CSE 250: Binary Search Trees (AVL Trees) Lecture 27

Nov 3, 2023

C 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Class Logistics

Reminders

PA2: Implement Map Routing

- 1 Create an adjacency list (discussed today)
- 2 Find a path from A to B with the fewest intersections
- **3** Find a path from A to B with the shortest distance

PA2 implementation due Sun, Nov 5 at 11:59 PM

- UB Hackathon: Sat/Sun, Nov 4-5.
- Midterm 2: Friday, Nov 10

Tree height vs Size

 $height(left) \approx height(right)$

 $height(left) \ll height(right)$

$$d = O(\log(N))$$

d = O(N)

"Balanced" Trees

- **Faster Search**: We want $height(left) \approx height(right)$
 - Formalization 1: |height(left) height(right)| ≤ 1 (Left, right height differ by at most 1)
 Formalization 2: Each leaf at least ^d/₂ edges from the root.
- Question: How do we keep the tree balanced?
 - Challenge 1: Detecting an imbalanced tree.
 - Track the 'imbalance' of each node. (AVL Trees)
 - Track the 'height' of each leaf. (Red-Black Trees)
 - Challenge 2: Restoring balance to the tree.
 - Tree Rotations

AVL Trees

- An AVL Tree (<u>A</u>delson-<u>V</u>elsky and <u>L</u>andis) is a BST where every node is "height balanced"
 - $|\text{height}(left) \text{height}(right)| \le 1$
- balance(v) = height(left) height(right)

Maintain balance
$$(v) \in \{-1, 0, 1\}$$

balance $(b) = 0 \rightarrow$ "v is balanced"

- **balance** $(b) = -1 \rightarrow$ "v is left-heavy"
- **balance** $(b) = 1 \rightarrow$ "v is right-heavy"

balance(v) \in { -1, 0, 1 } is the AVL tree property

Enough Nodes?

minNodes(d) = 1 + minNodes(d-1) + minNodes(d-2)

Enough Nodes?

For d > 1:

 $\blacksquare \mathsf{minNodes}(d) = 1 + \mathsf{minNodes}(d-1) + \mathsf{minNodes}(d-2)$

• This is (almost) the Fibonacci Sequence!

$$\min Nodes(d) = Fib(d+3) - 1$$

• minNodes $(d) \in \Omega(1.5^d)$

Enough Nodes?

minNodes(d) = $\Omega(1.5^d)$ minNodes(d) > $c \cdot 1.5^d$ $N \geq \min Nodes(d) \geq c \cdot 1.5^d$ $\frac{N}{2} > 1.5^{d}$ $\log_2\left(\frac{N}{c}\right) \geq \log_2(1.5^d)$ $\log_2\left(\frac{N}{2}\right) \geq \log_{1.5}(1.5^d) \log_2(1.5)$ $\log_2\left(\frac{N}{2}\right) > d \log_2(1.5)$ $\log_2(N) - \log_2(c) > d \log_2(1.5)$ $\frac{1}{\log_2(1.5)}\log_2(N) - \frac{\log_2(c)}{\log_2(1.5)} \ge d$ $d \leq \frac{1}{\log_2(1.5)} \log_2(N) - \frac{\log_2(c)}{\log_2(1.5)}$ $d \in O(\log_2(N))$

- Computing **balance**() as-needed is expensive
 - balance() computes height() twice (O(N) each)
- Idea: Precompute the balance factor and store it at each node.

Enforcing the AVL Constraint

```
public class AVLNode<E> {
1
      E element:
2
       Optional<AVLNode<E>> parent = Optional.empty();
3
       Optional<AVLNode<E>> left = Optional.empty();
4
       Optional<AVLNode<E>> right = Optional.empty();
5
6
       boolean isLeftHeavy = false; // t if balance(this) = -1
7
       boolean isRightHeavy = false; // t if balance(this) == 1
8
       /* ... */
9
     }
10
```

parent makes it possible to traverse up the tree.

$$balance(n) = \begin{cases} -1 & \text{if } n.isLeftHeavy == true \\ 1 & \text{if } n.isRightHeavy == true \\ 0 & \text{otherwise} \end{cases}$$

C 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Inserting Records

1 Find Insertion Point.	$O(\log N)$
2 Insert Node (Current \leftarrow Parent).	O(1)
Is Current Node Imbalanced?	O(1)
Rotate Left	
OR	O(1)
Rotate Right	
OR	O(1)
Rotate Left-Right	
OR	O(1)
Rotate Right-Left	O(1)
4 Current ← Current's Parent.	
5 Repeat from step 3.	O(log N) times

Inserting Records

Claims:

 If the balance factor of one node is off by at most one, at most two rotations will fix it for that node.

See preceding slides.

- 2 If an AVL tree is balanced, then after an insertion, no nodes will have balance factors worse than ± 2 .
 - An insertion can increase the depth of a subtree by at most 1.
- 3 If an AVL tree is balanced, then after an insertion, at most $O(\log(N))$ no nodes will have balance factors of ± 2 .
 - An insertion can only change the balance factor of the insertion point's ancestors.
 - The number of ancestors of a node is at most the depth.
 - The depth of a balanced binary search tree (+1) is $O(\log(N))$

Inserting Records

- Find Record's Node.
- 2 Clean Up Children
 - If no children, done
 - If one child, replace node with child
 - If two children, replace node's value with child's
 - ... then 'delete' child, repeating from step 1.
- 3 Fix Imbalance Up The Tree.

Total: $O(\log(N))$

 $O(\log(N))$ $O(\log(N))$

 $O(\log(N))$