CSE 250: Hash Tables
 Lecture 31

Nov 15, 2023

Reminders

- WA4 due tonight

■ PA3 released

- "Join" two datasets together efficiently.
- De-anonymize "public" data

The Set ADT

A collection of unique elements (of type E)

- public boolean add(E a)

Add an element a to the set and return true. Do nothing and return false if it is already present.

- public boolean remove(E a)

Remove an element a from the set and return true. Do nothing and return false if the element is not in the set.

- public boolean contains(E a)

Return true if and only if the element a is part of the set.

- public int size()

Return the number of elements in the set.

How do we implement a set?

- List (Array or Linked)?
- Sorted ArrayList?
- Balanced Binary Search Tree (AVL, Red-Black) $O(\log N)$

■ Hash Tables

Bucketing Elements with Linked Lists

Athos	B	C	D'Aragnan	. \cdot	Porthos	. .	Y	Z
\bullet	\emptyset	\emptyset	\emptyset		\emptyset		\emptyset	\emptyset
Aramis ${ }_{\text {¢ }}$								

Picking a lookup function

Buckets

Hash Functions

Example Hash Functions

■ SHA256 (used by GIT)
■ MD5, BCrypt (used by unix login, apt)
■ MurmurHash3 (used by Scala)
hash (e) is pseudorandom
1 hash(e) \sim uniform random value in [0, Integer. MAX_VALUE)
2 hash(e) always returns the same value for the same e
3 hash(e) is uncorrelated with hash(e') for e $\neq e^{\prime}$

Hash Functions

hash(e) is ...
■ Pseudorandom ("Evenly distributed" over $[0, B)$)
■ Deterministic (Same value every time)

Using Hash Functions

Basic Hash: public int hash (int e)
■ Integers: hash(e) mod B gets the bucket of e
■ Strings: ???

```
public int hashString(String str)
{
    int accumulator = SEED;
    for(c : str.toCharArray())
    {
        accumulator = hash(accumulator + c)
        }
    return accumulator
}
```

(simplified... don't actually do this)

Using Hash Functions in Java

For any object x , call x. hashCode

HashSet

- public boolean add(E a)

Insert the element into the list at hash $(a) \bmod B$.

- public boolean remove(T a)

Find the element in the list at hash(a) mod B and remove it.

- public boolean contains(T a)

Find the element in the list at hash(a) mod B.

- public int size()

Return a pre-computed size.

Expectation

If X is a variable representing a random outcome, we call the weighted sum of outcomes the expectation of X, or $\mathbb{E}[X]$.

If P_{i} is the probability that $X=x_{i}$:

$$
\mathbb{E}[X]=\sum_{i} P\left[X=x_{i}\right] \cdot x_{i}
$$

Expected Bucket Size

After N insertions, how many records can we expect in the average bucket?

Let X_{j} be the number of records in bucket j.
After N insertions $0 \leq X_{j} \leq N$:

- $X_{j}=0$ with $P\left[X_{j}=0\right]=$???

■ $X_{j}=1$ with $P\left[X_{j}=1\right]=$???
■ $X_{j}=2$ with $P\left[X_{j}=2\right]=$???

■ $X_{j}=N$ with $P\left[X_{j}=N\right]=$???

Expected Bucket Size

Assume B buckets.
Start with one insertion ($N=1$)

- $X_{j}=0$ with $P\left[X_{j}=0\right]=\frac{B-1}{B}$

■ $X_{j}=1$ with $P\left[X_{j}=1\right]=\frac{1}{B}$
$\mathbb{E}\left[X_{j}\right]=\left(0 \cdot \frac{B-1}{B}\right)+\left(1 \cdot \frac{1}{B}\right)=\frac{1}{B}$

