
CSE 250: Midterm Review

CSE 250: Midterm Review
Lecture 29

Nov 8, 2023

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Class Logistics

Reminders

Midterm 2: Friday

Review today
Example midterms on class website

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Runtimes

Sorting Algorithms

Algorithm Runtime
BubbleSort O(N2)
MergeSort Unqualified O(logN)
QuickSort Expected O(logN)
HeapSort Unqualified O(logN)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Runtimes

Bound Guarantees

f (N) is a [Unqualified] Worst-Case Bound (T (N) ∈ O(f (N)))

The algorithm always runs in at most c · f (N) steps.

f (N) is an Amortized Worst-Case Bound
N invocations of the algorithm always run in at most N · c · f (N) steps.

f (N) is an Expected Worst-Case Bound (E [T (N)] ∈ O(f (N)))

The algorithm is statistically likely to run in at most c · f (N) steps.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Stacks/Queues

Back to Sequence ADTs

Sequence
get(i), set(i, v)

List
... and add(v), add(i, v), remove(i),

Stack
push(v), pop(), peek()

Queue
add(v), remove(), peek()

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Stacks/Queues

The Stack ADT

A stack of objects on top of one another.

Push
Put a new object on top of the stack.

Pop
Remove the object from the top of the stack.

Top
Peek at what’s on top of the stack.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Stacks/Queues

The Queue ADT

Outside of the US, ”queueing” is lining up.

Enqueue (add(item) or offer(item))
Put a new object at the end of the queue.

Dequeue (remove() or poll())
Remove the object from the front of the queue.

Peek (element() or peek())
Peek at what’s at the front of the queue.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Stacks/Queues

Queues vs Stacks

Queue
First in, First out (FIFO)

Stack
Last in, First out (LIFO, FILO)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Stacks/Queues

Queues vs Stacks (Implementation)

ADT Stack Queue
using... Doub. L. List Array Doub. L. List Array

add O(N) Amortized O(N) O(N) Amortized O(N)
remove O(N) O(N) O(N) O(N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graphs

Graphs

A graph is a pair (V, E), where

V is a set of vertices (sometimes nodes)

E is a set of vertex pairs called edges

Edges and vertices may also store data (labels)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graphs

Graph Terminology

Endpoints of an edge
U,V are the endpoints of a.

Edges incident on a vertex
a, b, d are incident on V .

Adjacent Vertices
U,V are adjacent.

Degree of a vertex (# of incident edges)
X has degree 5.

Parallel Edges (same endpoints)
h, i are parallel.

Self-loop (same vertex is start and end)
j is a self-loop.

Simple Graph
A graph with no parallel edges or self-loops.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graphs

Paths

Path

A sequence of alternating vertices and edges

Begins with a vertex
Ends with a vertex
Each edge is preceded/followed by its
endpoints

Simple Path
A path that never crosses the same
vertex/edge twice

Examples
V , b,X , h,Z is a simple path.
U, c,W , e,X , g ,Y , f ,W , d ,V is a path that
is not simple.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graphs

Cycles

Cycle

A path that starts and ends on the same

vertex.

Must contain at least one edge

Simple Cycle
A cycle where all of the edges and vertices are
distinct (except the start/end vertex).

Examples
V , b,X , g ,Y , f ,W , c,U, a,V is a simple
cycle.
U, c,W , e,X , g ,Y , f ,W , d ,V , a,U is a cycle
that is not simple.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graphs

Notation

N: The number of vertices

M: The number of edges

deg(v): The degree of a vertex

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graphs

Handshake Theorem

∑
v∈V

deg(v) = 2M

Proof (sketch): Each edge adds 1 to the degree of 2 vertices.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graphs

Edge Limit

In a directed graph with no self-loops and no parallel edges:

M ≤ N · (N − 1)

Proof (sketch):

Each pair is connected at most once (no parallel edges)

N possible start vertices

(N − 1) possible end vertices (no self-loops)

N · (N − 1) distinct combinations possible

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graphs

The Directed Graph ADT

Interfaces

Graph<V, E>

V: The vertex label type.
E: The edge label type.

Vertex<V, E>

... represents a single element (like a LinkedListNode)

... stores a single value of type V

Edge<V, E>

... represents an edge (a pair of vertices)

... stores a single value of type E

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graphs

Graph Data Structures

What do we need to store for a graph ((V ,E))?

