrow$ " v is balanced"
- balance(v) = -1 \rightarrow " v is left-heavy"
- balance $(v)=1 \rightarrow$ " v is right-heavy"

What does enforcing this gain us?

AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth?

AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth? YES! Depth balance forces a maximum possible depth of $\log (n)$

AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth?
YES! Depth balance forces a maximum possible depth of $\log (n)$
Proof Idea: An AVL tree with depth \boldsymbol{d} has "enough" nodes

AVL Trees - Depth Bounds

Let minNodes (\boldsymbol{d}) be the min number of nodes an in AVL tree of depth \boldsymbol{d}
$\operatorname{minNodes}(0)=1$
1
$\operatorname{minNodes}(1)=2$

$\min \operatorname{Nodes}(2)=4$

AVL Trees - Depth Bounds

For any tree of depth \boldsymbol{d} :

AVL Trees - Depth Bounds

For any tree of depth \boldsymbol{d} :

At least one subtree must have depth of $\boldsymbol{d} \mathbf{- 1}$
(because total depth is \boldsymbol{d})

AVL Trees - Depth Bounds

For any tree of depth \boldsymbol{d} :

The other subtree must have a depth of at least $\boldsymbol{d} \mathbf{- 2}$ because the AVL constraint does not allow it to differ by more than 1

$h=d-1$
At least one subtree must have depth of $\boldsymbol{d} \mathbf{- 1}$
(because total depth is \boldsymbol{d})

AVL Tree - Depth Bounds

For $\boldsymbol{d}<1$: $\operatorname{minNodes}(\boldsymbol{d})=1+\operatorname{minNodes}(\boldsymbol{d}-1)+\operatorname{minNodes}(\boldsymbol{d}-2)$

AVL Tree - Depth Bounds

For $\boldsymbol{d}<1$:
$\min \operatorname{Nodes}(\boldsymbol{d})=1+\operatorname{minNodes}(\boldsymbol{d}-\mathbf{1})+\operatorname{minNodes}(\boldsymbol{d}-\mathbf{2})$
This is the Fibonacci Sequence!

AVL Tree - Depth Bounds

For $\boldsymbol{d}<1$:
$\operatorname{minNodes}(\boldsymbol{d})=1+\operatorname{minNodes}(\boldsymbol{d}-\mathbf{1})+\operatorname{minNodes}(\boldsymbol{d}-\mathbf{2})$
This is the Fibonacci Sequence!
What is the $\boldsymbol{d}^{\text {th }}$ term of the Fibonacci sequence?
Coarse approximation: $\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

AVL Tree - Depth Bounds

$\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

AVL Tree - Depth Bounds

$\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

$$
n \geq c 1.5^{d}
$$

AVL Tree - Depth Bounds

$\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

$$
n \geq c 1.5^{d}
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq \log _{2}\left(1.5^{d}\right)
$$

AVL Tree - Depth Bounds

$\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

$$
n \geq c 1.5^{d}
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq \log _{2}\left(1.5^{d}\right)
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq d \log _{2}(1.5)
$$

AVL Tree - Depth Bounds

$\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

$$
n \geq c 1.5^{d}
$$

$$
\frac{\log _{2}\left(\frac{n}{c}\right)}{\log _{2}(1.5)} \geq d
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq \log _{2}\left(1.5^{d}\right)
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq d \log _{2}(1.5)
$$

AVL Tree - Depth Bounds

$\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

$$
n \geq c 1.5^{d}
$$

$$
\frac{\log _{2}\left(\frac{n}{c}\right)}{\log _{2}(1.5)} \geq d
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq \log _{2}\left(1.5^{d}\right)
$$

$$
\frac{\left.\log _{2}(n)\right)}{\log _{2}(1.5)}-\frac{\log _{2}(c)}{\log _{2}(1.5)} \geq d
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq d \log _{2}(1.5)
$$

AVL Tree - Depth Bounds

$\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

$$
n \geq c 1.5^{d}
$$

$$
\frac{\log _{2}\left(\frac{n}{c}\right)}{\log _{2}(1.5)} \geq d
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq \log _{2}\left(1.5^{d}\right)
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq d \log _{2}(1.5)
$$