Expected Bucket Size

For N insertions, we repeat the process: $X_{0, j}, X_{1, j}, X_{2, j}, \ldots X_{N, j}$

$$
\begin{aligned}
\mathbb{E}\left[\sum_{i} X_{i, j}\right] & =\mathbb{E}\left[X_{0, j}\right]+\mathbb{E}\left[X_{1, j}\right]+\ldots+\mathbb{E}\left[X_{N, j}\right] \\
& =\underbrace{\frac{1}{B}+\ldots+\frac{1}{B}}_{N \text { times }} \\
& =\frac{N}{B}
\end{aligned}
$$

■ Expected Runtime of insert, find, remove: $O\left(\frac{N}{B}\right)$
■ Unqualified Runtime of insert, find, remove: $O(N)$

Hash Table Optimizations

■ Improving iteration times
■ Resizing the hash table

- Avoiding the linked list

Iterating over a Hash Table

A B C D E

Iterating over a Hash Table

■ Visit every hash bucket
■ Visit every element in every hash bucket
Total: $O(B+N)$

Linked Hash Table

Idea: Organize the hash table elements in a linked list

Linked Hash Table

Iterating over a Linked Hash Table

■ Visit every element via linked list
Total: $O(N)$ (no more $O(B)$ factor)
Insert (Changes only)

- Append the new element to the tail of the linked list.

Remove (Changes only)

- Remove the element from its position in the linked list. $O(1)$

Resizing the Hash Table (Rehashing)

Remember the load factor $\alpha=\frac{N}{B}$
The expected runtime of insert, find, remove is $O(\alpha)$
If we can ensure that $\alpha \leq \alpha_{\text {max }}$ for some constant $\alpha_{\text {max }}$, then $O(\alpha)=O(1)$

After enough inserts to make $\alpha>\alpha_{\max }$ (with B buckets):

- Create a new hash table with $2 B$ buckets.

■ Insert every element e from the original table into the new one according to hash(e) $\bmod 2 B$

Resizing the Hash Table

- Rehash at $N_{1}=\alpha_{\max } \cdot B$ from B to $2 B$ buckets.

■ Rehash at $N_{2}=\alpha_{\max } \cdot 2 B$ from $2 B$ to $4 B$ buckets.

- Rehash at $N_{3}=\alpha_{\max } \cdot 4 B$ from $4 B$ to $8 B$ buckets.

■ Rehash at $N_{j}=\alpha_{\max } \cdot 2^{j-1} B$ from $2^{j-1} B$ to $2^{j} B$ buckets.

Resizing the Hash Table

How many times do we rehash for N insertions?

$$
\begin{aligned}
N & =2^{j-1} \alpha_{\max } \\
2^{j} & =\frac{N}{\alpha_{\max }} \\
j & =\log \left(\frac{N}{\alpha_{\max }}\right) \\
j & =\log (N)-\log \left(\alpha_{\max }\right) \\
j & \leq \log (N)
\end{aligned}
$$

Resizing the Hash Table

- Rehashes required: $\leq \log (N)$.
- The ith rehashing $O\left(2^{i}\right)$ work.
- Total work after N insertions is no more than...

$$
\begin{aligned}
\sum_{i=0}^{\log (N)} O\left(2^{i}\right) & =O\left(\sum_{i=0}^{\log (N)} 2^{i}\right) \\
& =O\left(\left(2^{\log (N)+1}-1\right)\right) \\
& =O(N)
\end{aligned}
$$

- Work per insertion (amortized): $O\left(\frac{N}{N}\right)=O(1)$

Recap: So Far

Current Design: Hash Table with Chaining

- Array of Buckets

■ Each bucket is the head of a linked list (a "chain")

Recap: find(x)

Expected Cost

- Find the bucket
- Find the record in the bucket

$$
\begin{array}{r}
O\left(c_{\text {hash }}\right)^{1} \\
O\left(\alpha \cdot c_{\text {equals }}\right)^{2}
\end{array}
$$