A collection of vertices

A collection of edges

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graphs

Edge List

1 class EdgeList<V, E> implements Graph<V, E>

2 {

3 List<Vertex> vertices = new ArrayList<Vertex>();

4 List<Edge> edges = new ArrayList<Edge>();

5

6 /*...*/

7 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graphs

Edge List Summary

addEdge, addVertex: O(1)

removeEdge: O(1)

removeVertex: O(M)

incidentEdges: O(M)

hasEdgeTo: O(M)

Space Used: O(N +M)
(constant space per vertex, edge)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graphs

Improving on the Edge List

How can we avoid searching every edge in the edge list to find the
incident edges?

Idea: Store each edges in/out edge list.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graphs

Adjacency List

1 public class Vertex<V, E>

2 {

3 Node<Vertex> node = null;

4 List<Edge> inEdges = new BetterLinkedList<Edge>();

5 List<Edge> outEdges = new BetterLinkedList<Edge>();

6 /*...*/

7 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graphs

Adjacency List Summary

addEdge, addVertex: O(1)

removeEdge: O(1)

removeVertex: O(deg(v))

incidentEdges: O(1) + O(1) per next()

hasEdgeTo: O(deg(v))

Space Used: O(N +M)
(constant space per vertex, edge)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graphs

The Adjacency Matrix Data Structure

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graphs

Adjacency Matrix Summary

addEdge, removeEdge: O(1)

addVertex, removeVertex: O(N2)

incidentEdges: O(N)

hasEdgeTo: O(1)

Space Used: O(N2)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graphs

A few more definitions

A graph is connected if. . .

. . . there is a path between every pair of
vertices.

A connected component of G is a maximal,
connected subgraph of G

“maximal” means that adding any other vertices
from G would break the connected property.

Any subset of G ’s edges that makes the subgraph
connected is fine.

Connected Graph

Disconnected Graph

2 Connected Components

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graph Search

Depth First Search (DFS)

Primary Goals

Visit every vertex in graph G = (V ,E).

Construct a spanning tree for every connected component.

Side Effect: Compute connected components.
Side Effect: Compute a path between all connected vertices.
Side Effect: Determine if the graph is connected.
Side Effect: Identify any cycles (if they exist).

Complete in time O(N +M).

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graph Search

Depth First Search (DFS)

DFS(G)

Input

Graph G = (V ,E)

Output

Label every edge as a:

Spanning Edge: Part of the spanning tree
Back Edge: Part of a cycle

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graph Search

Depth First Search (DFS)

DFSOne(G, v)

Input

Graph G = (V ,E)

Start vertex v ∈ V

Output

A spanning tree, rooted at v , to every node in v ’s connected
component.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graph Search

Depth First Search (DFS)

DFSOne

1 Initialize Todo Stack with start vertex v (no edge)

2 Retrieve next todo vertex (or return if none left).

3 If the vertex is already visited1, return to step 2.

4 Otherwise, mark this vertex as visited.

5 Mark the edge listed in the todo item as a spanning edge.

6 Add todo items for every unvisited, adjacent vertex
(via the edge to the current vertex).

7 Return to step 2.

1It won’t be for DFS or BFS, but bear with me...
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graph Search

Breadth First Search (BFS)

BFSOne

1 Initialize Todo Queue with start vertex v (no edge)

2 Retrieve next todo vertex (or return if none left).

3 If the vertex is already visited2, return to step 2.

4 Otherwise, mark this vertex as visited.

5 Mark the edge listed in the todo item as a spanning edge.

6 Add todo items for every unvisited, adjacent vertex
(via the edge to the current vertex).

7 Return to step 2.

2It won’t be for DFS or BFS, but bear with me...
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graph Search

Dijkstra’s Algorithm

Dijkstra One

1 Initialize Todo Priority Queue with start vertex v (no edge)

2 Retrieve next todo vertex (or return if none left).

3 If the vertex is already visited, return to step 2.

4 Otherwise, mark this vertex as visited.

5 Mark the edge listed in the todo item as a spanning edge.

6 Add todo items for every unvisited, adjacent vertex
(via the edge to the current vertex).

7 Return to step 2.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graph Search

Graph Traversal

DFS BFS Dijkstra’s Algo

Runtime O(N +M) O(N +M) O(N +M log(M))3

Visit Order Last Visited Closest by Edge
Count

Closest by Total Edge
Weight

Spanning Tree Long paths Fewest Vertices
to Root

Shortest Edge Weight to
Root

3With Heap as Priority Queue
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graph Search

New ADT: Priority Queue

PriorityQueue<E> (E must be Comparable)

public void add(E e): Add e to the queue.

public E peek(): Return the least element added.

public E remove(): Remove and return the least element
added.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graph Search

(Partial) Ordering Properties

A partial ordering must be. . .

