
CSE 250: Binary Search Trees (Red-Black Trees)

CSE 250: Binary Search Trees (Red-Black Trees)
Lecture 28

Nov 6, 2023

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Class Logistics

Reminders

Midterm 2: Friday, Nov 10

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Tree height vs Size

A

B

D E

C

F G

height(left) ≈ height(right)

d = O(log(N))

A

B

C

D

E

F

G

height(left) ≪ height(right)

d = O(N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

”Balanced” Trees

How do we enforce balance (d ∈ O(log(N)))

1 Completeness (N ∈ Ω(2d))

2 balance(node) ∈ { −1, 0,+1 } (N ∈ Ω(1.5d))

3 ???

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

The AVL property

The AVL tree property requires every subtree to be balanced.

The entire tree may be balanced (d ∈ O(log(N)))
... even if one subtree is not.

... but the AVL property can be enforced locally.
You can tell if a node is imbalanced by looking at O(1) nodes.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

’Empty’/’Null’ Leaves

A

B

C

D

E

F

G

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

’Empty’/’Null’ Leaves

A

∅ B

∅ C

∅ D

∅ E

∅ F

∅ G

∅ ∅

Null Leaf

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Red-Black Trees

Global Property
The depths of any pair of null leaves are at most a factor of 2
different.
The deepest null leaf is at most twice the depth of the
shallowest.
... entails that d ∈ O(log(N))

Locally-Enforceable Property
Red-Black-Colorability (to be defined shortly)
... entails the global property

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

How many nodes are required?

minNodes(d=2)

A

∅ B

∅ C

∅ ∅

depth = 1

depth = 2

depth = 3 depth = 3

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

How many nodes are required?

minNodes(d=2)

A

D

∅ ∅

B

∅ C

∅ ∅

depth = 2

depth = 3

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

How many nodes are required?

minNodes(d=3)

A

D

∅ ∅

B

∅ C

∅ E

∅ ∅

depth = 2

depth = 3

depth = 4

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

How many nodes are required?

minNodes(d=4)

A

D

∅ ∅

B

∅ C

∅ E

∅ F

∅ ∅

depth = 2

depth = 3

depth = 4

depth = 5

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

How many nodes are required?

minNodes(d=4)

A

D

G

∅ ∅

H

∅ ∅

B

I

∅ ∅

C

∅ E

∅ F

∅ ∅

depth = 4

depth = 5

depth = 3

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

How many nodes are required?

minNodes(d=4)

A

D

G

∅ ∅

H

∅ ∅

B

I

∅ ∅

C

∅ E

∅ F

∅ ∅

≈ d
2

≈ d
2

“Complete”: θ(2
d
2) nodes

θ(d) more nodes

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

How many nodes are required?

minNodes(d) = θ(2
d
2 + d) = θ(2

d
2)

So...
N ≥ minNodes(d) ≥ c · 2

d
2

N
c ≥ 2

d
2

log(Nc) ≥
d
2

d ≤ 2 log(N)− 2 · log(c)

d ∈ O(log(N) + 1) = O(log(N))

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

”Balanced” Trees

Faster Search: We want height(left) ≈ height(right)
Formalization 1: |height(left)− height(right)| ≤ 1
(Left, right height differ by at most 1)
Formalization 2: Each null leaf at least d

2 edges from root.

Question: How do we keep the tree balanced?
Challenge 1: Detecting an imbalanced tree.

Track the ’imbalance’ of each node. (AVL Trees)
Track the ’height’ of each leaf. (Red-Black Trees)

Challenge 2: Restoring balance to the tree.

Tree Rotations

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Red-Black Trees

We Enforce (high-level)...

Every node is colored Red or Black.

The number of Black nodes on a path from the root to every
null leaf node is the same.

Call this number the Black-depth of the tree.

The number of Red nodes on a path from the root to every
null leaf node is never bigger than the Black-depth of the tree.

Claim 1: Every null leaf is at least the Black-depth away from the
root. Claim 2: No null leaf is ever 2× the Black-depth away from

the root.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Red-Black Trees

We Enforce (low-level)...

Every node is colored Red or Black.

Every insertion/deletion preserves the Black-depth of the tree
(or modifies it uniformly for the entire tree).

No Red node can have a Red parent.

The root is always Black.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Red-Black Trees

To insert a node:

1 Find the insertion point

2 Insert the new node, colored Red.
Inserting the node as Red doesn’t affect the Black-depth of
the tree.

3 If the parent of the insertion point is also Red, fix it.

The fix must preserve the Black-depth of the tree.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Red-Black Insertion Example

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Red-Black Insertion Example

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Red-Black Insertion Example

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Red-Black Insertion Example

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Repairing a Red-Black Tree

Goal: We want to ’fix’ Red Node A.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Repairing a Red-Black Tree

Case 1: If A’s parent is Black, we’re done.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Repairing a Red-Black Tree

Case 2: If A is the root, make it Black.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Repairing a Red-Black Tree

Case 2: If A is the root, make it Black.

The Black-depth of the entire tree changes (with O(1) work).

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Repairing a Red-Black Tree

We have a problem if A’s parent is also Red.
... but A’s grandparent must be Black.
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Repairing a Red-Black Tree

Case 3: A’s parent’s sibling (aunt) is also Red.
B and D swap colors with C.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Repairing a Red-Black Tree

of Black nodes on any

path unchanged.

C now red, need to repeat repair,

but at grandparent of A

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Repairing a Red-Black Tree

Also works if A is right child of B,

(or a child of D).

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Repairing a Red-Black Tree

Case 4: A’s parent’s sibling (aunt) is Black.
Rotate B, C

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Repairing a Red-Black Tree

of Black nodes on paths

through C, D unchanged.

1 fewer Black node on paths

going through A

Swap B and C’s colors

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Repairing a Red-Black Tree

of Black nodes on paths

through C, D unchanged.

Same # of Black nodes on paths

going through A

Root of affected subtree now Black, so repair can stop.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Repairing a Red-Black Tree

Case 4b: A’s parent’s sibling (aunt) is Black, and A is inner leaf.
Rotate A, B

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Repairing a Red-Black Tree

Rotate A, B
Then proceed as Case 4.
If A is D’s child, the cases are symmetric.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Insertions into a Red-Black Tree

1 Find insertion point. O(d) = O(log(N))

2 Insert Red node. O(1)

3 Fix if necessary.

At most 3 color changes per fix. O(1)
At most 2 rotations per fix. O(1)
May need to repeat at grandparent. O(d) = O(log(N)) times

Total: O(log(N)) + O(log(N) · 1) = O(log(N))

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

Removals

... are similar, but with more cases

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

BST Overview

General BST AVL Tree R-B Tree
find O(N) O(log(N)) O(log(N))
insert O(N) O(log(N)) O(log(N))
remove O(N) O(log(N)) O(log(N))

Note 1: R-B Trees are like AVL Trees, but with a better constant.

Note 2: log(N) is great, but can we do better?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

	Class Logistics
	Recap

