CSE 250: Binary Search Trees (Red-Black Trees) Lecture 28

Nov 6, 2023

Reminders

■ Midterm 2: Friday, Nov 10

Tree height vs Size

height $($ left $) \approx \operatorname{height}($ right $)$ height $($ left $) \ll$ height $(r i g h t)$

$$
d=O(N)
$$

"Balanced" Trees

How do we enforce balance $(d \in O(\log (N)))$
1 Completeness $\left(N \in \Omega\left(2^{d}\right)\right)$
2 balance $($ node $) \in\{-1,0,+1\}\left(N \in \Omega\left(1.5^{d}\right)\right)$
3 ???

The AVL property

The AVL tree property requires every subtree to be balanced.

- The entire tree may be balanced $(d \in O(\log (N)))$
... even if one subtree is not.

■ ... but the AVL property can be enforced locally.

- You can tell if a node is imbalanced by looking at $O(1)$ nodes.

'Empty'/'Null' Leaves

'Empty'/'Null' Leaves

Red-Black Trees

■ Global Property

- The depths of any pair of null leaves are at most a factor of 2 different.
- The deepest null leaf is at most twice the depth of the shallowest.
- ... entails that $d \in O(\log (N))$

■ Locally-Enforceable Property

- Red-Black-Colorability (to be defined shortly)
- ... entails the global property

How many nodes are required?

minNodes(d=2)

How many nodes are required?

minNodes(d=2)

How many nodes are required?

minNodes(d=3)

How many nodes are required?

minNodes(d=4)

How many nodes are required?

minNodes(d=4)

How many nodes are required?

minNodes(d=4)

How many nodes are required?

$\operatorname{minNodes}(d)=\theta\left(2^{\frac{d}{2}}+d\right)=\theta\left(2^{\frac{d}{2}}\right)$
So...
$N \geq \boldsymbol{\operatorname { m i n }} \operatorname{Nodes}(d) \geq c \cdot 2^{\frac{d}{2}}$
$\frac{N}{c} \geq 2^{\frac{d}{2}}$
$\log \left(\frac{N}{c}\right) \geq \frac{d}{2}$
$d \leq 2 \log (N)-2 \cdot \log (c)$
$d \in O(\log (N)+1)=O(\log (N))$

"Balanced" Trees

■ Faster Search: We want height(left) \approx height (right)
■ Formalization 1: \mid height(left) - height(right) $\mid \leq 1$ (Left, right height differ by at most 1)
■ Formalization 2: Each null leaf at least $\frac{d}{2}$ edges from root.
■ Question: How do we keep the tree balanced?
■ Challenge 1: Detecting an imbalanced tree.
■ Track the 'imbalance' of each node. (AVL Trees)
■ Track the 'height' of each leaf. (Red-Black Trees)
■ Challenge 2: Restoring balance to the tree.
■ Tree Rotations

Red-Black Trees

We Enforce (high-level)...

- Every node is colored Red or Black.
- The number of Black nodes on a path from the root to every null leaf node is the same.
- Call this number the Black-depth of the tree.
- The number of Red nodes on a path from the root to every null leaf node is never bigger than the Black-depth of the tree.

Claim 1: Every null leaf is at least the Black-depth away from the root. Claim 2: No null leaf is ever $2 \times$ the Black-depth away from the root.

Red-Black Trees

We Enforce (low-level)...

- Every node is colored Red or Black.
- Every insertion/deletion preserves the Black-depth of the tree (or modifies it uniformly for the entire tree).
- No Red node can have a Red parent.
- The root is always Black.

Red-Black Trees

To insert a node:
1 Find the insertion point
2 Insert the new node, colored Red.

- Inserting the node as Red doesn't affect the Black-depth of the tree.
3 If the parent of the insertion point is also Red, fix it.
- The fix must preserve the Black-depth of the tree.

Red-Black Insertion Example

Red-Black Insertion Example

Red-Black Insertion Example

Red-Black Insertion Example

Repairing a Red-Black Tree

All Valid R-B Tree Fragments

Goal: We want to 'fix' Red Node A.

Repairing a Red-Black Tree

Case 1: If A's parent is Black, we're done.

Repairing a Red-Black Tree

Case 2: If A is the root, make it Black.

Repairing a Red-Black Tree

Case 2: If A is the root, make it Black.
The Black-depth of the entire tree changes (with $O(1)$ work).

Repairing a Red-Black Tree

We have a problem if A's parent is also Red.
... but A's grandparent must be Black.

Repairing a Red-Black Tree

Case 3: A's parent's sibling (aunt) is also Red. B and D swap colors with C.

Repairing a Red-Black Tree

Repairing a Red-Black Tree

Also works if A is right child of B, (or a child of D).

Repairing a Red-Black Tree

Case 4: A's parent's sibling (aunt) is Black. Rotate B, C

Repairing a Red-Black Tree

\# of Black nodes on paths through C, D unchanged.

1 fewer Black node on paths going through A

Swap B and C's colors

Repairing a Red-Black Tree

Root of affected subtree now Black, so repair can stop.

Repairing a Red-Black Tree

Case 4b: A's parent's sibling (aunt) is Black, and A is inner leaf. Rotate A, B

Repairing a Red-Black Tree

Rotate A, B
Then proceed as Case 4.
If A is D's child, the cases are symmetric.

Insertions into a Red-Black Tree

1 Find insertion point.

$$
O(d)=O(\log (N))
$$

2 Insert Red node.
3 Fix if necessary.

- At most 3 color changes per fix.
- At most 2 rotations per fix. $O(1)$
- May need to repeat at grandparent. $O(d)=O(\log (N))$ times

Total: $O(\log (N))+O(\log (N) \cdot 1)=O(\log (N))$

Removals

... are similar, but with more cases

BST Overview

	General BST	AVL Tree	R-B Tree
find	$O(N)$	$O(\log (N))$	$O(\log (N))$
insert	$O(N)$	$O(\log (N))$	$O(\log (N))$
remove	$O(N)$	$O(\log (N))$	$O(\log (N))$

Note 1: R-B Trees are like AVL Trees, but with a better constant. Note 2: $\log (N)$ is great, but can we do better?