Reflexive x ≤ x

Antisymmetric if x ≤ y and y ≤ x then x = y

Transitive if x ≤ y and y ≤ z then x ≤ z

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graph Search

(Total) Ordering Properties

A total ordering must be. . .

Reflexive x ≤ x

Antisymmetric if x ≤ y and y ≤ x then x = y

Transitive if x ≤ y and y ≤ z then x ≤ z

Complete either x ≤ y or y ≤ x for any x , y ∈ A

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graph Search

Priority Queues

There are two mentalities...

Lazy: Keep everything a mess.

Proactive: Keep everything organized.

Balanced: Keep everything a little sorted.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graph Search

Lazy Priority Queue

Base Data Structure: Linked List

public void add(T v) O(1)
Append v to the end of the linked list.

public T remove() O(N)
Traverse the list to find the least value and remove it.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graph Search

Proactive Priority Queue

Base Data Structure: Linked List

public void add(T v) O(N)
Traverse the list to insert v in sorted order.

public T remove() O(1)
Remove the head of the list.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graph Search

Binary Min-Heaps

Directed A directed edge in the tree means ≤
Binary (max 2 children, easy to reason about)

Complete (every ’level’ except last is full)

For consistency, keep all nodes in the last level to the left.

This is a Min-Heap

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Graph Search

Priority Queues

Operation Lazy Proactive Heap
add O(1) O(N) O(log(N))

remove O(N) O(1) O(log(N))
peek O(N) O(1) O(1)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Binary Search Trees

Trees

Child
An adjacent node connected by an out-edge

Leaf
A node with no children

Depth of a node
The number of edges from the root to the node

Depth of a tree
The maximum depth of any node in the tree

Level of a node
The depth + 1

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Binary Search Trees

Tree Traversals

Pre-order (top-down)

visit root, visit left subtree, visit right subtree

In-order

visit left subtree, visit root, visit right subtree

Post-order (bottom-up)

visit left subtree, visit right subtree, visit root

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Binary Search Trees

Binary Search Trees

Binary Tree

Each element has (at most) 2 children.

Binary Search Tree Constraint

Each node has a value.
Each node’s value is greater than its left descendants
Each node’s value is lesser than (or equal to) its right
descendants

Set Constraint [optional]
Each node’s value is unique.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Binary Search Trees

Binary Search Trees

Operation Runtime
find O(d)
insert O(d)
remove O(d)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Binary Search Trees

Balanced Search Trees

General BST: d = O(N)

Balanced BST: d = O(log(N))

Complete Tree
AVL Tree Property
Red-Black Colorability

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Binary Search Trees

AVL Trees

An AVL Tree (Adelson-Velsky and Landis) is a BST where
every node is “depth balanced”

|height(left)− height(right)| ≤ 1

balance(v) = height(left)− height(right)

Maintain balance(v) ∈ { −1, 0, 1 }
balance(b) = 0 → “v is balanced”
balance(b) = −1 → “v is left-heavy”
balance(b) = 1 → “v is right-heavy”

balance(v) ∈ { −1, 0, 1 } is the AVL tree property

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Binary Search Trees

AVL Trees

If balance(v) = height(left)− height(right)

Then N > minNodes(d) = Ω(1.5d)

So d ∈ O(log(N))

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Binary Search Trees

AVL Trees

If the tree starts off balanced:

The tree can be re-balanced after an insertion in log(N) time.

The tree can be re-balanced after a removal in log(N) time.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Binary Search Trees

Red-Black Trees

A BST is Red-Black Colorable if...

Every node can be assigned a color, either Red or Black.

The root is Black.

The parent of every Red node is Black.

The number of Black nodes on every path from a null-leaf to
the root is the same (the Black-depth).

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Binary Search Trees

Red-Black Trees

If a BST is red-black colorable...

Then the distance from the root to the shallowest null-leaf is at
least half the distance from the root to the deepest null-leaf.

Then The upper “half” of the tree is complete.

Then N > minNodes(d) = Ω(2d) and d ∈ O(log(N))

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review

Binary Search Trees

BST Overview

General BST AVL Tree R-B Tree
find O(N) O(log(N)) O(log(N))
insert O(N) O(log(N)) O(log(N))
remove O(N) O(log(N)) O(log(N))

Note 1: R-B Trees are like AVL Trees, but with a better constant.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

	Class Logistics
	Runtimes
	Stacks/Queues
	Graphs
	Graph Search
	Graph Search
	Binary Search Trees

