CSE 250: Midterm Review Lecture 29

Nov 8, 2023

C 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Class Logistics

Reminders

- Midterm 2: Friday
 - Review today
 - Example midterms on class website

Runtimes

Sorting Algorithms

Algorithm	Runtime
BubbleSort	$O(N^2)$
MergeSort	Unqualified $O(\log N)$
QuickSort	Expected O(log N)
HeapSort	Unqualified $O(\log N)$

Runtimes

Bound Guarantees

- f(N) is a [Unqualified] Worst-Case Bound $(T(N) \in O(f(N)))$ The algorithm always runs in at most $c \cdot f(N)$ steps.
- f(N) is an Amortized Worst-Case Bound
 N invocations of the algorithm always run in at most N ⋅ c ⋅ f(N) steps.
- f(N) is an Expected Worst-Case Bound $(E[T(N)] \in O(f(N)))$ The algorithm is **statistically likely** to run in at most $c \cdot f(N)$ steps.

L_Stacks/Queues

Back to Sequence ADTs

Sequence

```
get(i), set(i, v)
```

List

... and add(v), add(i, v), remove(i),

Stack

push(v), pop(), peek()

Queue

add(v), remove(), peek()

The Stack ADT

A stack of objects on top of one another.

Push

Put a new object on top of the stack.

Pop

Remove the object from the top of the stack.

• Тор

Peek at what's on top of the stack.

The Queue ADT

Outside of the US, "queueing" is lining up.

- Enqueue (add(item) or offer(item))
 Put a new object at the end of the queue.
- Dequeue (remove() or poll()) Remove the object from the front of the queue.
- Peek (element() or peek()) Peek at what's at the front of the queue.

L_Stacks/Queues

Queues vs Stacks

Queue

First in, First out (FIFO)

Stack

Last in, First out (LIFO, FILO)

L_Stacks/Queues

Queues vs Stacks (Implementation)

ADT	Stack		Queue	
using	Doub. L. List	Array	Doub. L. List	Array
add	O(N)	Amortized $O(N)$	O(N)	Amortized $O(N)$
remove	O(N)	O(N)	O(N)	O(N)

Graphs

A graph is a pair (V, E), where

- V is a set of vertices (sometimes nodes)
- E is a set of vertex pairs called edges
- Edges and vertices may also store data (labels)

Graph Terminology

- Endpoints of an edge $\overline{U, V}$ are the endpoints of *a*.
- Edges <u>incident</u> on a vertex *a*, *b*, *d* are incident on *V*.
- Adjacent Vertices $\overline{U, V}$ are adjacent.
- Degree of a vertex (# of incident edges) \overline{X} has degree 5.
- Parallel Edges (same endpoints) h, i are parallel.
- Self-loop (same vertex is start and end) *j* is a self-loop.

Simple Graph

A graph with no parallel edges or self-loops.

Paths

Path

A sequence of alternating vertices and edges

- Begins with a vertex
- Ends with a vertex
- Each edge is preceded/followed by its endpoints

Simple Path

A path that never crosses the same vertex/edge twice

Examples

V, b, X, h, Z is a simple path.

U, c, W, e, X, g, Y, f, W, d, V is a path that is not simple.

Cycles

Cycle

A path that starts and ends on the same vertex.

Must contain at least one edge

Simple Cycle

A cycle where all of the edges and vertices are distinct (except the start/end vertex).

Examples

V, b, X, g, Y, f, W, c, U, a, V is a simple cycle.

U, c, W, e, X, g, Y, f, W, d, V, a, U is a cycle that is not simple.

Notation

- *N*: The number of vertices
- *M*: The number of edges
- deg(v): The degree of a vertex

Handshake Theorem

$$\sum_{v \in V} \deg(v) = 2M$$

Proof (sketch): Each edge adds 1 to the degree of 2 vertices.

Edge Limit

In a directed graph with no self-loops and no parallel edges:

$$M \leq N \cdot (N-1)$$

Proof (sketch):

- Each pair is connected at most once (no parallel edges)
- N possible start vertices
- (N-1) possible end vertices (no self-loops)
- $N \cdot (N-1)$ distinct combinations possible

The Directed Graph ADT

Interfaces

- Graph<V, E>
 - V: The vertex *label* type.
 - E: The edge *label* type.
- Vertex<V, E>
 - ... represents a single element (like a LinkedListNode)
 - ... stores a single value of type V
- Edge<V, E>
 - ... represents an edge (a pair of vertices)
 - ... stores a single value of type E

Graph Data Structures

What do we need to store for a graph ((V, E))?

