CSE 250: Hash Tables Lecture 31

Nov 15, 2023

C 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Reminders

- WA4 due tonight
- PA3 released
 - "Join" two datasets together efficiently.
 - De-anonymize "public" data

The Set ADT

A collection of unique elements (of type E)

- public boolean add(E a) Add an element a to the set and return true. Do nothing and return false if it is already present.
- public boolean remove(E a)
 Remove an element a from the set and return true. Do nothing and return false if the element is not in the set.
- public boolean contains(E a) Return true if and only if the element a is part of the set.
- public int size()
 Return the number of elements in the set.

How do we implement a set?

- List (Array or Linked)?
- Sorted ArrayList?
- Balanced Binary Search Tree (AVL, Red-Black)
 O(log N)
- Hash Tables

Bucketing Elements with Linked Lists

CSE	250:	Hash	Tables

└─ Hash Tables

Picking a lookup function

C 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Hash Functions

Example Hash Functions

- SHA256 (used by GIT)
- MD5, BCrypt (used by unix login, apt)
- MurmurHash3 (used by Scala)

hash(e) is pseudorandom

- 1 hash(e) \sim uniform random value in [0, Integer.MAX_VALUE)
- 2 hash(e) always returns the same value for the same e
- 3 hash(e) is uncorrelated with hash(e') for e \neq e'

Hash Functions

hash(e) is ...

- Pseudorandom ("Evenly distributed" over [0, B))
- Deterministic (Same value every time)

Using Hash Functions

Basic Hash: public int hash(int e)

Integers: hash(e) mod B gets the bucket of e

```
Strings: ???
```

```
public int hashString(String str)
1
2
      int accumulator = SEED;
3
      for(c : str.toCharArray())
4
      ł
5
        accumulator = hash(accumulator + c)
6
      }
7
      return accumulator
8
    }
9
```

(simplified... don't actually do this)

Using Hash Functions in Java

For any object x, call x.hashCode

HashSet

- public boolean add(E a) Insert the element into the list at hash(a) mod B.
- public boolean remove(T a) Find the element in the list at hash(a) mod B and remove it.
- public boolean contains(T a) Find the element in the list at hash(a) mod B.
- public int size()

Return a pre-computed size.

Expectation

If X is a variable representing a random outcome, we call the weighted sum of outcomes the **expectation** of X, or $\mathbb{E}[X]$.

If P_i is the probability that $X = x_i$:

$$\mathbb{E}[X] = \sum_{i} P[X = x_i] \cdot x_i$$

└─ Hash Tables

Expected Bucket Size

After N insertions, how many records can we <u>expect</u> in the average bucket?

Let X_j be the number of records in bucket j.

After N insertions
$$0 \le X_j \le N$$
:
• $X_j = 0$ with $P[X_j = 0] = ???$
• $X_j = 1$ with $P[X_j = 1] = ???$
• $X_j = 2$ with $P[X_j = 2] = ???$
• ...
• $X_j = N$ with $P[X_j = N] = ???$

Expected Bucket Size

Assume *B* buckets.

Start with one insertion
$$(N = 1)$$

• $X_j = 0$ with $P[X_j = 0] = \frac{B-1}{B}$
• $X_j = 1$ with $P[X_j = 1] = \frac{1}{B}$
 $\mathbb{E}[X_j] = (0 \cdot \frac{B-1}{B}) + (1 \cdot \frac{1}{B}) = \frac{1}{B}$

Expected Bucket Size

For N insertions, we repeat the process: $X_{0,j}, X_{1,j}, X_{2,j}, \ldots X_{N,j}$

$$\mathbb{E}\left[\sum_{i} X_{i,j}\right] = \mathbb{E}[X_{0,j}] + \mathbb{E}[X_{1,j}] + \ldots + \mathbb{E}[X_{N,j}]$$
$$= \underbrace{\frac{1}{B} + \ldots + \frac{1}{B}}_{N \text{ times}}$$
$$= \frac{N}{B}$$

Expected Runtime of insert, find, remove: O (^N/_B)
 Unqualified Runtime of insert, find, remove: O(N)

Hash Table Optimizations

- Improving iteration times
- Resizing the hash table
- Avoiding the linked list

Iterating over a Hash Table

A B C D E	
-----------	--

		Tables
	_	

Iterating over a Hash Table

Visit every hash bucketVisit every element in every hash bucket

O(B)

O(N)

Total: O(B + N)

C 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Linked Hash Table

Idea: Organize the hash table elements in a linked list

CSE 250: Hash Tables

Hash Tables

Linked Hash Table

Iterating over a Linked Hash Table

• Visit every element via linked list O(N)**Total:** O(N) (no more O(B) factor)

Insert (Changes only)

• Append the new element to the tail of the linked list. O(1)

Remove (Changes only)

• Remove the element from its position in the linked list. O(1)

Resizing the Hash Table (Rehashing)

Remember the load factor $\alpha = \frac{N}{B}$

The expected runtime of insert, find, remove is $O(\alpha)$

If we can ensure that $\alpha \leq \alpha_{max}$ for some constant α_{max} , then $O(\alpha) = O(1)$

After enough inserts to make $\alpha > \alpha_{max}$ (with *B* buckets):

- Create a new hash table with 2*B* buckets.
- Insert every element e from the original table into the new one according to hash(e) mod 2B

Resizing the Hash Table

- Rehash at $N_1 = \alpha_{max} \cdot B$ from B to 2B buckets.
- Rehash at $N_2 = \alpha_{max} \cdot 2B$ from 2B to 4B buckets.
- Rehash at $N_3 = \alpha_{max} \cdot 4B$ from 4B to 8B buckets.
- ...
- Rehash at $N_j = \alpha_{max} \cdot 2^{j-1}B$ from $2^{j-1}B$ to 2^jB buckets.

