CSE 250: Binary Search Trees (Red-Black Trees) Lecture 28

Nov 6, 2023

C 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Class Logistics

Reminders

Midterm 2: Friday, Nov 10

Tree height vs Size

 $height(left) \approx height(right)$

 $height(left) \ll height(right)$

$$d = O(\log(N))$$

d = O(N)

"Balanced" Trees

How do we enforce balance $(d \in O(\log(N)))$

- 1 Completeness $(N \in \Omega(2^d))$
- **2** balance(node) $\in \{ -1, 0, +1 \} (N \in \Omega(1.5^d))$
- 3 ???

The AVL property

The AVL tree property requires every subtree to be balanced.

- The entire tree may be balanced (d ∈ O(log(N))) ... even if one subtree is not.
- ... but the AVL property can be enforced **locally**.
 You can tell if a node is imbalanced by looking at O(1) nodes.

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

'Empty'/'Null' Leaves

'Empty'/'Null' Leaves

Red-Black Trees

Global Property

- The depths of any pair of null leaves are at most a factor of 2 different.
- The deepest null leaf is at most twice the depth of the shallowest.
- ... entails that $d \in O(\log(N))$
- Locally-Enforceable Property
 - Red-Black-Colorability (to be defined shortly)
 - ... entails the global property

$$\min Nodes(d) = \theta(2^{\frac{d}{2}} + d) = \theta(2^{\frac{d}{2}})$$

So...
$$N \ge \min Nodes(d) \ge c \cdot 2^{\frac{d}{2}}$$

$$\begin{split} \frac{N}{c} &\geq 2^{\frac{d}{2}} \\ \log(\frac{N}{c}) &\geq \frac{d}{2} \\ d &\leq 2\log(N) - 2 \cdot \log(c) \end{split}$$

$$d \in O(\log(N) + 1) = O(\log(N))$$

"Balanced" Trees

Faster Search: We want $height(left) \approx height(right)$

■ Formalization 1: |height(*left*) - height(*right*)| ≤ 1 (Left, right height differ by at most 1)

Formalization 2: Each null leaf at least $\frac{d}{2}$ edges from root.

Question: How do we keep the tree balanced?

- Challenge 1: Detecting an imbalanced tree.
 - Track the 'imbalance' of each node. (AVL Trees)
 - Track the 'height' of each leaf. (Red-Black Trees)
- Challenge 2: Restoring balance to the tree.
 - Tree Rotations

Red-Black Trees

We Enforce (high-level)...

- Every node is colored **Red** or **Black**.
- The number of **Black** nodes on a path from the root to *every* null leaf node is the same.
 - Call this number the **Black**-depth of the tree.
- The number of Red nodes on a path from the root to every null leaf node is never bigger than the Black-depth of the tree.

Claim 1: Every null leaf is at least the **Black**-depth away from the root. **Claim 2:** No null leaf is ever $2 \times$ the **Black**-depth away from the root.

Red-Black Trees

We Enforce (low-level)...

- Every node is colored **Red** or **Black**.
- Every insertion/deletion preserves the Black-depth of the tree (or modifies it uniformly for the entire tree).
- No Red node can have a Red parent.
- The root is always **Black**.

Red-Black Trees

To insert a node:

- 1 Find the insertion point
- 2 Insert the new node, colored Red.
 - Inserting the node as **Red** doesn't affect the **Black**-depth of the tree.
- 3 If the parent of the insertion point is also Red, fix it.
 - The fix must preserve the **Black**-depth of the tree.

Repairing a Red-Black Tree

All Valid R-B Tree Fragments

Goal: We want to 'fix' Red Node A.

Repairing a Red-Black Tree

Case 1: If A's parent is Black, we're done.

Repairing a Red-Black Tree

Case 2: If A is the root, make it Black.

Repairing a Red-Black Tree

Case 2: If A is the root, make it Black.

The **Black**-depth of the *entire* tree changes (with O(1) work).

Repairing a Red-Black Tree

We have a problem if A's parent is also **Red**. ... but A's grandparent *must* be **Black**.

C 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Repairing a Red-Black Tree

Case 3: A's parent's sibling (aunt) is also **Red**. B and D swap colors with C.

Repairing a Red-Black Tree

Repairing a Red-Black Tree

Also works if A is right child of B, (or a child of D).

Repairing a Red-Black Tree

Case 4: A's parent's sibling (aunt) is **Black**. Rotate B, C

Repairing a Red-Black Tree

Swap B and C's colors

Repairing a Red-Black Tree

Root of affected subtree now **Black**, so repair can stop.

Repairing a Red-Black Tree

Case 4b: A's parent's sibling (aunt) is **Black**, and A is inner leaf. Rotate A, B

Repairing a Red-Black Tree

Rotate A, B Then proceed as **Case 4**. If A is D's child, the cases are symmetric.

Insertions into a Red-Black Tree

Find insertion point.	$O(d) = O(\log(N))$	
2 Insert Red node.	O(1)	
3 Fix if necessary.		
At most 3 color changes per fix.	O(1)	
At most 2 rotations per fix.	O(1)	
 May need to repeat at grandparent. 	$O(d) = O(\log(N))$ times	
Total: $O(\log(N)) + O(\log(N) \cdot 1) = O(\log(N))$		

CSE 250: Binary Search Trees (Red-Black Trees)

Recap

... are similar, but with more cases

C 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

BST Overview

	General BST	AVL Tree	R-B Tree
find	O(N)	$O(\log(N))$	$O(\log(N))$
insert	O(N)	$O(\log(N))$	$O(\log(N))$
remove	O(N)	$O(\log(N))$	$O(\log(N))$

Note 1: R-B Trees are like AVL Trees, but with a better constant. **Note 2:** log(N) is great, but can we do better?