- A collection of vertices
- A collection of edges

Edge List

```
1 class EdgeList<V, E> implements Graph<V, E>
2 {
3 List<Vertex> vertices = new ArrayList<Vertex>();
4 List<Edge> edges = new ArrayList<Edge>();
5 /*...*/
7 }
```

Edge List Summary

- addEdge, addVertex: O(1)
- removeEdge: O(1)
- removeVertex: O(M)
- incidentEdges: O(M)
- hasEdgeTo: O(M)

Space Used: O(N + M)

(constant space per vertex, edge)

Improving on the Edge List

How can we avoid searching every edge in the edge list to find the incident edges?

Idea: Store each edges in/out edge list.

Adjacency List

```
1 public class Vertex<V, E>
2 {
3 Node<Vertex> node = null;
4 List<Edge> inEdges = new BetterLinkedList<Edge>();
5 List<Edge> outEdges = new BetterLinkedList<Edge>();
6 /*...*/
7 }
```

Adjacency List Summary

- addEdge, addVertex: O(1)
- removeEdge: O(1)
- removeVertex: O(deg(v))
- incidentEdges: O(1) + O(1) per next()
- hasEdgeTo: O(deg(v))

Space Used: O(N + M)

(constant space per vertex, edge)

The Adjacency Matrix Data Structure

Adjacency Matrix Summary

addEdge, removeEdge: O(1)

• addVertex, removeVertex: $O(N^2)$

incidentEdges: O(N)

hasEdgeTo: O(1)

Space Used: $O(N^2)$

A few more definitions

A graph is **connected** if...

- ... there is a path between every pair of vertices.
- A **connected component** of G is a *maximal*, *connected* subgraph of G
 - "maximal" means that adding any other vertices from *G* would break the connected property.
 - Any subset of G's edges that makes the subgraph connected is fine.

Depth First Search (DFS)

Primary Goals

- Visit every vertex in graph G = (V, E).
- Construct a spanning tree for every connected component.
 - **Side Effect**: Compute connected components.
 - Side Effect: Compute a path between all connected vertices.
 - **Side Effect**: Determine if the graph is connected.
 - **Side Effect**: Identify any cycles (if they exist).

• Complete in time O(N + M).

Depth First Search (DFS)

DFS(G)

Input

• Graph G = (V, E)

Output

- Label every edge as a:
 - Spanning Edge: Part of the spanning tree
 - Back Edge: Part of a cycle

Depth First Search (DFS)

DFSOne(G, v)

Input

- Graph G = (V, E)
- Start vertex $v \in V$

Output

A spanning tree, rooted at v, to every node in v's connected component.

Depth First Search (DFS)

DFSOne

- **1** Initialize Todo **Stack** with start vertex v (no edge)
- **2** Retrieve next todo vertex (or return if none left).
- 3 If the vertex is already visited¹, return to step 2.
- 4 Otherwise, mark this vertex as visited.
- 5 Mark the edge listed in the todo item as a spanning edge.
- 6 Add todo items for every unvisited, adjacent vertex (via the edge to the current vertex).
- 7 Return to step 2.

¹It won't be for DFS or BFS, but bear with me...

C 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Breadth First Search (BFS)

BFSOne

- **1** Initialize Todo **Queue** with start vertex v (no edge)
- **2** Retrieve next todo vertex (or return if none left).
- **3** If the vertex is already visited², return to step 2.
- 4 Otherwise, mark this vertex as visited.
- 5 Mark the edge listed in the todo item as a spanning edge.
- 6 Add todo items for every unvisited, adjacent vertex (via the edge to the current vertex).
- 7 Return to step 2.

²It won't be for DFS or BFS, but bear with me...

C 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Dijkstra's Algorithm

Dijkstra One

- **1** Initialize Todo **Priority Queue** with start vertex *v* (no edge)
- **2** Retrieve next todo vertex (or return if none left).
- 3 If the vertex is already visited, return to step 2.
- 4 Otherwise, mark this vertex as visited.
- 5 Mark the edge listed in the todo item as a spanning edge.
- 6 Add todo items for every unvisited, adjacent vertex (via the edge to the current vertex).
- 7 Return to step 2.

Graph Traversal

	DFS	BFS	Dijkstra's Algo
Runtime	O(N+M)	O(N+M)	$O(N + M \log(M))^3$
Visit Order	Last Visited	Closest by Edge Count	Closest by Total Edge Weight
Spanning Tree	Long paths	Fewest Vertices to Root	Shortest Edge Weight to Root

³With Heap as Priority Queue

New ADT: Priority Queue

PriorityQueue<E> (E must be Comparable)

- public void add(E e): Add e to the queue.
- public E peek(): Return the *least* element added.
- public E remove(): Remove and return the *least* element added.