Total: $O\left(c_{\text {hash }}+\alpha c_{\text {equals }}\right)=O(1+1)=O(1)$

Unqualified Worst-Case Cost

- Find the bucket
- Find the record in the bucket
$O\left(c_{\text {hash }}\right)$
$O\left(N \cdot c_{\text {equals }}\right)$

Total: $O\left(c_{\text {hash }}+N \cdot c_{\text {equals }}\right)=O(1+N)=O(N)$

[^0]
Recap: insert(x)

Expected Cost

- Find the bucket
$O\left(c_{\text {hash }}\right)$
- Find the record in the bucket

■ Replace the existing record or append it to the list
Total: $O\left(c_{\text {hash }}+\alpha c_{\text {equals }}+1\right)=O(1+1+1)=O(1)$

Unqualified Worst-Case Cost

■ Find the bucket
$O\left(c_{\text {hash }}\right)$

- Find the record in the bucket

■ Replace the existing record or append it to the list
Total: $O\left(c_{\text {hash }}+N \cdot c_{\text {equals }}+1\right)=O(1+N+1)=O(N)$

Recap: remove(x)

Expected Cost

- Find the bucket
O (chash)
- Find the record in the bucket
- Remove the record from the linked list

Total: $O\left(c_{\text {hash }}+\alpha c_{\text {equals }}+1\right)=O(1+1+1)=O(1)$
Unqualified Worst-Case Cost

- Find the bucket
$O\left(c_{\text {hash }}\right)$
- Find the record in the bucket
$O\left(N \cdot c_{\text {equals }}\right)$
- Remove the record from the linked list

Total: $O\left(c_{\text {hash }}+N \cdot c_{\text {equals }}+1\right)=O(1+N+1)=O(N)$

HashSet

- public boolean add(E a)

Insert the element into the list at $\operatorname{hash}(a) \bmod B$.
Expected $O(1)$

- public boolean remove(T a)

Find the element in the list at hash(a) $\bmod B$ and remove it. Expected $O(1)$

- public boolean contains (T a)

Find the element in the list at hash(a) $\bmod B$.
Expected $O(1)$

- public int size()

Return a pre-computed size.

More Optimizations

Hash Table with Chaining

■ ... but re-use empty hash buckets instead of linked lists.
■ Hash Table with Open Addressing

- Cuckoo Hashing (Double Hashing)

■ . . . but avoid bursty re-hashing costs

- Dynamic Hashing

Hash Table with Chaining

Hash Table with Open Addressing


```
hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3
```


Open Addressing

insert(a)

- Start at $i=0$

■ While bucket hash(a)+i mod N is occupied $i=i+1$

- Insert at bucket hash(a)+i mod N
find(a)
- Start at $i=0$
- While bucket hash(a) $+i \bmod N$ is occupied:
- If bucket hash(a)+i mod N holds a, return true
- Otherwise $i=i+1$
- Return false

Open Addressing

remove(a)

- Find the bucket containing a.

■ For every element in the contiguous block following a :

- Move the element b into the newly freed spot unless $\operatorname{hash}(b)<\operatorname{hash}(a)+i$
- Move to the next element

Open Addressing

Variant Probing Strategies

■ Linear Probing: Offset to hash $(a)+c \cdot i$ for some constant c

- Quadratic Probing: Offset to hash(a) $+c \cdot i^{2}$ for some constant c

Runtime Costs

- Chaining: Runtime dominated by the size of the biggest linked list

■ Open Addressing: Runtime dominated by probing
With a low enough $\alpha_{\text {max }}$, operations remain expected $O(1)$

Cuckoo Hashing

Let's say we're ok with a more expensive insert/remove. Can we get $O(1)$ find?

Dynamic Hashing

The amortized cost of a rehash is $O(1)$, but periodic lag spikes can be annoying.
Can we "flatten out" the lag spikes?

[^0]: ${ }^{1} c_{\text {hash }}$ is the cost of the hash function.
 ${ }^{2} c_{\text {equals }}$ is the cost of .equals.