All constants

AVL Tree - Depth Bounds

$\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

$$
n \geq c 1.5^{d}
$$

$$
\frac{\log _{2}\left(\frac{n}{c}\right)}{\log _{2}(1.5)} \geq d
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq \log _{2}\left(1.5^{d}\right)
$$

$$
\frac{\left.\log _{2}(n)\right)}{\log _{2}(1.5)}-\frac{\log _{2}(c)}{\log _{2}(1.5)} \geq d
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq d \log _{2}(1.5)
$$

$$
d \in O\left(\log _{2}(n)\right)
$$

AVL Tree - Depth Bounds

$\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

$$
\begin{aligned}
& \begin{array}{l}
n \geq c 1.5^{d} \begin{array}{c}
\log _{2}\left(\frac{n}{c}\right) \\
\begin{array}{c}
\text { Therefore if we enforce the AVL } \\
\text { constraint, then a tree with } n \text { nodes } \\
\text { will have logarithmic depth }
\end{array} \\
\left.\frac{\log _{2}(1.5)}{c}\right) \geq d \\
\log _{2}(c) \\
\log _{2}(1.5)
\end{array} d d
\end{array} \\
& \log _{2}\left(\frac{n}{c}\right) \geq d \log _{2}(1.5) \\
& d \in O\left(\log _{2}(n)\right)
\end{aligned}
$$

AVL Tree - Depth Bounds

$\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

$$
\begin{aligned}
& n \geq\left. c 1.5^{d} \begin{array}{c}
\log _{2}\left(\frac{n}{c}\right) \\
\begin{array}{c}
\text { Therefore if we enforce the AVL } \\
\text { constraint, then a tree with } n \text { nodes } \\
\text { will have logarithmic depth }
\end{array} \\
\text { So how do we enforce the constraint? }
\end{array}\right|_{2} \geq d \\
& \log _{2}\left(\frac{n}{c}\right) \geq d \log _{2}(1.5) \\
& d \in O\left(\log _{2}(n)\right)
\end{aligned}
$$

Enforcing the AVL Constraint

- Computing balance() on the fly is expensive
- balance() calls height() twice
- Computing height() requires visiting every node

Enforcing the AVL Constraint

- Computing balance() on the fly is expensive
- balance() calls height() twice
- Computing height() requires visiting every node

Idea: Store height of each node at the node

Enforcing the AVL Constraint

- Computing balance() on the fly is expensive
- balance() calls height() twice
- Computing height() requires visiting every node

Idea: Store height of each node at the node
Better Idea: Just store the balance factor (only needs 2 bits)

Enforcing the AVL Constraint

```
1 public class AVLTreeNode<T> {
2 T value;
3 Optional<AVLTreeNode<T>> parent; // We need a ref to parent to rotate
4 Optional<AVLTreeNode<T>> leftChild;
5 ~ O p t i o n a l < A V L T r e e N o d e < T \gg ~ r i g h t C h i l d ;
6 Boolean isLeftHeavy; // true if height(right) - height(left) == -1
7 Boolean isRightHeavy; // true if height(right) - height(Left) == 1
8 }
```

Need to add 3 fields to our TreeNode class to make it an AVLTreeNode

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break our AVL constraint?

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break our AVL constraint?

- What is the effect on the height of insert?

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break our AVL constraint?

- What is the effect on the height of insert? Increases by at most 1

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break our AVL constraint?

- What is the effect on the height of insert? Increases by at most 1
- What is the effect on the height of remove?

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break our AVL constraint?

- What is the effect on the height of insert? Increases by at most 1
- What is the effect on the height of remove? Decreases by at most 1

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break our AVL constraint?

- What is the effect on the height of insert? Increases by at most 1
- What is the effect on the height of remove? Decreases by at most 1

Therefore after an operation that modifies an AVL tree, the difference in heights can be at most 2 .

What are the exact ways this broken constraint might show up?

Enforcing the AVL Constraint: Case 1

Enforcing the AVL Constraint: Case 1

Enforcing the AVL Constraint: Case 1

How can we fix this? rotate (A, B)

Enforcing the AVL Constraint: Case 2

Enforcing the AVL Constraint: Case 2

Enforcing the AVL Constraint: Case 2

Enforcing the AVL Constraint: Case 3

Enforcing the AVL Constraint: Case 3

How can we fix this?
Will just a single left rotation work?

Enforcing the AVL Constraint: Case 3

How can we fix this?
Will just a single left rotation work? No

Enforcing the AVL Constraint: Case 3

Enforcing the AVL Constraint: Case 3

How can we fix this?

