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CSE 250: Binary Search Trees (Red-Black Trees)
L Recap

Tree height vs Size

height(/eft) ~ height(right) height(/eft) < height(right)

B/A\C A\B\C\
A A

d = O(log(N)) d = O(N)
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L Recap

"Balanced” Trees

How do we enforce balance (d € O(log(N)))
Completeness (N € Q(29))
balance(node) € { —1,0,+1 } (N € Q(1.59))
77
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L Recap

The AVL property

The AVL tree property requires every subtree to be balanced.

m The entire tree may be balanced (d € O(log(N)))
. even if one subtree is not.

m ... but the AVL property can be enforced locally.
m You can tell if a node is imbalanced by looking at O(1) nodes.
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L Recap

'Empty’ /'Null’ Leaves
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L Recap

'Empty’ /'Null’ Leaves

Null Leaf (Z)I F
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L Recap

Red-Black Trees

m Global Property
m The depths of any pair of null leaves are at most a factor of 2
different.
m The deepest null leaf is at most twice the depth of the
shallowest.
m ... entails that d € O(log(N))
m Locally-Enforceable Property

m Red-Black-Colorability (to be defined shortly)
® ... entails the global property
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L Recap

How many nodes are required?

minNodes(d=2)
A
/N
/A

depth=2 ¢ C

/\

depth=3 () () depth=3

depth=1 ()
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L Recap

How many nodes are required?

D/A\B
A A

depth=29 ¢ ¢ C
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L Recap

How many nodes are required?

minNodes(d=3)
A
/N
D B
A

depth=3 () E

/\

depth=4 ¢ ¢

depth =2 ()
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L Recap

How many nodes are required?

minNodes(d=4)
D/A\B
AA

depth=2 ¢ ¢ ¢
depth=3 () E
depth=4 () F

depth=5 ¢ ¢
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L Recap

How many nodes are required?

minNodes(d=4)
D/A\B

JANINAN

VA

depth=3 ¢ 00 00 00 E
depth=4 () F

depth=5 ¢ ¢
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L Recap

How many nodes are required?

minNodes(d=4)

d
2

“Complete”: 6(22) nodes

0 00 00 0O

6(d) more nodes

()
7S

Q

[SEN

Q

[SEN
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L Recap

How many nodes are required?

minNodes(d) = (2% + d) = (2

So...
N > minNodes(d) > c -2

[][-%

nlz

d
2

>0
log(%) > §
d <2log(N)—2-log(c)

d € O(log(N) + 1) = O(log(N))
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L Recap

"Balanced” Trees

m Faster Search: We want height(/eft) ~ height(right)

m Formalization 2: Each null leaf at least g edges from root.
m Question: How do we keep the tree balanced?

m Challenge 1: Detecting an imbalanced tree.

=
m Track the 'height’ of each leaf. (Red-Black Trees)

m Challenge 2: Restoring balance to the tree.
m Tree Rotations
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L Recap

Red-Black Trees

We Enforce (high-level)...
m Every node is colored Red or Black.

m The number of Black nodes on a path from the root to every
null leaf node is the same.

m Call this number the Black-depth of the tree.

m The number of Red nodes on a path from the root to every
null leaf node is never bigger than the Black-depth of the tree.

Claim 1: Every null leaf is at least the Black-depth away from the
root. Claim 2: No null leaf is ever 2x the Black-depth away from

the root.
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L Recap

Red-Black Trees

We Enforce (low-level)...
m Every node is colored Red or Black.

m Every insertion/deletion preserves the Black-depth of the tree
(or modifies it uniformly for the entire tree).

m No Red node can have a Red parent.

m The root is always Black.
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L Recap

Red-Black Trees

To insert a node:

Find the insertion point
Insert the new node, colored Red.

m Inserting the node as Red doesn't affect the Black-depth of
the tree.

If the parent of the insertion point is also Red, fix it.
m The fix must preserve the Black-depth of the tree.
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L Recap

Red-Black Insertion Example
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L Recap

Red-Black Insertion Example
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L Recap

Red-Black Insertion Example
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L Recap

Red-Black Insertion Example
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L Recap

Repairing a Red-Black Tree

———7 All Valid R-B Tree Fragments

Goal: We want to 'fix’ Red Node A.
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L Recap

Repairing a Red-Black Tree

\.
AP

Case 1: If A's parent is Black, we're done.



CSE 250: Binary Search Trees (Red-Black Trees)
L Recap

Repairing a Red-Black Tree

A

Case 2: If A is the root, make it Black.
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L Recap

Repairing a Red-Black Tree

A

Case 2: If A is the root, make it Black.

The Black-depth of the entire tree changes (with O(1) work).
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L Recap

Repairing a Red-Black Tree

\
We have a problem if A's parent is also Red.
... but A’s grandparent must be Black.
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L Recap

Repairing a Red-Black Tree

Case 3: A's parent’s sibling (aunt) is also Red.
B and D swap colors with C.
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L Recap

Repairing a Red-Black Tree

C now red, need to repeat repair,

but at grandparent of A

# of Black nodes on any

AAA path unchanged.
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L Recap

Repairing a Red-Black Tree

Also works if A is right child of B,
(or a child of D).
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L Recap

Repairing a Red-Black Tree

Case 4: A's parent’s sibling (aunt) is Black.
Rotate B, C
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L Recap

Repairing a Red-Black Tree

## of Black nodes on paths
through C, D unchanged.

Mﬁ\ 1 fewer Black node on paths
A going through A

Swap B and C’s colors
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L Recap

Repairing a Red-Black Tree

# of Black nodes on paths
/ through C, D unchanged.

/.e‘“ g

Y a

/ | / \

) % Same # of Black nodes on paths
going through A

Root of affected subtree now Black, so repair can stop.
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L Recap

Repairing a Red-Black Tree

Case 4b: A’s parent’s sibling (aunt) is Black, and A is inner leaf.
Rotate A, B
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L Recap

Repairing a Red-Black Tree

Rotate A, B
Then proceed as Case 4.
If A'is D's child, the cases are symmetric.
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L Recap

Insertions into a Red-Black Tree

Find insertion point. O(d) = O(log(N))
Insert Red node. 0(1)
Fix if necessary.
m At most 3 color changes per fix. 0(1)
m At most 2 rotations per fix. 0(1)

m May need to repeat at grandparent. O(d) = O(log(N)) times
Total: O(log(N)) + O(log(N) - 1) = O(log(N))
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L Recap

Removals

. are similar, but with more cases
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L Recap

BST Overview

‘ General BST AVL Tree R-B Tree

find O(N) O(log(N)) O(log(N))
insert O(N) O(log(N)) O(log(N))
remove O(N) O(log(N)) O(log(N))

Note 1: R-B Trees are like AVL Trees, but with a better constant.

Note 2: log(N) is great, but can we do better?
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