
CSE 250: Binary Search Trees (AVL Trees)

CSE 250: Binary Search Trees (AVL Trees)
Lecture 27

Nov 3, 2023

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (AVL Trees)

Class Logistics

Reminders

PA2: Implement Map Routing
1 Create an adjacency list (discussed today)
2 Find a path from A to B with the fewest intersections
3 Find a path from A to B with the shortest distance

PA2 implementation due Sun, Nov 5 at 11:59 PM

UB Hackathon: Sat/Sun, Nov 4-5.

Midterm 2: Friday, Nov 10

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (AVL Trees)

Recap

Tree height vs Size

A

B

D E

C

F G

height(left) ≈ height(right)

d = O(log(N))

A

B

C

D

E

F

G

height(left)≪ height(right)

d = O(N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (AVL Trees)

Recap

”Balanced” Trees

Faster Search: We want height(left) ≈ height(right)
Formalization 1: |height(left)− height(right)| ≤ 1
(Left, right height differ by at most 1)
Formalization 2: Each leaf at least d

2 edges from the root.

Question: How do we keep the tree balanced?
Challenge 1: Detecting an imbalanced tree.

Track the ’imbalance’ of each node. (AVL Trees)
Track the ’height’ of each leaf. (Red-Black Trees)

Challenge 2: Restoring balance to the tree.

Tree Rotations

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (AVL Trees)

Recap

AVL Trees

An AVL Tree (Adelson-Velsky and Landis) is a BST where
every node is “height balanced”

|height(left)− height(right)| ≤ 1

balance(v) = height(left)− height(right)

Maintain balance(v) ∈ { −1, 0, 1 }
balance(b) = 0→ “v is balanced”
balance(b) = −1→ “v is left-heavy”
balance(b) = 1→ “v is right-heavy”

balance(v) ∈ { −1, 0, 1 } is the AVL tree property

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (AVL Trees)

Recap

Enough Nodes?

d

d − 1 d − 2

minNodes(d) = 1 +minNodes(d − 1) +minNodes(d − 2)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (AVL Trees)

Recap

Enough Nodes?

For d > 1:

minNodes(d) = 1 +minNodes(d − 1) +minNodes(d − 2)

This is (almost) the Fibonacci Sequence!

minNodes(d) = Fib(d + 3)− 1
Fib(0),Fib(1),Fib(2), . . . = 0, 1, 1, 2, 3, 5, 8, . . .

minNodes(d) ∈ Ω(1.5d)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (AVL Trees)

Recap

Enough Nodes?

minNodes(d) = Ω(1.5d)

minNodes(d) ≥ c · 1.5d

N ≥ minNodes(d) ≥ c · 1.5d
N
c ≥ 1.5d

log2
(
N
c

)
≥ log2(1.5

d)

log2
(
N
c

)
≥ log1.5(1.5

d) log2(1.5)

log2
(
N
c

)
≥ d log2(1.5)

log2(N)− log2(c) ≥ d log2(1.5)
1

log2(1.5)
log2(N)− log2(c)

log2(1.5)
≥ d

d ≤ 1
log2(1.5)

log2(N)− log2(c)
log2(1.5)

d ∈ O(log2(N))

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (AVL Trees)

Recap

Enforcing the AVL Constraint

Computing balance() as-needed is expensive

balance() computes height() twice (O(N) each)

Idea: Precompute the balance factor and store it at each
node.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (AVL Trees)

Recap

Enforcing the AVL Constraint

1 public class AVLNode<E> {

2 E element;

3 Optional<AVLNode<E>> parent = Optional.empty();

4 Optional<AVLNode<E>> left = Optional.empty();

5 Optional<AVLNode<E>> right = Optional.empty();

6

7 boolean isLeftHeavy = false; // t if balance(this) == -1

8 boolean isRightHeavy = false; // t if balance(this) == 1

9 /* ... */

10 }

parent makes it possible to traverse up the tree.

balance(n) =

−1 if n.isLeftHeavy == true

1 if n.isRightHeavy == true

0 otherwise
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (AVL Trees)

Recap

Enforcing the AVL Constraint

dd

d − 1 d − 1

d

d − 2 d − 1

d

d − 1 d − 2

One insert here is not a problem.

Symmetric Problems

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (AVL Trees)

Recap

Enforcing the AVL Constraint

A height = dheight = d + 1

X

max height = d − 2

Y

max height = d − 1max height = d

Only a problem if we insert here

Rebalance this first (recursively)

B

Y’ Z’

m. height = d − 1

or d − 2

m. height = d − 1

or d − 2

height = d

m. height = d − 2 m. height = d − 1

height = d

balance = 1

height = d + 1

balance = 2

B

height = d − 1
height = d − 1

balance = 0

height = d
height = d

balance = 0

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (AVL Trees)

Recap

Enforcing the AVL Constraint

A

B

X Y Z

balance = −1

balance = 2

m.h. = d − 2 m.h. = d − 1 m.h. = d − 2

Y’ W’

Ch. = d − 1

m.h. = d − 2

or d − 3

balance = −1

or 0

or +1

C

C

balance = 0 or +1

balance = −1 or 0

balance = −1 or 0 or +1

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (AVL Trees)

Recap

Inserting Records

1 Find Insertion Point. O(logN)

2 Insert Node (Current ← Parent). O(1)

3 Is Current Node Imbalanced? O(1)

Rotate Left
OR O(1)
Rotate Right
OR O(1)
Rotate Left-Right
OR O(1)
Rotate Right-Left O(1)

4 Current ← Current’s Parent.

5 Repeat from step 3. O(logN) times

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (AVL Trees)

Recap

Inserting Records

Claims:

1 If the balance factor of one node is off by at most one, at
most two rotations will fix it for that node.

See preceding slides.

2 If an AVL tree is balanced, then after an insertion, no nodes
will have balance factors worse than ±2.

An insertion can increase the depth of a subtree by at most 1.

3 If an AVL tree is balanced, then after an insertion, at most
O(log(N)) no nodes will have balance factors of ±2.

An insertion can only change the balance factor of the
insertion point’s ancestors.
The number of ancestors of a node is at most the depth.
The depth of a balanced binary search tree (+1) is O(log(N))

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (AVL Trees)

Recap

Inserting Records

1 Find Record’s Node. O(log(N))

2 Clean Up Children O(log(N))

If no children, done
If one child, replace node with child
If two children, replace node’s value with child’s

... then ’delete’ child, repeating from step 1.

3 Fix Imbalance Up The Tree. O(log(N))

Total: O(log(N))

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