└─ Hash Tables

Resizing the Hash Table

How many times do we rehash for N insertions?

$$N = 2^{j-1} \alpha_{max}$$

$$2^{j} = \frac{N}{\alpha_{max}}$$

$$j = \log\left(\frac{N}{\alpha_{max}}\right)$$

$$j = \log(N) - \log(\alpha_{max})$$

$$j \le \log(N)$$

Resizing the Hash Table

- Rehashes required: $\leq \log(N)$.
- The *i*th rehashing $O(2^i)$ work.
- <u>Total</u> work after N insertions is no more than...

$$\sum_{i=0}^{\log(N)} O(2^i) = O\left(\sum_{i=0}^{\log(N)} 2^i\right)$$
$$= O\left((2^{\log(N)+1} - 1)\right)$$
$$= O(N)$$

• Work per insertion (amortized):
$$O\left(\frac{N}{N}\right) = O(1)$$

C 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 25			
Hash	١T	ables	

Recap: So Far

Current Design: Hash Table with Chaining

- Array of Buckets
- Each bucket is the head of a linked list (a "chain")

Recap: find(x)

Expected Cost

Find the bucket $O(c_{hash})^1$ Find the record in the bucket $O(\alpha \cdot c_{equals})^2$ Total: $O(c_{hash} + \alpha c_{equals}) = O(1+1) = O(1)$ Unqualified Worst-Case Cost
 Find the bucket $O(c_{hash})$ Find the record in the bucket $O(N \cdot c_{equals})$ Total: $O(c_{hash} + N \cdot c_{equals}) = O(1+N) = O(N)$

 c_{hash} is the cost of the hash function. c_{equals} is the cost of .equals.

Recap: insert(x)

Expected Cost

Find the bucket $O(c_{hash})$ Find the record in the bucket $O(\alpha \cdot c_{equals})$ Replace the existing record or append it to the list O(1)Total: $O(c_{hash} + \alpha c_{equals} + 1) = O(1 + 1 + 1) = O(1)$

Unqualified Worst-Case Cost

Find the bucket O(c_{hash})
Find the record in the bucket O(N · c_{equals})
Replace the existing record or append it to the list O(1)
Total: O(c_{hash} + N · c_{equals} + 1) = O(1 + N + 1) = O(N)

Recap: remove(x)

Expected Cost

- Find the bucket
- Find the record in the bucket
- Remove the record from the linked list

Total:
$$O(c_{hash} + \alpha c_{equals} + 1) = O(1 + 1 + 1) = O(1)$$

 $O(c_{hash})$ $O(\alpha \cdot c_{equals})$

 $O(c_{hash})$ $O(N \cdot c_{equals})$

O(1)

O(1)

Unqualified Worst-Case Cost

- Find the bucket
- Find the record in the bucket
- Remove the record from the linked list

Total: $O(c_{hash} + N \cdot c_{equals} + 1) = O(1 + N + 1) = O(N)$

			Tables
Ьμ	lach T	Tables	

HashSet

- public boolean add(E a) Insert the element into the list at hash(a) mod B. Expected O(1)
- public boolean remove(T a) Find the element in the list at hash(a) mod B and remove it. Expected O(1)
- public boolean contains(T a) Find the element in the list at hash(a) mod B.

Expected O(1)

public int size()
Return a pre-computed size. O(1)

More Optimizations

Hash Table with Chaining

- ... but re-use empty hash buckets instead of linked lists.
 - Hash Table with Open Addressing
 - Cuckoo Hashing (Double Hashing)
- ... but avoid bursty re-hashing costs
 - Dynamic Hashing

Hash Table with Chaining

Hash Table with Open Addressing

- hash(A) = 1
- hash(B) = 2
- hash(C) = 2
- hash(D) = 4
- hash(E) = 3

Open Addressing

insert(a)

- Start at i = 0
- While bucket $nash(a) + i \mod N$ is occupied i = i + 1
- Insert at bucket $hash(a) + i \mod N$

find(a)

- Start at *i* = 0
- While bucket $hash(a) + i \mod N$ is occupied:
 - If bucket $hash(a) + i \mod N$ holds a, return true
 - Otherwise i = i + 1

Return false

Open Addressing

remove(a)

- Find the bucket containing a.
- For every element in the contiguous block following *a*:
 - Move the element b into the newly freed spot unless hash(b) < hash(a) + i</p>
 - Move to the next element

Open Addressing

Variant Probing Strategies

- Linear Probing: Offset to $hash(a) + c \cdot i$ for some constant c
- Quadratic Probing: Offset to $hash(a) + c \cdot i^2$ for some constant c

Runtime Costs

- Chaining: Runtime dominated by the size of the biggest linked list
- Open Addressing: Runtime dominated by probing

With a low enough α_{max} , operations remain expected O(1)

Cuckoo Hashing

Let's say we're ok with a more expensive insert/remove. Can we get O(1) find?

Dynamic Hashing

The amortized cost of a rehash is O(1), but periodic lag spikes can be annoying.

Can we "flatten out" the lag spikes?