
CSE 250: Hash Tables

CSE 250: Hash Tables
Lecture 31

Nov 15, 2023

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Class Logistics

Reminders

WA4 due tonight

PA3 released

“Join” two datasets together efficiently.
De-anonymize “public” data

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Sets

The Set ADT

A collection of unique elements (of type E)

public boolean add(E a)

Add an element a to the set and return true. Do nothing and
return false if it is already present.

public boolean remove(E a)

Remove an element a from the set and return true. Do
nothing and return false if the element is not in the set.

public boolean contains(E a)

Return true if and only if the element a is part of the set.

public int size()

Return the number of elements in the set.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Sets

How do we implement a set?

List (Array or Linked)?

Sorted ArrayList?

Balanced Binary Search Tree (AVL, Red-Black) O(logN)

Hash Tables

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Bucketing Elements with Linked Lists

A B C D . . . P . . . Y Z

∅ ∅ ∅ ∅ ∅ ∅ ∅

Athos PorthosD’Artagnan

A2

∅

Aramis

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Picking a lookup function

0 0.5 1 1.5
0

5

10

15

20

Buckets

E
le
m
en
ts

P
er

B
u
ck
et

find ≈ O(1)

Almost Ideal
. . . and achievable

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Hash Functions

Example Hash Functions

SHA256 (used by GIT)

MD5, BCrypt (used by unix login, apt)

MurmurHash3 (used by Scala)

hash(e) is pseudorandom

1 hash(e) ∼ uniform random value in [0, Integer.MAX VALUE)

2 hash(e) always returns the same value for the same e

3 hash(e) is uncorrelated with hash(e’) for e ̸= e’

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Hash Functions

hash(e) is ...

Pseudorandom (“Evenly distributed” over [0,B))

Deterministic (Same value every time)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Using Hash Functions

Basic Hash: public int hash(int e)

Integers: hash(e) mod B gets the bucket of e

Strings: ???

1 public int hashString(String str)

2 {

3 int accumulator = SEED;

4 for(c : str.toCharArray())

5 {

6 accumulator = hash(accumulator + c)

7 }

8 return accumulator

9 }

(simplified... don’t actually do this)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Using Hash Functions in Java

For any object x, call x.hashCode

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

HashSet

public boolean add(E a)

Insert the element into the list at hash(a) mod B.

public boolean remove(T a)

Find the element in the list at hash(a) mod B and remove it.

public boolean contains(T a)

Find the element in the list at hash(a) mod B.

public int size()

Return a pre-computed size.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Expectation

If X is a variable representing a random outcome, we call the
weighted sum of outcomes the expectation of X , or E[X ].

If Pi is the probability that X = xi :

E[X ] =
∑
i

P[X = xi ] · xi

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Expected Bucket Size

After N insertions, how many records can we expect in the average
bucket?

Let Xj be the number of records in bucket j .

After N insertions 0 ≤ Xj ≤ N:

Xj = 0 with P[Xj = 0] = ???

Xj = 1 with P[Xj = 1] = ???

Xj = 2 with P[Xj = 2] = ???

. . .

Xj = N with P[Xj = N] = ???

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Expected Bucket Size

Assume B buckets.

Start with one insertion (N = 1)

Xj = 0 with P[Xj = 0] = B−1
B

Xj = 1 with P[Xj = 1] = 1
B

E[Xj ] =
(
0 · B−1

B

)
+
(
1 · 1

B

)
= 1

B

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Expected Bucket Size

For N insertions, we repeat the process: X0,j ,X1,j ,X2,j , . . .XN,j

E[
∑
i

Xi ,j ] = E[X0,j ] + E[X1,j ] + . . .+ E[XN,j ]

=
1

B
+ . . .+

1

B︸ ︷︷ ︸
N times

=
N

B

Expected Runtime of insert, find, remove: O
(
N
B

)
Unqualified Runtime of insert, find, remove: O(N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Hash Table Optimizations

Improving iteration times

Resizing the hash table

Avoiding the linked list

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Iterating over a Hash Table

0 1 2 3 4 5 6 7

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

2

∅

A B

C

D E

A B C D E

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Iterating over a Hash Table

Visit every hash bucket O(B)

Visit every element in every hash bucket O(N)

Total: O(B + N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Linked Hash Table

Idea: Organize the hash table elements in a linked list

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Linked Hash Table

0 1 2 3 4 5 6 7

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

2

∅

A B

C

D E

HEAD TAIL

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Iterating over a Linked Hash Table

Visit every element via linked list O(N)

Total: O(N) (no more O(B) factor)

Insert (Changes only)

Append the new element to the tail of the linked list. O(1)

Remove (Changes only)

Remove the element from its position in the linked list. O(1)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Resizing the Hash Table (Rehashing)

Remember the load factor α = N
B

The expected runtime of insert, find, remove is O(α)

If we can ensure that α ≤ αmax for some constant αmax , then
O(α) = O(1)

After enough inserts to make α > αmax (with B buckets):

Create a new hash table with 2B buckets.