Height of \mathbf{C} we know must be \boldsymbol{h}
Therefore At least one of $\boldsymbol{h}_{\boldsymbol{x}}$ or $\boldsymbol{h}_{\boldsymbol{y}}$ must be $\boldsymbol{h} \boldsymbol{- 1}$
The other can also be $\boldsymbol{h} \mathbf{- 2}$, or $\boldsymbol{h} \mathbf{- 1}$

Enforcing the AVL Constraint: Case 3

> How can we fix this?
> Rotate right first: rotate (B, C)

Height of \mathbf{C} we know must be \boldsymbol{h}
Therefore At least one of $\boldsymbol{h}_{\boldsymbol{x}}$ or $\boldsymbol{h}_{\boldsymbol{y}}$ must be $\boldsymbol{h} \mathbf{- 1}$
The other can also be $\boldsymbol{h} \mathbf{- 2}$, or $\boldsymbol{h} \mathbf{- 1}$

Enforcing the AVL Constraint: Case 3

How can we fix this?
Rotate right first: rotate (B, C)
Then right left: rotate (A, C)

Height of \mathbf{C} we know must be \boldsymbol{h}
Therefore At least one of $\boldsymbol{h}_{\boldsymbol{x}}$ or $\boldsymbol{h}_{\boldsymbol{y}}$ must be $\boldsymbol{h} \mathbf{- 1}$
The other can also be $\boldsymbol{h} \mathbf{- 2}$, or $\boldsymbol{h} \mathbf{- 1}$

Enforcing the AVL Constraint: Case 3

How can we fix this?
Rotate right first: rotate (B, C)
Then right left: rotate (A, C)

Height of \mathbf{C} we know must be \boldsymbol{h}
Therefore At least one of $\boldsymbol{h}_{\boldsymbol{x}}$ or $\boldsymbol{h}_{\boldsymbol{y}}$ must be $\boldsymbol{h} \boldsymbol{- 1}$
The other can also be $\boldsymbol{h} \mathbf{- 2}$, or $\boldsymbol{h} \mathbf{- 1}$

Enforcing the AVL Constraint

- If too right heavy (balance $==+2$)
- If right child is right heavy (balance $==+1$) or balanced (balance $==0$)
- rotate left around the root
- If right child is left heavy (balance $==-1$)
- rotate right around root of right child, then rotate left around root
- If too left heavy (balance ==-2)
- Same as above but flipped

Therefore if we have a balance factor that is off, but all children are AVL trees, we can fix the balance factor in at most 2 rotations

Inserting Records

To insert a record into an AVL Tree:

1. Find the insertion point (remember it is a BST)
2. Insert the new leaf and set balance factor to 0
3. Trace path back up to root and update balance factors a. If a balance factor becomes $+/-2$ then rotate to fix

Inserting Records

To insert a record into an AVL Tree:

1. Find the insertion point (remember it is a BST)
2. Insert the new leaf and set balance factor to 0
3. Trace path back up to root and update balance factors a. If a balance factor becomes $+/-2$ then rotate to fix
$O(d)=O(\log n)$
O(1)
$O(d)=O(\log n)$ $0(1)$

Inserting New Nodes

```
1 public void insert(T value, AVLTreeNode<T> root) {
2 // Use normal Logic for inserting into a BST, then set heavy flags
3 AVLTreeNode<T> newNode = insertIntoBST(value, root);
4 newNode.isLeftHeavy = newNode.isRightHeavy = false;
5 \text { while (newNode.parent.isPresent()) \{}
        }

\section*{Inserting New Nodes}


\section*{Inserting New Nodes}
```

1 public void insert(T value, AVLTreeNode<T> root) {
2 // Use normal logic for inserting into a BST, then set heavy flags
3 AVLTreeNode<T> newNode = insertIntoBST(value, root);
4 newNode.isLeftHeavy = newNode.isRightHeavy = false;
5 ~ w h i l e ~ (n e w N o d e . p a r e n t . i s P r e s e n t ()) ~ \{ ,
if (newNode.parent.get().leftChild.orElse(null) == newNode) {
// Fix issues that occur from inserting into parents left subtree
} else {
// Fix issues that occur from inserting into parents right subtree
}
newNode = newNode.parent.get();
}
1 3

```

\section*{Inserting New Nodes}
\begin{tabular}{|c|c|}
\hline \multirow[b]{12}{*}{2
3
4
5
6
7
8
9
10
11
12} & public void insert(T value, AVLTreeNode<T> root) \{ \\
\hline & // Use normal logic for inserting into a BST, then set heavy flags \\
\hline & AVLTreeNode<T> newNode = insertIntoBST(value, root); \\
\hline & newNode.isLeftHeavy = newNode.isRightHeavy = false; \\
\hline & while (newNode.parent.isPresent()) \{ \\
\hline & if (newNode.parent.get().leftChild.orElse(null) == newNode) \{ \\
\hline & // Fix issues that occur from inserting into parents left subtree \\
\hline & \} else \{ \\
\hline & // Fix issues that occur from inserting into parents right subtree \\
\hline & \\
\hline & newNode = newNode.parent.get(); \\
\hline & \begin{tabular}{l|l} 
\} & \begin{tabular}{l} 
What is the cost of each iteration? \\
How exactly do we fix the issues? (next slide)
\end{tabular}
\end{tabular} \\
\hline
\end{tabular}

\section*{Inserting New Nodes}
```

