CSE 250: Binary Search Trees (AVL Trees)

CSE 250: Binary Search Trees (AVL Trees)

Lecture 27

Nov 3, 2023

CSE 250: Binary Search Trees (AVL Trees)

L Class Logistics

Reminders

m PA2: Implement Map Routing

Create an adjacency list (discussed today)
Find a path from A to B with the fewest intersections
Find a path from A to B with the shortest distance

m PA2 implementation due Sun, Nov 5 at 11:59 PM
m UB Hackathon: Sat/Sun, Nov 4-5.
m Midterm 2: Friday, Nov 10

CSE 250: Binary Search Trees (AVL Trees)
L Recap

Tree height vs Size

height(/eft) ~ height(right) height(/eft) < height(right)

B/A\C A\B\C\
A A

d = O(log(N)) d = O(N)

CSE 250: Binary Search Trees (AVL Trees)
L Recap

"Balanced” Trees

m Faster Search: We want height(/eft) ~ height(right)
m Formalization 1: |height(/eft) — height(right)| <1
(Left, right height differ by at most 1)
|
m Question: How do we keep the tree balanced?
m Challenge 1: Detecting an imbalanced tree.

m Track the 'imbalance’ of each node. (AVL Trees)
(]

m Challenge 2: Restoring balance to the tree.
m Tree Rotations

CSE 250: Binary Search Trees (AVL Trees)
L Recap

AVL Trees

m An AVL Tree (Adelson-Velsky and Landis) is a BST where
every node is “height balanced”

= |height(left) — height(right)| < 1

m balance(v) = height(/eft) — height(right)

Maintain balance(v) € { —1,0,1 }
m balance(b) =0 — "v is balanced”
m balance(b) = —1 — ‘v is left-heavy”
m balance(b) =1 — "v is right-heavy”

m balance(v) € { —1,0,1 } is the AVL tree property

CSE 250: Binary Search Trees (AVL Trees)
L Recap

Enough Nodes?

minNodes(d) = 1 + minNodes(d — 1) + minNodes(d — 2)

CSE 250: Binary Search Trees (AVL Trees)
L Recap

Enough Nodes?

For d > 1:
= minNodes(d) = 1 + minNodes(d — 1) + minNodes(d — 2)
m This is (almost) the Fibonacci Sequence!
m minNodes(d) = Fib(d +3) — 1
m Fib(0), Fib(1),Fib(2),... =0,1,1,2,3,5,8, ...

= minNodes(d) € Q(1.59)

CSE 250: Binary Search Trees (AVL Trees)
L Recap

Enough Nodes?

minNodes(d) = Q(1.59)
minNodes(d) > ¢ - 1.5¢

N > minNodes(d) > c - 1.59
N'>1.59

) > log,(1.57)

) > logy 5(1.57) log,(1.5)
) = dlog,(1.5)

) — logy(c) > dlog,(1.5)

|
|og2(1.5) log,(N) — |o‘;§%§f§) > d

|
d< Iog2%1.5) |0g2(N) B Ioc;?((lt.:g)

d € O(logy(N))

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

logy (
logy (
logy (
|0g2(

nlZzalzn

=

CSE 250: Binary Search Trees (AVL Trees)
L Recap

Enforcing the AVL Constraint

m Computing balance() as-needed is expensive
m balance() computes height() twice (O(N) each)

m ldea: Precompute the balance factor and store it at each
node.

CSE 250: Binary Search Trees (AVL Trees)
L Recap

Enforcing the AVL Constraint

public class AVLNode<E> {

}

E element;
Optional<AVLNode<E>> parent
Optional<AVLNode<E>> left
Optional<AVLNode<E>> right

boolean isLeftHeavy = false;

Optional.empty();
Optional.empty();
Optional.empty();

// t if balance(this) == -1

boolean isRightHeavy = false; // t if balance(this) == 1

/* .. %/

parent makes it possible to traverse up the tree.

—1 if n.isLeftHeavy == true

balance(n) = {1 if n.isRightHeavy == true

0 otherwise

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (AVL Trees)
L Recap

Enforcing the AVL Constraint

Symmetric Problems

CSE 250: Binary Search Trees (AVL Trees)
L Recap

Enforcing the AVL Constraint

cEht =9 =1

balance =0

max height =d — 2 / \

Rebalance thi

Only a problem if we insert here

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (AVL Trees)
L Recap

Enforcing the AVL Constraint

balance = —1 or 0 or +1

balance = —1 or 0

balance = 0-dr +1

mh. =d -2 . SAgtE mh. =d -2

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (AVL Trees)
L Recap

Inserting Records

Find Insertion Point. O(log N)
Insert Node (Current <+ Parent). 0(1)
Is Current Node Imbalanced? 0(1)
m Rotate Left
OR o(1)
m Rotate Right
OR 0(1)
m Rotate Left-Right
OR 0(1)
m Rotate Right-Left 0O(1)
Current < Current’s Parent.
Repeat from step 3. O(log N) times

CSE 250: Binary Search Trees (AVL Trees)
L Recap

Inserting Records

Claims:

If the balance factor of one node is off by at most one, at
most two rotations will fix it for that node.
m See preceding slides.
If an AVL tree is balanced, then after an insertion, no nodes
will have balance factors worse than £2.
m An insertion can increase the depth of a subtree by at most 1.
If an AVL tree is balanced, then after an insertion, at most
O(log(N)) no nodes will have balance factors of £2.
m An insertion can only change the balance factor of the
insertion point’s ancestors.
m The number of ancestors of a node is at most the depth.
m The depth of a balanced binary search tree (+1) is O(log(N))

CSE 250: Binary Search Trees (AVL Trees)
L Recap

Inserting Records

Find Record's Node. O(log(N))
Clean Up Children O(log(N))

m If no children, done
m If one child, replace node with child
m If two children, replace node's value with child’s

B ... then 'delete’ child, repeating from step 1.
Fix Imbalance Up The Tree. O(log(NV))
Total: O(log(N))