(Partial) Ordering Properties

A partial ordering must be...

- Reflexive $x \le x$
- Antisymmetric if $x \le y$ and $y \le x$ then x = y
- **Transitive** if $x \le y$ and $y \le z$ then $x \le z$

(Total) Ordering Properties

- A total ordering must be...
 - Reflexive $x \le x$
 - Antisymmetric if $x \le y$ and $y \le x$ then x = y
 - **Transitive** if $x \le y$ and $y \le z$ then $x \le z$
 - **Complete** either $x \le y$ or $y \le x$ for any $x, y \in A$

Priority Queues

There are two mentalities...

- **Lazy**: Keep everything a mess.
- **Proactive**: Keep everything organized.
- **Balanced**: Keep everything a little sorted.

Lazy Priority Queue

Base Data Structure: Linked List

- public void add(T v) Append v to the end of the linked list.
- public T remove() O(N)
 Traverse the list to find the least value and remove it.

Proactive Priority Queue

Base Data Structure: Linked List

- public void add(T v) O(N) Traverse the list to insert v in sorted order.
- public T remove() O(1)
 Remove the head of the list.

Binary Min-Heaps

- \blacksquare Directed A directed edge in the tree means \leq
- Binary (max 2 children, easy to reason about)
- **Complete** (every 'level' except last is full)
 - For consistency, keep all nodes in the last level to the left.

This is a Min-Heap

Operation	Lazy	Proactive	Heap
add	O(1)	O(N)	$O(\log(N))$
remove	O(N)	O(1)	$O(\log(N))$
peek	0(N)	O(1)	O(1)

Trees

Child

An adjacent node connected by an out-edge

Leaf

A node with no children

Depth of a node The number of edges from the root to the node

Depth of a tree

The maximum depth of any node in the tree

• Level of a node The depth + 1

Tree Traversals

- Pre-order (top-down)
 - visit root, visit left subtree, visit right subtree
- In-order
 - visit left subtree, visit root, visit right subtree
- Post-order (bottom-up)
 - visit left subtree, visit right subtree, visit root

Binary Search Trees

- Binary Tree
 - Each element has (at most) 2 children.

Binary Search Tree Constraint

- Each node has a value.
- Each node's value is greater than its left descendants
- Each node's value is lesser than (or equal to) its right descendants
- Set Constraint [optional]
 - Each node's value is unique.

Binary Search Trees

Operation	Runtime
find	O(d)
insert	O(d)
remove	O(d)

Balanced Search Trees

- General BST: d = O(N)
- **Balanced** BST: $d = O(\log(N))$
 - Complete Tree
 - AVL Tree Property
 - Red-Black Colorability

AVL Trees

- An AVL Tree (<u>A</u>delson-<u>V</u>elsky and <u>L</u>andis) is a BST where every node is "depth balanced"
 - $|\text{height}(left) \text{height}(right)| \le 1$
- balance(v) = height(left) height(right)
 - Maintain **balance** $(v) \in \{-1, 0, 1\}$ **balance** $(b) = 0 \rightarrow$ "v is balanced"
 - **balance** $(b) = -1 \rightarrow$ "v is left-heavy"
 - **balance** $(b) = 1 \rightarrow$ "v is right-heavy"

balance $(v) \in \{ -1, 0, 1 \}$ is the AVL tree property

AVL Trees

If balance(v) = height(left) - height(right)

Then $N > \min Nodes(d) = \Omega(1.5^d)$

So $d \in O(\log(N))$

AVL Trees

If the tree starts off balanced:

- The tree can be re-balanced after an insertion in log(N) time.
- The tree can be re-balanced after a removal in log(N) time.

Red-Black Trees

A BST is Red-Black Colorable if...

- Every node can be assigned a color, either **Red** or **Black**.
- The root is Black.
- The parent of every **Red** node is **Black**.
- The number of **Black** nodes on every path from a null-leaf to the root is the same (the **Black**-depth).

Red-Black Trees

If a BST is red-black colorable...

Then the distance from the root to the shallowest null-leaf is at least half the distance from the root to the deepest null-leaf.

Then The upper "half" of the tree is complete.

Then $N > \min Nodes(d) = \Omega(2^d)$ and $d \in O(\log(N))$

	General BST	AVL Tree	R-B Tree
find	O(N)	$O(\log(N))$	$O(\log(N))$
insert	O(N)	$O(\log(N))$	$O(\log(N))$
remove	O(N)	$O(\log(N))$	$O(\log(N))$

Note 1: R-B Trees are like AVL Trees, but with a better constant.