if (newNode.parent.get().leftChild.orElse(null) == newNode) {
// Fix issues that occur from inserting into parents left subtree
if (newNode.parent.get().isRightHeavy) {
newNode.parent.get().isRightHeavy = false;
return
} else if (newNode.parent.get().isLeftHeavy) {
if (newNode.isLeftHeavy) newNode.parent.get().rotateRight();
else newNode.parent.get().rotateLeftRight();
return
} else {
newNode.parent.get().isLeftHeavy = true;
}
1 3

```

\section*{Inserting New Nodes}
```

1 if (newNode.parent.get().leftChild.orElse(null) == newNode) {
2 // Fix issues that occur from inserting into parents left subtree

```

\section*{Inserting New Nodes}
```

 1 if (newNode.parent.get().leftChild.orElse(null)
 2 // Fix issues that occur from inserting into
if (newNode.parent.get().isRightHeavy) {
newNode.parent.get().isRightHeavy = false;

$$
\begin{aligned}
& \text { If we inserted into the left of a left } \\
& \text { heavy subtree, then we just } \\
& \text { created imbalance, and need to } \\
& \text { rotate. But then we can stop. }
\end{aligned}
$$

 } else if (newNode.parent.get().isLeftHeavy) {
 if (newNode.isLeftHeavy) newNode.parent.get().rotateRight();
 else newNode.parent.get().rotateLeftRight();
 return
 } else {
 newNode.parent.get().isLeftHeavy = true;
 }
 }

```

\section*{Inserting New Nodes}


\section*{Inserting New Nodes}


\section*{Inserting New Nodes}
```

1 public void insert(T value, AVLTreeNode<T> root) {
2 // Use normal logic for inserting into a BST, then set heavy flags
3
AVLTreeNode<T> newNode = insertIntoBST(value, root);
newNode.isLeftHeavy = newNode.isRightHeavy = false;
while (newNode.parent.isPresent()) {
if (newNode.parent.get().leftChild.orElse(null) == newNode) {
// Fix issues that occur from inserting into parents left subtree
} else {
// Fix issues that occur from inserting into parents right subtree
}
newNode = newNode.parent.get();
}
}
Therefore, our total insertion cost is O(d)=O(log(n))

```

\section*{Removing Records}
- Removal follows essentially the same process as insertion
- Do a normal BST removal
- Go back up the tree adjusting balance factors
- If you discover a balance factor that goes to \(+2 /-2\), rotate to fix

\section*{Summary}
- We want shallow BSTs (it makes find, insert, remove faster)

\section*{Summary}
- We want shallow BSTs (it makes find, insert, remove faster)
- Enforcing AVL constraints makes our BSTs shallow
- The constraints are |height(right) - height(left) \(\mid \leq 1\)
- It will guarantee \(\boldsymbol{d}=\mathbf{O}(\log (n))\)

\section*{Summary}
- We want shallow BSTs (it makes find, insert, remove faster)
- Enforcing AVL constraints makes our BSTs shallow
- The constraints are |height(right) - height(left) \(\mid \leq 1\)
- It will guarantee \(\boldsymbol{d}=\mathbf{O}(\log (n))\)
- Adding/removing from a BST changes height by at most 1
- A rotation can also change a BST height by at most 1

\section*{Summary}
- We want shallow BSTs (it makes find, insert, remove faster)
- Enforcing AVL constraints makes our BSTs shallow
- The constraints are |height(right) - height(left) \(\mid \leq 1\)
- It will guarantee \(\boldsymbol{d}=\mathbf{O}(\log (n))\)
- Adding/removing from a BST changes height by at most 1
- A rotation can also change a BST height by at most 1
- Therefore after insert/remove into an AVL tree, we can reinforce AVL constraints with one (or two) rotations
- We only need to make one trip back up the tree to do so
- Therefore insert/remove is still \(O(d)=\mathbf{O}(\log (n))\)```