Insert every element e from the original table into the new
one according to hash(e) mod 2B

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Resizing the Hash Table

Rehash at N1 = αmax · B from B to 2B buckets.

Rehash at N2 = αmax · 2B from 2B to 4B buckets.

Rehash at N3 = αmax · 4B from 4B to 8B buckets.

. . .

Rehash at Nj = αmax · 2j−1B from 2j−1B to 2jB buckets.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Resizing the Hash Table

How many times do we rehash for N insertions?

N = 2j−1αmax

2j =
N

αmax

j = log

(
N

αmax

)
j = log(N)− log(αmax)

j ≤ log(N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Resizing the Hash Table

Rehashes required: ≤ log(N).

The ith rehashing O(2i ) work.

Total work after N insertions is no more than...

log(N)∑
i=0

O(2i ) = O

log(N)∑
i=0

2i


= O

(
(2log(N)+1 − 1)

)
= O (N)

Work per insertion (amortized): O
(
N
N

)
= O(1)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Recap: So Far

Current Design: Hash Table with Chaining

Array of Buckets

Each bucket is the head of a linked list (a “chain”)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Recap: find(x)

Expected Cost

Find the bucket O(chash)
1

Find the record in the bucket O(α · cequals)2

Total: O(chash + αcequals) = O(1 + 1) = O(1)

Unqualified Worst-Case Cost

Find the bucket O(chash)

Find the record in the bucket O(N · cequals)
Total: O(chash + N · cequals) = O(1 + N) = O(N)

1chash is the cost of the hash function.
2cequals is the cost of .equals.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Recap: insert(x)

Expected Cost

Find the bucket O(chash)

Find the record in the bucket O(α · cequals)
Replace the existing record or append it to the list O(1)

Total: O(chash + αcequals + 1) = O(1 + 1 + 1) = O(1)

Unqualified Worst-Case Cost

Find the bucket O(chash)

Find the record in the bucket O(N · cequals)
Replace the existing record or append it to the list O(1)

Total: O(chash + N · cequals + 1) = O(1 + N + 1) = O(N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Recap: remove(x)

Expected Cost

Find the bucket O(chash)

Find the record in the bucket O(α · cequals)
Remove the record from the linked list O(1)

Total: O(chash + αcequals + 1) = O(1 + 1 + 1) = O(1)

Unqualified Worst-Case Cost

Find the bucket O(chash)

Find the record in the bucket O(N · cequals)
Remove the record from the linked list O(1)

Total: O(chash + N · cequals + 1) = O(1 + N + 1) = O(N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

HashSet

public boolean add(E a)

Insert the element into the list at hash(a) mod B.
Expected O(1)

public boolean remove(T a)

Find the element in the list at hash(a) mod B and remove it.
Expected O(1)

public boolean contains(T a)

Find the element in the list at hash(a) mod B.
Expected O(1)

public int size()

Return a pre-computed size. O(1)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

More Optimizations

Hash Table with Chaining

. . . but re-use empty hash buckets instead of linked lists.

Hash Table with Open Addressing
Cuckoo Hashing (Double Hashing)

. . . but avoid bursty re-hashing costs

Dynamic Hashing

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Hash Table with Chaining

0 1 2 3 4 5 6 7

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

2

∅

A B

C

DE

hash(A) = 1

hash(B) = 2

hash(C) = 2

hash(D) = 4

hash(E) = 3

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Hash Table with Open Addressing

0 1 2 3 4 5 6 7A B C D E

hash(A) = 1

hash(B) = 2

hash(C) = 2

hash(D) = 4

hash(E) = 3

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Open Addressing

insert(a)

Start at i = 0

While bucket hash(a) + i mod N is occupied i = i + 1

Insert at bucket hash(a) + i mod N

find(a)

Start at i = 0

While bucket hash(a) + i mod N is occupied:

If bucket hash(a) + i mod N holds a, return true
Otherwise i = i + 1

Return false

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Open Addressing

remove(a)

Find the bucket containing a.

For every element in the contiguous block following a:

Move the element b into the newly freed spot unless
hash(b) < hash(a) + i
Move to the next element

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Open Addressing

Variant Probing Strategies

Linear Probing: Offset to hash(a) + c · i for some constant c

Quadratic Probing: Offset to hash(a) + c · i2 for some
constant c

Runtime Costs

Chaining: Runtime dominated by the size of the biggest
linked list

Open Addressing: Runtime dominated by probing

With a low enough αmax , operations remain expected O(1)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Cuckoo Hashing

Let’s say we’re ok with a more expensive insert/remove.
Can we get O(1) find?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Hash Tables

Dynamic Hashing

The amortized cost of a rehash is O(1), but periodic lag spikes can
be annoying.
Can we “flatten out” the lag spikes?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY


